The Expected Performance of Traversal Algorithms

in Binary Trees

KEITH BRINCK

Department of Computer Science, University of Iowa, Iowa City, Iowa 52242, U.S.A.

The paper compares expected performance measures for common traversal algorithms operating on threaded and
unthreaded binary trees, under the assumption that the trees are selected from the distribution induced by random
insertions. The results are shown to be similar to those derived in an earlier paper for binary trees selected from the

uniform distribution.

1. INTRODUCTION

In an earlier paper Brinck and Foo investigated the
performances of various algorithms for traversing
threaded and unthreaded binary trees in each of the three
standard traversal orders (preorder, inorder and
postorder).! In particular, under the assumption that each
binary tree is equally probable, the average times required
to compute the successor and predecessor nodes of a
random node were derived for each traversal order. Using
these results it was then possible to compare directly the
expected performances of tree traversal algorithms
utilising stacks with those that use threads.

The results of this earlier paper are now extended to
cover the case where the trees are selected, not uniformly,
but from the distribution induced by random insertions.

We would like to stress that, over both distributions,
the issue is not one of determining the execution order
[which is obviously always linear], but is instead one of
determining the constant of proportionality. While it may
not be of great theoretical interest, a difference of a factor
of two, for example, would be of some practical interest.

2. BACKGROUND

The definitions required conform largely to those used in
standard sources such as Knuth or Reingold, Nievergelt
and Deo.2 3 However, for completeness we will briefly
reiterate the main background required.

An n-node binary tree is defined to be a rooted tree
where each of the n nodes has zero, one or two immediate
desCendants, and a distinction is made between the left
and right subtrees. A left shell node is any node that can
be reached from the root of a binary tree by traversing
exclusively left branches, and a left shell branch is a
branch connecting two left shell nodes. Right shell nodes
and branches are defined analogously. Note that the root
of a tree is by definition both a left and right shell node.
The shell of a tree consists of all the left and right shell
nodes and branches.

This paper is ultimately concerned with the analysis of
traversal algorithms in threaded and unthreaded trees. By
a threaded tree we mean a tree where null left and right
links are set to point to the inorder predecessor and
successor nodes respectively, an extra tagbit is included
in each node to distinguish between threads and
branches, and a special node called the header is created
and set to point to the root of the tree in the standard
fashion (Ref. 2, p. 322).

426 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

Over the uniform distribution binary trees are regarded
as being unlabelled, with each different tree being equally
probable. The number of such distinct n-node binary trees
is given by the nth Catalan number, defined by

c,,=-‘_(2”).
n+1\n

A binary search tree is an n-node binary tree where each
of the n nodes has a unique label from 1 to n attached,
such that for any node its label is greater than the label
of every node in its left subtree and less than the label of
every node in its right subtree. If we regard the ith label
as belonging to the node with the ith largest content then
this definition is equivalent to that normally used for such
trees in the literature. (Note that the single-node binary
tree is by definition a binary search tree.)

In this paper we investigate the execution time required
for several common tree traversal algorithms operating
over a distribution generated by building binary search
trees from permutations. This distribution arises when
each n-node binary tree is considered to have grown as
the result of a random series of n ordered insertions, each
of which preserves the binary search property. Since there
are n! possible initial orderings of the n nodes to be
inserted, and each input ordering (or permutation) gives
rise to a binary search tree, there are n! trees in this
distribution. It should be noted, however, that the
resulting trees are not all different and that the mapping
between permutations and trees is a many-to-one
mapping. Note also that given an arbitrary n-node binary
tree there is only one way of assigning the labels 1. .n to
its nodes such that the binary search property holds. Thus
the distinction between trees arises not from the labelling
of the nodes, but from the order in which the nodes were
inserted into the tree. To emphasise that the distribution
is induced by permutations we refer to it as the
permutation distribution, and refer to trees selected from
it as permutation trees. Similarly, trees selected from the
uniform distribution are referred to as uniform trees.

