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Space-distortion has been recognised as an important factor in selection of a classificatory fusion strategy but has not
been considered in depth. This paper suggests that two separable phenomena are present. Analysis shows that the
group-average strategy is free from both forms and that the flexible strategy is not group-size-dependent. While use of
the centroid and incremental sum of squares strategies has been regarded as dubious with other than distance measures
and squared Euclidean distance, it is argued that both can be viewed as Jormulated algebraically and then retain their

established space-distortion properties.

1. INTRODUCTION

The user of numerical methods of classification has at his
disposal a diverse set of techniques, with selection of the
most appropriate technique for a particular problem
calling for an intelligent matching of the characteristics
of his data set and the style of classification desired to the
properties of the chosen technique. The restrictions on
choice imposed by the characteristics of the data set are
the more obvious. For example, it is common in
ecological studies to represent sites only by the absences
and presences of a set of species, so that the use of
specialist dissimilarity measures and techniques able to
accommodate such measures is demanded. The style of
the classification is more subtle. For the moment we note
that some techniques can accentuate the differences
between individuals and groups and inherently tend to
lead to classification with homogeneous groups and
groups of outliers, while others tend to yield diffuse
groups. A user might see accentuation of differences as
desirable in some instances and not in others: to a certain
extent the choice will reflect the user’s philosophical
approach to classification as well as the perceived
requirements of the task in hand. We suggest, however,
that a knowledge of this aspect of a technique’s
performance is necessary when rationally choosing a
technique from the several available.

This paper considers agglomerative techniques and
gives reasons for choosing between alternatives. A
technique is agglomerative if it begins with a set of
isolated elements and progressively fuses these into
groups of increasing size until a required number of
groups is reached. The nominal objective (the global
objective) is minimisation of some quantity related to a
certain number of groups and the allocation of elements
to those groups. It is more usual, however, to proceed by
minimising a local criterion for each fusion in turn, so that
the algorithm is sub-obtimal or non-exact in the
terminology of Muller-Merbach.!! For example, under
the within-group sum of squares method of Ward,!¢ the
global objective is minimisation of the within-group sum
of squares, while the local objective is to minimise the
increase in the sum of squares as the result of the next
fusion to be performed. Strategies within the agglomera-
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tive approach are defined by the various local criteria
adopted. In this paper we are particularly concerned with
the centroid, group average, incremental sum of squares
and the flexible strategies which are the more widely used.

Two aspects are considered. The first is space
distortion, identified by Lance and Williams® as an aspect
of behaviour considerably influencing the characteristics
of the classifications generated. The term is based on a
model of inter-element dissimilarity measures as defining
a space of known properties. As fusion proceeds it
need not follow that the inter-group measures preserve
the properties of the space. If a strategy does preserve
the properties, it is termed space-conserving’. If, on the
other hand, the group—element or group—group dissimil-
arities require a view of the space as being contracted or
dilated in the immediate vicinity of the groups, then the
strategy is defined as ‘space distorting’, or more
specifically as ‘space contracting’ or ‘space dilating’.
Space-dilating strategies were noted as tending to lead to
‘intense’ groups where all elements in a group were
closely similar to other members of the group, while
space-contracting strategies tend to form diffuse groups
which could be relatively heterogeneous. In subsequent
investigations,!® space distortion was considered to be an
effect of group size only, so that ‘space distortion’ has
been usually accepted as synonymous with size distortion.
We shall consider space distortion more closely and shall
identify another effect termed ‘ range distortion’. Analysis
will also more clearly identify the relative propensity of
the strategies to be influenced by space distortion.

