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A Survey of Natural Deduction Proofs*
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The LCF project has produced a family of interactive, programmable theorem-provers, particularly intended for
verifying computer hardware and software. The introduction sketches basic concepts: the metalanguage ML, the logic
PPLAMBDA, backwards proof, rewriting, and theory construction. A historical section surveys some LCF proofs.
Several proofs involve denotational semantics, notably for compiler correctness. Functional programs for parsing and
unification have been verified. Digital circuits have been proved correct, and some subsequently fabricated.

There is an extensive bibliography of work related to LCF. The most dynamic issues at present are data types,
subgoaling techniques, logics of computation, and the development of ML.

1. INTRODUCTION

‘Natural deduction’ is a technical term referring to
formal logics where theorems are proved with respect to
a changing set of assumptions. Many people question
whether any formal proof can really be natural. With
computer assistance, we can prove useful theorems in
complete rigour. This paper describes the LCF family of
interactive proof assistants. After an overview, it surveys
the proofs that have been performed and the resulting
insights.

There are many other interactive theorem provers.
Boyer and Moore! and the AUTOMATH project!® have
conducted major studies.

2. LCF AND ITS METALANGUAGE

The main components of any LCF system are the
metalanguage ML, a logic such as PPLAMBDA,
subgoaling functions (tactics and tacticals), a simplifier
for using rewrite rules, and commands for maintaining
hierarchies of theories.

The Edinburgh LCF Manual® contains a full descrip-
tion. Though later versions of LCF vary in details, the
fundamental concepts remain the same.

2.1. The language ML

An important aspect of LCF is that it can be programmed
in its metalanguage ML. All commands are provided as
ML functions. By writing ML code, you extend LCF with
new commands and functions: this is how LCF grew over
the years. Some data structures and pattern-matching
primitives are implemented in Lisp, as is ML itself. The
bulk of LCF is implemented as 5000 lines of ML.

ML is a functional programming language that
provides typical data structures such as numbers,
booleans, tuples and lists. The most important control
structure is function call. Almost all ML code consists of
function definitions and invocations, though ML provides
assignment and iteration statements. ML has a few
unusual features that were intended to support theorem
proving, and have turned out to be generally useful.

* An early version of this paper will appear in Workshop on Formal
Software Development: Combining Specification Methods, edited by
D. Bjorner, Springer (1985).
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Functions can be arguments or results of otherz
functions. All of LCF’s tacticals and rewriting operators a
are functions that operate on other functions.

Types are polymorphic, giving the security of rigid type 3
systems such as Pascal’s with almost all the flexibility of =
typeless languages. For example, you can define ]ist§
operations that work on lists of integers, lists of lists of 5
booleans, etc. g

Exceptions (known as failures) can be raised and @
handled. A common way to combine theorem-provmgo
functions is to try them one at a time until one terminates 2 g
successfully.

2.2. The logic PPLAMBDA

Most LCF proofs are conducted in PPLAMBDA, a logic =
for domain theory.* ?? Formulas are built up from the @ fD
connectives ¥, A, =, etc. Theorems are proved with f';
respect to a changmg set of assumptions, the natural =
deduction approach. If 4,, ..., A, B are formulas, then a =
theorem of the form [Al,... A,]+ B states that the 431
conclusion B can be proved from the assumptions £
A,,...,A, The theorem F B has no assumptions.
Inference rules are typical of natural deduction:
introduction and elimination rules for each connective.

The logic is embedded in ML.1° A logic consists of an
ML data-type form of formulas, together with axioms
and inference rules for proving theorems. Formulas of the
logic are ML values, with functions for taking formulas S.
apart and putting them together. Theorems are values of 13
type thm. Axioms are pre-declared ML identifiers, while '®
inference rules are functions mapping theorems to
theorems. Theorems form an abstract data type, for a
theorem can be constructed only via axioms and inference
rules, not by arbitrary manipulation of its representation.
ML’s type-checking guarantees soundness: every theorem
is true.

For example, consider the PPLAMBDA rules for
implication. The introduction rule is called the ‘discharge
rule’ because it discharges (cancels) the assumption 4 in
the premiss. Any assumptions other than A4 are passed
along to the conclusion.
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ML provides this rule as the function DISCH of type
Sform — (thm — thm). Its arguments are the formula 4 and
the theorem [A4] - B.

The elimination rule is called Modus Ponens:

HFA=B +A4
B

ML provides this rule as the function MP of type
thm — (thm — thm). Like many LCF inference rules, MP
uses the failure mechanism to reject inappropriate
premisses. It fails unless its arguments have the form
A= Band - A.