A common quantity that arises in analyses over the
permutation distribution is the nth harmonic number,

defined by i ititi4. D
For our purposes it is sufficient to know that
hy, =log(m)+y+0G),

wherey = 0.5772156649 is Euler’s constant, but interested
readers should consult Ref. 3 for more details.
We are interested in comparing the performance of

¥20¢ I4dy 60 U0 1senb Aq 80€6.£/92/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

EXPECTED PERFORMANCE OF TRAVERSAL ALGORITHMS IN BINARY TREES

algorithms that traverse permutation trees in the three
standard orders using respectively stacks and threads,
and also to compare these traversal times with the
corresponding times over the uniform distribution. In
doing this we wish to make the basis for comparison as
machine-independent as possible, so that the results are
minimally affected by technological advances in either
hardware or software. Since the algorithms under study
all run on binary trees, our ideal basic operation is one
that moves a pointer from one node in the tree directly
to another. Operations such as traversing a branch or
thread, or pushing/popping a node from the stack, would
then count as basic operations, but other operations
performed may not be as easily categorised, and some
doubt may often exist as to how they should be counted.
In summary, we include any operations that can be safely
construed to be equivalent to moving a pointer from one
node to another within the tree, but admit that sometimes
the decision may appear to be subjective.

3. ENUMERATION RESULTS OVER
PERMUTATION TREES

In order to determine the expected performance of
traversal algorithms over permutation trees we will first
need to derive some counting results similar to those
derived for uniform trees in Ref. 1. In that paper,
enumerated properties of uniform trees were counted by
setting up and solving recurrence relations similar to the
one used to count the number of distinct n-node binary
trees (Ref. 2, p. 388). For example, the number of nodes
with exactly two immediate descendants was determined
as follows.

Lemmat

The total number of nodes, over all n-node uniform
binary trees, with exactly two immediate descendants is

(n—1)(n—-2)
2(2n—1) Cn-
Proof.
The result is obtained by solving
ky=0; k, =0,

n—1

kn= X [2k; Cpninal+Cr—2C,_,, n=2,
=0

where C,—2C, _, is the number of trees where the root
has two immediate descendants, and the summation term
counts the number of nodes that have exactly two
immediate descendants over all possible combinations of
left and right subtrees.

As there are C,, uniform binary trees in all, dividing the
expression for k,, by C,, tells us that the expected number
of nodes with exactly two immediate descendants in an
n-node binary tree selected uniformly at random is

n—1)@n-2)
22n—-1) -

This, and other similarly derived properties, have been
used to determine the expected performances of traversal
algorithms in threaded and unthreaded binary trees over
the uniform distribution.

In order to derive the corresponding results over the

permutation distribution we will need to obtain similar
counting results for permutation trees. As is the case with
uniform trees, this is achieved via the solution of
appropriate recurrence relations, and we now derive the
precise mechanism for doing so.

As mentioned above, permutation trees differ from
uniform trees only in their distribution: some permutation
trees may be identical, whereas each uniform tree is
unique. Consider those binary trees with a configuration
of i nodes in the left subtree (and hence n—i—1 nodes in
the right subtree). Define u,, ; and p,, ; to be the number
of uniform and permutation trees respectively with this
configuration. Then we know that

Up,i = CiCnioys

i.e. the number of binary trees with i nodes in the left
subtree is equal to the product of the total number of
different trees in each subtree. And of course

n-—1 n—1 1 2n
C,= Eo Up,i = Eo CiChina =m<n>'

The situation that arises over permutation trees is
similar, the only difference being that each configuration
does not arise uniquely. Let P, equal the number of n-node
permutation trees. Now we do not have that b, ; is simply
equal to P, P,_,_, because, although this does allow for
the repeated trees in each subtree, it does not count the
several times that the entire tree can be repeated.
Therefore we also need to multiply PP, ,_, by the
number of times that each entire tree can be repeated. For
the configuration to be such that the tree contains i nodes
in the left subtree, the root must be the node labelled i + 1.
Any of the remaining n — 1 nodes may make up the i nodes
in the left subtree, and hence there are (*;!) ways of
placing -nodes into the left subtree (after which the
content of the right subtree is uniquely determined).

Thus,
n—1
Pn,i = PnPn—i—1< i),

and

n—1 n—1 n_l
P=X Pn,i = z PnPn—i—1< i)

=0 =0

It is easy to verify that P, evaluates to n! as it should.

It now follows that once a recurrence relation has been
derived for the uniform distribution it is straightforward
to generate the recurrence that counts the same quantity
over permutation trees: the term /! is substituted for C;
throughout the original equation to allow for repeated
subtrees, and the (";!) multiple configuration factor is
inserted wherever summing over subtrees occurs. We will
henceforth refer to this process as ‘applying the standard
transformation’ to the original recurrence.