The second aspect to be considered is the range of
dissimilarity measures able to be appropriately treated by
the combinatorial forms of the strategies, i.c. the
measures compatible with the strategies. Combinatorial
forms for (amongst others) the centroid and group
average strategies were advanced by Lance and Williams,®
who were also led to propose the flexible strategy with its
purely algebraic formulation. Under a combinatorial
form of a strategy, a dissimilarity matrix is initially
defined for all pairs of elements and is maintained for all
pairs of outstanding elements and groups. At each step,
the groups or elements fused are chosen as those with the
smallest dissimilarity, and the measures for the new group
and the remaining elements or groups defined from group
sizes and the measures in force immediately before the
fusion. This is considerably more efficient than earlier
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approaches where evaluation of the criterion was
performed by reference to the attribute values for
elements and usually demands less storage, as the raw
data can be discarded when fusion commences. Lance
and Williams® showed the group average and centroid
strategies to be compatible with Euclidean distance
measures and with the squared Euclidean distance (D?).
They also suggested that the group average strategy was
compatible with all measures ‘providing the concept of
an average measure is acceptable’. Wishart!? and Burr?
independently provided a combinatorial formulation of
the incremental sum of squares or Ward’s method,¢
considering D? only.

It is apparent, however, that there is a number of
measures other than Euclidean distance and D? in
widespread use, such as the metric Canberra® and Gower®
measures and the quasi-metric Bray—Curtis! and Jaccard®
measures. More generally, it is worthwhile to consider if
dissimilarity measures not possessing the four properties
required for a measure to be a metric or equivalently a
distance measure'* can be accommodated within the
combinatorial formulations of strategies. Such measures
are termed non-metrics. There is some disagreement in
the literature on this point. Sneath and Sokal4 and Ross!3
see such usage as dubious, while Clifford and Stephenson?
state it is permissible. Burr? notes the use of the ISS
strategy with measures other than D? as not specifically
addressed. There is, however, some empirical evidence
that use of the ISS strategy with non-metrics does
produce readily interpreted classifications.!? 15 We shall
argue that the combinatorial formulations of the
common strategies can be viewed as purely algebraic
statements of strategies and so can be applied with
non-metrics even if a geometric interpretation is not
available. We also note that the space-distortion
properties remain the same as shown for the distance
measures.

2. COMBINATORIAL FORMULATIONS OF
STRATEGIES

We suppose that two elements or groups i (with n;
elements) and j (with n; elements) have just fused to form
a composite group k (with n, =n;+n;) elements.
Consider a further group 4 (with , elements); it is then
required to calculate the measure d,, from the
already-known values of d,;, d,; and dy;. Lance and
Williams® define the following general relation for
combinatorial strategies:

dn = ; Ay + 0y dyy+ Bdij+ 7 | i — dy | M

where a;, a;, f and y are functional parameters defining
the particular strategy in use. The parameter y is used only
for the extreme strategies of ‘nearest and furthest
neighbour’, and will not be discussed further. The
remaining parameters are functions of n,, n; and n; (for
all strategies except the flexible) or constants, once f is
specified in the flexible. The four strategies to be
considered are implemented by parameter definitions as
follows.

Centroid:

o =n/n; oy =n/m; B= —n;n;/n} 2
Group average:

o =n/ng; oy =n;/m; =0 3)
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Incremental Sum of Square (ISS):
o; = (np+m;)/(ny+ny);
;= (M +n)/(n,+ hy);
B= —ny/(ny+ny) “4)
Flexible:

a0 =31-h); a=§1-p); B<1 (&)

It will be convenient to define two further quantities 4,
and 4; where 4; = dy;—d;; and 4; = dp;—d;;. We note
that a desirable property of a strategy is that at each
fusion the value of the local criterion is not less than that
at any preceding fusion. Strategies with this property are
said to be monotone; those for which this is not
invariably true are said to exhibit reversals. Lance and
Williams® show that the condition for monotonicity is
simply a;+a;+f = 1; from this it follows that the
centroid strategy is subject to reversals, whereas the rest
are monotone.

Equations (2) to (5) can be written in functional form,
treating the various n and d as parameters. We have

dp = F(ny, s, ny, dij’ s dhj) (6)

where s = n;/n;. The advantage of this functional form
is simply that it allows the use of parametric analysis to
examine the effects of the various constituents of a
group’s definition.