After transforming the relation from the lemma above
we get:

ky=0; k,=0,

n—1

k,= X [Zki(n—i—1)!<n:l>]+n!+2(n—1)!,

=0

which can be rewritten as

k, 1731 2
b= = I R+

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985 427

¥20¢ I4dy 60 U0 1senb Aq 80€6.£/92/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

K. BRINCK

Then

nl,—(n—11,_ =2, ,+1, n>2,
ie. nl,=m+1)1,_,+1.

This can readily be solved to yield

_n—2 n—2

I, 3 and hence k, = Tn!.

Table 1 gives the expected values of properties over
both distributions that will be required later. The results
for the uniform distribution are either obvious or will
have been derived in Ref. 1. Some of the results for the
permutation distribution are obvious and others may be
found via standard means. However, all may be found by
solving recurrences that are formed by standard
transformation from the corresponding recurrences for
the uniform distribution. But as this is a tedious and
straightforward process, we will in all cases but one
simply quote the final results. (Complete details may be
found in Ref. 4.)

As mentioned, one property is considerably more
difficult to evaluate over permutation trees than for
uniform trees, and so before continuing we will
investigate it in more detail. The property in question is
the average number of nodes that lie on the path from
the root of a permutation tree to the first node in the
postorder traversal.

Let d,, denote the total number of such nodes over all
n-node trees. The recurrence relation from which d,, can
be computed for uniform trees is

dy =0,
n-1

dn =X [dz Cn—i—1]+cn—1+dn—1~
=0

After applying the standard transformation this may be
written as

dy=0,
n—1

dy= 3 [din—i—) (")] +nl+d,_,.
=0

After setting a, = %;, this may be expressed as

na, = (n+1)a,_,+1-a,_,.
Attempting to solve this via the usual means of a

differential equation leads to a very complex integral and
so we alternatively rewrite it as

Ap—Aap1 = Jrli (an—l _an—z) +?IE’

and make the substitution b, = a,—a,_, to obtain the
relation
b, = #(bp_+1).

This relation can now easily be solved by unwinding to
yield

1 n-1 n-1 |
bn=—’ il=X —-
R e i=0 M

Now, as a, = b, +b,+...+b,, we have that
noiclil
j=1i=0J"
Since a, = (d,/n!), a, actually represents the average
value of d,, per tree. The double summation derived is the
exact value of a,, and we now estimate this value.

Table 1. Expected values of some properties over binary trees

Uniform Permutation
distribution distribution
Branches n—1 n—1
Threads n+1 n+1
L n(n+1) n+1
eaves 2en=1) 5
-1 1 1
Nodes with exactly =D+l nt
2n—1 3
one descendant
—1)(n-2 -2
Nodes with exactly (» 3 2)(n D) n 3
two descendants @n—
Left branch n-l n-l
t branches 3 2
+1 n+1
Left threads n 2 5
1 1
Left branches and 30 n:;) n-g
right threads @n=D)(n
Sn—10
Shell nodes it 2h,—1
n+2
—4
Left shell nodes 3n—4 h,
n+2
4n(2n+1)
Nodes on path from m ~ hn + 1.318

root to first node
in postorder traversal
where #,, is the nth harmonic number.

The value of 7, i!/j! for i equal to an arbitrary value
in the range 0 to j—2 has the form:

11 1

%[E“(n—k)(n—lwr ... n]’

where k = j—i+ 3.5 If the terms for a, are arranged in
tabular form indexed by i and j, then the diagonal terms
sum to h,, and the sum of the entries on the kth off-diagonal

is given by the term above. Thus the total sum of all
off-diagonal terms may be given by

i 1 1 1
1 e ———
Tt naitaxa T o heo

1 1 1 1
~o(3)-0(5)-0(5)--0(z5)-
Disregarding 0(1/n) terms, etc., we have that

1
VI E IR T Sy TA

a, < h,+1+

To evaluate the right-hand side of this expression, note
that the exponential integral, Ei(x), is defined by
z —t
Ei(x) = f £ _dr
o ¢
1 y L
- og(X)+y+i_1 ix l')

where y = 0.5772156649 is Euler’s constant. Thus

lim a, = Ei(l1)—y+h,
n— oo
=h,+®,

428 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

¥20¢ I4dy 60 U0 1senb Aq 80€6.£/92/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

EXPECTED PERFORMANCE OF TRAVERSAL ALGORITHMS IN BINARY TREES

where ® = Ei(1)—y, and is approximately equal to 1.318
(i.e. 1.895117816—0.5772156649). Thus we get that

h, <% < h,+1.318.