3. A RE-EXAMINATION OF SPACE
DISTORTION

Studies to date® %18 have tacitly assumed that space-
distortion is a single phenomenon with ‘group-size
dependence’ synonymous with space distortion. The
parameterized form of the general combinatorial formu-
lation of the strategies suggests, however, that there is
another phenomenon present. While the two may be
confounded in practice, a recognition of them as
separable provides a clearer assessment of the influences
on the classifications yielded from the various common
agglomerative strategies given particular characteristics
of the presented set of elements. We shall term these
phenomena size distortion and range distortion.

Some discussion of ‘space distortion’ is desirable to
elucidate the concepts involved. The geometric basis for
such strategies as the centroid and group average
encourages a view of a group as a point or element in
attribute space, defined by the group’s centroid and mean
over attributes respectively. A single-element representa-
tion of a group under the ISS strategy is less obvious, but
there remains a view of a group defined as a region in
space enclosing the group’s members. This model can give
a misleading impression of the dissimilarity of a group
and another element in some cases. Consider, for
example, the fusion under the ISS strategy of eleven
elements, with the first to tenth elements identical. After
five of the identical elements have fused, the eleventh
element is more dissimilar to the group than any of its
constituent elements, i.e. it appears to have receded from
the region defined by the group. It appears even more
dissimilar to the group once it includes all ten elements.
To reconcile the view of a group as a region in attribute
space and the actual dissimilarities it is necessary to
introduce distortion of the space in the vicinity of the
region occupied by the group. We observe in passing that,
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for the centroid, group average and ISS strategies, space
distortion is not an artefact of the combinatorial
formulations, as these have been shown to be exactly
equivalent in their computed dissimilarities to evaluations
referencing the individual elements.® 172

That is, the dissimilarity between a group and some
reference element is not simply a function of the relative
placement of the reference element and the region
occupied by the group but also reflects other group
parameters. Size distortion is attributable to the number
of elements within the group, while range distortion is
attributable to the dispersion of elements within the
group’s region.

3.1 Size Distortion

This is the classical case as introduced by Lance and
Williams.® A strategy is said to exhibit size distortion if
the dissimilarity measure for two groups is sensitive to the
group sizes, i.e. n, and n;. Applying the functional form
of (6), a strategy is formally defined as size-distorting if

Fbny, s, ny, du, dp» dhj) # F(ny, s, ny, dij’ dp;s dm’)

where b is greater than unity and for some fixed n,, s, d;;,
dy; and dy;. The various types of size distortion can be
defined in the same manner. For example, a strategy is
size-dilating if

F(bny, s, ny, dyj, dy;, dy;) > F(ny s,np, dij dyis d;j)-

3.2 Range-distortion

We prefer this term to the perhaps more general, but
cumbersome,  heterogeneity-distortion’. Wedefine range-
distortion as occurring when a strategy is sensitive to the
range of elements within the region of attribute space
occupied by their group. The only parameter available to
use within the general combinatorial formula is d;;.
Formally, a strategy is said to exhibit range-distortion if

F(ny, s, ny, dyg, dy;j, bdis) # F(ny, s, np, dpi» dnj, dij)

where b is greater than unity and d,; is non-zero.

The situation has been confused by the demonstration
in Ref. 18 that the difference between the square of
the distance between the centroids for two groups and the
value for D? is equal to the sum of the variances of the
two groups. We submit that this is not space distortion,
but rather shows an identity relating two local objective
functions, for the group average and centroid strategies.
Indeed, by the test advanced for range distortion the
group average strategy must be range-conserving, as its
combinatorial formulation contains no term in dj;.

4. ANALYSIS
(i) Size distortion

We adopt what is essentially a form of sensitivity analysis.
To determine whether a strategy is size-distorting or
size-conserving, we examine the change in d; with
increasing n,, holding other parameters constant. If that
change increases with n,, then the strategy is size-dilating;
if the change is zero, the strategy is size-conserving. These
criteria differ somewhat from those of Ref. 18 in not
considering cumulative displacement.