4. TRAVERSALS OVER THE
PERMUTATION DISTRIBUTION

The results of Brinck and Foo concerning traversals over
uniform binary trees are now extended to cover the
corresponding results over the permutation distribution.!
The mechanism by which this is done is identical to that
used to convert counting results to the new distribution:
namely, the results are obtained by solving recurrences
generated via standard transformation from recurrences
over the uniform distribution. In general the reader is
referred to the earlier paper for descriptions of how each
original recurrence is derived, but we will perform the
analysis of one algorithm in detail as an example of the
technique involved.

Algorithm 3.1. Compute inorder successor in a threaded tree
procedure insucc (p)

{
q« p.rhs
if p.rtag = branch then
while q.ltag = branch do q « q.lhs
return (q)

}

Algorithm 3.1 computes the inorder successor of its
parameter node. The key recurrence describing the
performance of this algorithm over the uniform
distribution can be found to be given by

kO = 05
n—1
kn = Eo 2k Cpoi1+Ciqniy), n=1,

where g; denotes the number of left shell nodes over all
i-node uniform trees. From Table 1 we see that ¢,_;_,
equals (3i—4/i+2) C;, which may be written as C;,, — C,.
The term k,, evaluates to (n—1/n+2) nC, and counts the
number of nodes that are left shell nodes of a right
subtree, thus giving the number of times that the test
‘q.ltag = branch’ is executed when considered over the
input-set of all nodes in all uniform trees. Since the
while-clause is invoked once for each node with a right
branch, and the test ‘q.ltag = branch’ fails exactly
once in each invocation, we have that the statement
‘q « q.rhs’ is executed exactly

n—-1_ (n—1)(n—-2)
2 " 2(n+2)
times. The statement ‘q « p.rhs’ is obviously executed
exactly once for each call of insucc, and so the total

number of link-traverses performed by Algorithm 3.1 is
found to be

n—1)(n-2) _3n+n+2
[”+ 2n+2)] n=

k,— C,

2t2)

_Dividing by nC,, gives an average asymptotic to % as n
increases.

To obtain the corresponding result over permutation
trees the standard transformation is applied to the
relation above and yields

n—1
kn= .Zo Rkn—i—D!+ilg,_] ("7),

i-
where the term §,_;_, now denotes the total number of
left shell nodes over the permutation distribution. From
Table 1 we have thatg,,_;,_, = h,,_;_;(n—i—1)!,and once
it has been substituted for, the recurrence may be solved.
Note that this is not equivalent to first substituting the
value of C,_;—C,_;_, for ¢,_;,_, into the equation
and then applying the standard transformation — it is
important to apply the standard transformation on the
initial version of the recurrence, not on a version
simplified under assumptions holding only over the
uniform distribution.

Once a recurrence has been transformed it may be
solved fairly easily — usually the generating function is
expressed as a first-order linear homogeneous differential
equation, which may be solved by standard means to yield
the required coefficients. The relation above may be
found to be equivalent to

nl,=m+1)Il,_,+h,_,, where [, = n—"'
This results in the generating function for the coefficients

1, being given by the differential equation

where H(x) =[—log(l—x)/1—x] is the generating
function for the harmonic numbers. This ultimately
results in a value for k, of (n—h,)n!, and the total
number of link-traverses over the permutation distribu-
tion is given by

<n+nh,,—-n;1)n! =<3”2+1—h,,>n!.

The resulting average of (3n+1/2n)—(h,/n) is again
asymptotic to § as n increases.

Algorithm 3.2. Compute postorder successor in threaded tree
procedure postsucc (p)

{

q<p
while p.rtag = branch do p « p.rhs
ifp.lhs=gq

then // q and successor are in opposite shells

while p.rtag = branch do

{

p< p.rhs

while p.ltag = branch do p « p.lhs
}

else // q and successor are in the same shell

p«—p.th
while p.rhs # qdo p < p.rhs
}

return (ci)

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985 429

¥20¢ I4dy 60 U0 1senb Aq 80€6.£/92/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

K. BRINCK

The transformed recurrence relation giving the total
number of operations performed by Algorithm 3.2
(postorder successor) is

n-1
ky,= X [Qk;+i'+2hi'+d) (n—i—1)! ("] —d,_,,
=0
where d| is the total distance from the root to the first node
in the postorder traversal. However, as given above, we
do not have an exact formula for d,, but the following
bounds:

h, < % < hy+1.318.

We therefore set d; = (h;+) i! in the recurrence relation
for k,, and denote the modified relation by k,. Setting
6 = 0in the solution for k,, will thus yield a lower bound
on k,, and setting 6 = 1.318 will give the asymptotic
upper bound. (It is obviously true that the value of k,, is
monotone in the value of 4.) Thus we have that

=S (R, i1+ 3hy 114071 (1—i— 1) ("]

i=0
—(fy_y+0) (n—1)\.
Let

Then we have that

; Z [21;+ 3h; +1+5]———(h,, 1 +9).

=0

The generating function, L(x), of the coefficients /, can

be found to be given by the following differential

equation:

dL(x) 2 _— . .
T +x_1L(x)—-[1+6x -

which implies that

L(x) = (ix-——)log(l x)+<145 ;5)(1 lx)2

1
(2+x) log(l —x)](~1_—x)2,

The coefficient of x* in L(x) is thus given by

- 15 ¢ l
I, = <4 3)(+1)+ 3h,—(4+9)
15 6 1 1 20
=(‘4'+§>"+ﬂ_3h"7”?

By setting 6 = 0 and 1.318 respectively we obtain the
following bounds on /,,:
1

33n+ —-3h,—-1<1, <4.19n+5r—l—3hn—-0.69.
Since /,, = (kn /n'), (I,/n) represents the average number
of operations performed per node in computing the
postorder successor. However, asymptotically 6 — 1.318,
and so

lim ln ~ 4.19.

n— o

Determining the expected performance of Algorithm
3.3 (preorder successor) requires only the expected
number of branches and the expected number of right

430 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

Algorithm 3.3. Compute preorder successor in a threaded tree
procedure presucc (p)

if p.ltag = branch then return (p . lhs)
while p . rtag = thread do p « p.rhs
return (p.rhs)

}

threads. The number of branches is always n—1, and
Table 1 shows that the expected number of right threads
is equal to (n+ 1/2), independent of the two distributions
in question. Hence, the expected number of operations
required to compute the preorder successor is the same
for permutation trees as for uniform trees, namely
asymptotic to 3/2.1

As with threaded trees from the uniform distribution,
computing the expected traversal time for each order over
the permutation distribution is simply a matter of com-
puting

E(TRAV) = E(START) +nE(SUCC)

where E(TRAV) is the expected traversal time,
E(START) is the expected time to compute the first node
in the traversal, and E(SUCC) is the expected time to
compute a successor. (A more formal justification of this
technique may be found in Ref. 1.)

For preorder we have

E(START) = 1,
1
nE(SUCC) = % — E(TRAV) = 3"; 3
For inorder we have
E(START) = h
1
nE(SUCC) = 3”; —h, = E(TRAV) = 3”2+ L

For postorder we have
E(START) =d,

where d,, is as defined earlier. The quantity d,, is also
involved in the computation of E(SUCC) for postorder
and, since it was not know exactly, we obtained above the
following bounds on the postorder value of E(SUCC):

1
3 -
3n-+—2 3h,—

Since we have that 4, < (d,/n!) < h, +1.318 the follow-
ing bounds hold for postorder E(TRAYV):

< nE(SUCC) < 4.19n+%—3hn

1 1
3 - . < < 4. i
3n+ P 2h,+1.07 < E(TRAV) < 4.19n+ o
—2h,+0.63,
and so asymptotically
E(TRAV) ~ 4.19n—2h,,.

The performances of Algorithms 3.4 and 3.5, which
respectively perform an inorder and postorder traversal
of a tree via a stack, can easily be seen to be
distribution-independent. Thus from Brinck and Foo we
get that their respective expected performance measures
are 2n—2 and 4n— 3 operations.!

The analysis of Algorithm 3.6, which performs a

—0.69.