The change in dissimilarity measure can be developed

as the difference in dissimilarity measures to a group h
from a group k (defined as previously) and from a group
K, where K has been formed from two groups I and J
identical to i and j respectively in all parameters except
group size. As the ratio n;/n; has been discounted as
irrelevant to size dilatation, we also require that n;/n; and
n;/n, are equal. The group parameters for k and I are
then related by:

dp; = dyp; dij =d,

np/ng =ny/n;=ng/n,=s

dhj =dyy;

It will also be convenient to write r = n;/n,and t = ny,/n,.
(We note in passing that, at least for some strategies, a
group such as 7 can be formed by fusing s groups identical
with i; but the analysis does not assume that all members
of such a group are identical.)

Presentation of the sensitivity analyses will be
simplified by introducing a third subscript to identify the
strategy being considered. We use 1 to denote the
centroid strategy, 2 for the group average, 3 for the ISS
and 4 for the flexible. Thus d,;,; denotes the dissimilarity
of h and k under the centroid strategy.

It is trivial to show that

dhKl’“dmm = dhm—dhm = dnm"dhm =0

It follows that the centroid, group average and flexible
strategies are free from size distortion. However,

(s—1)
(t+1D)(t+s)

This expression is always positive if s > 1; the ISS
strategy is therefore always size-dilating.

dpgs—dpis = {(1—=r)d;+rd;}

(ii) Range-distortion

A similar form of analysis can be applied to assess the
range-distorting properties of the four strategies. We now
take 1, J and K defined by

dpr = dyi;

n; = n;;

dyy = dyy; dyy > dy

ny;=mn;; ng=ng

The differences in distance measures then reduce to:
dy ey —dpiy = nyn(dy —dig) /.
dhge—dpkz =0
dyxs—dnis = —np(dyy —dij)/(np+ny)
dnia—dnka = Bldry— dij)

We observe that the group average strategy is perfectly
range-conserving. The centroid and ISS strategies are
range-contracting, while the flexible strategy can be
range-contracting, -conserving or -dilating depending on
the value of 8. For the usual value of § = —0.25, strategy
4 is range-contracting.

(iii) Comparison of strategies

The six possible comparisons are summarised below:
Anga— dpir = nynydyj/n

s — Apiey = np(n; 4;+n; 45)/ny(ny, +ny) +nyn; di; /ni,

Apis— Apis = np(ny A +n;+4;) [ ni(ny +ny)
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dpga—dpir = 45(1 —B)—ny/ny}
+ 4,301 = B)—n;/my}+n;ndy;/n;
dyia—dngs = 431 =) —n;/my+ A, ((1 —B) —ny/ny}

n,+n
dhka_dnka = Ai{%(l —ﬂ)_n:—+n_;}

+afia-p- 2t

nh+nk

Considering first the centroid, group average and ISS
strategies, we note that, trivially, dy, is always less than
dp 5, Which in turn is always less than d), ;. The difference
between strategies of the centroid and group average
resides entirely in the term in d;;. We can therefore suggest
that, in place of the usual Euclidean geometric
explanation, the loss of monotonicity of the centroid
strategy is due to its range-contracting properties.

No simple universal statement can be made for dj,.
The relative performance of this strategy is clearly a
function of the value of 8 adopted for the classification,
and of the values of n;, n; and n,, in force at a particular
fusion. Some observations on particular cases, however,
suggest that under certain configurations of data, and for
part of the fusion cycle, the flexible strategy can perform
similarly to the centroid or group average. For example,
it will perform similarly to group average 2 when g = 0;
for inspection of (dy,;, —dpy) shows that the difference
between strategies will then be small if (n,—n;) and
(4;— 4;) are both small. Particular interest resides in the
comparison between ISS and flexible with § = —0.25. If
we write 4; = 4; = 4, the quantity (dyxs—dpis) then
reduces to 4{0.25—n,/(n,+ny)}, which vanishes when
n; = 3n,. Flexible, with f# = —0.25, thus becomes more
space-dilating when ny, > 3n,,.

5. DISCUSSION

We return to the two aspects of selection of a strategy
from the four considered to match a user’s requirements
for an analysis.

5.1 Compatibility of measures and strategies

As noted earlier, the literature has largely tended to argue
that strategies should be applied only where the
dissimilarity measure used is compatible in the sense that
‘measures calculated later in the analysis are exactly of
the same kind as the initial inter-element measures; they
have the same dimensions (if any), are subject to the same
constraints, and can be illustrated by an exactly
comparable model’.® Incompatible strategies are then
seen as undesirable through difficulties in interpretation
of group—element or group—group measures. The flexible
strategy is an anomaly : while inspired by the general form
of the other combinatorial strategies, there is no explicit
statement of a geometric model. This has not precluded
its use, and it has been recommended where space
contraction or dilatation is required when a user has
non-metric measures other than D2.

Clearly the combinatorial formulations of the other
strategies can be viewed in the same sense as algebraic
formulations of strategies with the fixed values of a;, a;
and B of the flexible strategy replaced by terms in the n,,
n; and n,, applying at the time of the fusion. We observe
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that the analyses presented here have not made use of the
properties of metrics or D2, so that the space-distortion
characteristics would remain applicable for all dissimila-
rity measures. The ISS strategy would then provide more
predictable performance when size dilatation is desired
than would the flexible strategy with g = —0.25.
Similarly, if range-contraction is desired, then the
centroid strategy appears more desirable than the flexible
strategy.

Such a usage with measures other than metrics or D?
does require the loss of a local criterion able to be
interpreted geometrically, with the formulation now able
to be viewed only as a mechanism to define a
between-group or group—element dissimilarity measure
from the group’s two component group parameters.
Depending on the philosophical attitude of the pattern
analyst, there is a requirement either to judge the form
of the derived measure as meaningful in some way or to
treat the classification with caution and to refer to
external data to assess its merits. Minimally, however, use
of the strategies with other than the measures considered
in their original formulation can be seen as a device to
apply the concepts of the flexible strategy while avoiding
the inherent problems in striking arbitrary weights on the
constitutent dissimilarity measures.

5.2 Space-distortion as a guide to strategy selection

The centroid strategy appears to be mainly of historical
interest. It was at one time regarded as the only extant
space-conserving strategy although it has been found here
to be subject to range distortion. However, it is now
seldom used because of the inconvenience of its not
infrequent reversals and possibly as it has been treated as
incompatible with dissimilarity measures other than
Euclidean distance or D28 13,14

The group-average strategy has been surmised to be
‘substantially’ space-conserving although it has been
taken as sensitive to the within-group variances.!® While
it has been stigmatised as a ‘not very attractive
strategy’,!® in our recent experience it is being increasingly
used by biologists who wish to avoid space dilatation.
Lance and Williams® suggest that it can appropriately be
used for all dissimilarity measures, ‘providing the
concept of an average measure is acceptable’. The
analysis here confirms it as both size- and
range-conserving.

The incremental sum-of-squares strategy is probably
now the most widely used strategy when some degree of
dilatation is demanded. The analyses of this paper
confirm its size dilatation while showing it to be
range-contracting.

The flexible strategy should now be viewed as mainly
of theoretical interest. When f is positive, it is
space-contracting; but on the rare occasions when
biologists have required such a strategy they have
normally preferred to use the older ‘nearest-neighbour’
strategy, which has well-known mathematical
advantages.” When f is zero it is space-conserving, but
though preferred for this purpose by Williams et al.® it
has not ousted the group average strategy. When f is
negative it is space-dilating; and its main interest in the
past has rested in the fact that it has been considered the
only appropriate strategy when a user required to use a
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space-dilating strategy and a non-metric dissimilarity
measure.

It can of course be argued that space dilatation is
inherently advantageous in tending to yield homogeneous
and sharply defined groups, with the groups of outliers
usually able to be readily recognised as such. We submit,
however, that it is the user’s prerogative to select space
dilatation or conservation as most appropriate to his
purposes or even his general philosophy. Ourinvestigation
should be interpreted as providing a sounder basis for
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