¥20¢ I4dy 60 U0 1senb Aq 80€6.£/92/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

EXPECTED PERFORMANCE OF TRAVERSAL ALGORITHMS IN BINARY TREES

Algorithm 3.4. Inorder (stack) traversal
procedure inscan (p)

clear (S)
while p # nil do

{
while p.lhs # nil do

push (S,p); p<p.lhs

label: visit (p)
if p.rhs # nil then p « p.rhs
else

p < pop (S)
if p # nil goto label

Algorithm 3.5. Postorder (stack) traversal
procedure postscan (p)

clear (S); q«p
while p # nil do
{
while p.lhs # nil do {push (S,p); p < p.lhs}
while (p # nil) and ((p.rhs = nil) or (p.rhs = q)) do
{
visit (p)
qep
p < pop (S)

!
if p # nil then {push (S, p); p « p.rhs}

preorder traversal via a stack, requires the expected
number of nodes with two immediate descendants which,
as seen above, is not distribution-independent. It is not
difficult to see that the total preorder traversal time over
all trees is equal to twice the number of nodes with non-
null left subtree plus twice the number of nodes with two
immediate descendants. Taking the values of these
quantities over the permutation distribution from Table
1 we have that the expected traversal time per tree is giver
by

Table 2. Asymptotic traversal algorithm performances

Algorithm 3.6. Preorder (stack) traversal
procedure prescan (p)

clear (S)
while p # nil do

while p.lhs # nil do
{
visit (p)
if p.rhs # nil then push (S, p)
p«p.lhs
}
visit (p)
if p.rhs = nil then p « pop (S)
p<p.rhs

That this is slightly larger than the corresponding average
over the uniform distribution of §—9% is to be expected
owing to the relatively larger number of more balanced
trees in the permutation distribution.

5. CONCLUDING REMARKS

Table 2 summarises the results of the previous section and
compares them with those derived for the uniform
distribution in Ref. 1. Generally, the results are virtually
identical to those derived for the uniform distribution for
inorder and preorder traversals, while for postorder the
uniform figure also lies with the bounds derived for
permutation trees. That these results are so similar for the
two distributions is surprising in view of the fact that for
inorder and postorder traversals over the permutation
distribution the respective values of E(START) do not
converge to a constant as for the uniform distribution.

The analyses in this paper have all been concerned with
the time domain, but it would also be of great interest to
examine the expected maximum stack depth reached by
the various algorithms that traverse via stacks. In its
simplest form this is related to determining the average
height of the trees on which the algorithms operate, and
some asymptotic work has been presented in this area in
Refs 6, 7 and 8. While it is also possible to make use of
the properties of the individual algorithms as we have
done above, the recurrence relations that result are
two-dimensional and quite complex. It is easy to reduce
them to one-dimensional functional equations, but
difficult to get much further.

Stacks Threads

Best Worst Average Best Worst Average
Uniform distribution
Preorder n 2n—1 3n—9% n+1 2n 1(3n+3)
Inorder n 3n—1 2n—2 n+1 2n i3n+1)
Postorder 4n—3 4n-3 4n-3 2n n(n+1) 4n—6
Permutation distribution
Preorder n 2n—1 n—1 n+1 2n i3n+3)
Inorder n 3n—1 2n—2 n+1 2n iBn+1)
Postorder 4n—3 4n—3 4n—-3 2n n(n+1) 4.19n—2h,,

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985 431

¥20¢ I4dy 60 U0 1senb Aq 80€6.£/92/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

K. BRINCK

Acknowledgements

I would like to thank Professor N. Y. Foo for help and
encouragement during this work, and Professor E. M.

REFERENCES

1. K. Brinck and N.Y.Foo, Analysis of algorithms on
threaded trees. The Computer Journal 24 (2), 148-155
(1981).

2. D. E. Knuth, Fundamental Algorithms, 2nd ed. Addison
Wesley, Reading, Mass. (1975).

3. E. M. Reingold, J. Nievergelt and N. Deo, Combinatorial
Algorithms: Theory and Practice. Prentice Hall, Englewood
Cliffs, NJ. (1977).

4. K. Brinck, Analysis of algorithms on threaded trees and
related structures. Ph.D. Thesis, University of Sydney
(1982).

432 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

Reingold for the suggestion that permutation trees might
bear fruitful investigation in this manner.

5. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
matical Functions. Dover Publications, New York (1980).

6. J. M. Robson, The height of binary search trees. The
Australian Computer Journal 11 (4), 151-153 (1979).

7. P. Flajolet and A. Odlyzko, The average height of binary
trees and other simple trees. INRIA Report No. 56,
Rocquencourt, France (1981).

8. R. Kemp, On the stack size of regularly distributed binary
trees, 6th ICALP Conference, Udine (1979).

¥20¢ I4dy 60 U0 1senb Aq 80€6.£/92/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