The function concl, of type thm — form, maps any
theorem - A4 to its conclusion 4. Now the ML function
definition

let CUT bth ath = MP(DISCH(concl ath) bth) ath;;
implements the cut rule:
[Al-B +A4
~B

Many derived inference rules can be implemented as ML
functions.

PPLAMBDA differs from other logics in its polymor-
phic type system, which resembles ML’s. A type is not a
set but a domain, as in denotational semantics.3” Types
of higher-order functions and infinite streams can be
constructed. Functions can be defined using lambda
expressions or recursion equations. The rule of fixedpoint
induction allows reasoning about the computation of a
recursive function, and is the basis for other induction
rules.

Every type includes the bottom element 1. This
represents the ‘undefined’ result of a nonterminating
computation, to reason about partial functions and
continuously operating processes. The formula x £ |
means ‘x is defined’, and Vx.x £ L = f{x) £ | means‘f
is a total function’. There is a partial order: x < y means
‘x is less defined than y’.

Versions of LCF exist for several logics other than
PPLAMBDA 11,1332,

2.3. Tactics and tacticals

Applying inference rules to theorems produces other
theorems. This is forwards proof. Most people work in
the backwards direction. Start with a goal, the theorem
to be proved. Reduce goals to simpler subgoals until all
have been solved.

Functions called factics reduce goals to subgoals. A
complete tactical proof may be imagined as a tree whose
nodes are goals and whose leaves are known theorems.34
(Usually this notional tree is not actually stored in
computeﬂr memory.) The goal of proving a formula 4 is

written - 4. In Cambridge LCF,?28 the tactic CONJ_TAC
?
reduces any goal of the form — 4 A B to the two goals
? ?
F A and - B, and fails if its input is not a conjunction. The

? ?
tactic DISCH_TAC reduces the goal — 4 = Bto [A] - B,
the goal of proving B assuming 4 plus any previous
assumptions.
The tactic function ACCEPT_TAC, applied to a

?
theorem H A4, reduces a goal — A4 to the empty list of
subgoals. It fails on other goals. If you reduce a goal to
the empty list of subgoals, you have solved it and can turn

your attention to some other goal in the tree. ,

These three tactics suffice to prove the goal -
A= (B=A A B). Calling DISCH_TAC gives the goal
?

[A]-B=A A B. Calling DISCH_.TAC again gives
?

[4; Bl A A B. Calling CONJ_TAC gives the two goals
? 9

[4; Bl A and [4; B B. The first can be solved by the

tactic ACCEPT_TAC(ASSUME ‘A4’), and the second

by ACCEPT_TAC(ASSUME ¢ B’).

Operators called racticals combine tactics into larger

ones. The basic ones are

THEN  combines two tactics sequentially: the tactic
(tac, THEN tac,) applies tac, to the goal, gives
the subgoals to tac,, and returns all resulting
subgoals.

ORELSE combines two alternative tactics: the tactic
(tac, ORELSE tac,) applies tac, to the goal.
If tac, fails, then it applies tac,.

REPEAT makes a tactic repetitive: the tactic (REPEAT
tac) applies tac to the goal, its subgoals, etc.
It returns a list of the goals on which rac fails.

Cambridge LCF provides additional tacticals for

iteration down lists.2® These work with tactic functions

like ACCEPT_TAC. The tactical FIRST_ASSUM applies

a tactic function to the first assumption; if the resulting

tactic fails, it tries the second, third, ... assumption. So

FIRST_ASSUM ACCEPT_TAC
?

is a tactic. Applied to the goal [4; B] I B, it acts like the
tactic

(ACCEPT_TAC(ASSUME ‘4°)) ORELSE
(ACCEPT_TAC(ASSUME ‘B")),

searching in the goal for the assumption B.
These tacticals can express the proof of
v

- 4 = (B=A A B) in many ways:

DISCH_TACTHENDISCH _TACTHENCONIJ_TAC
THEN (FIRST_ASSUM ACCEPT_TAC)

or

REPEAT (DISCH_TAC ORELSE CONJ_.TAC
ORELSE (FIRST_ASSUM ACCEPT_TACQ))

or, using the standard tactic STRIP_TAC for breaking
down goals,

REPEAT (STRIP_.TAC ORELSE (FIRST_ASSUM
ACCEPT_TAQ)).

The rewriting tactics described below can solve many
similar tautologies in one step.

Tactics are implemented in ML on top of the abstract
?

data type for theorems. A tactic that reduces the goal -
? ?

AtothesubgoalsB,, ..., B, alsoreturnsafunction that
takes the list of theorems — B,, ..., B, to the theorem
 A. Once every subgoal has been solved, these functions
can be put together to produce the desired theorem as an
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ML value. LCF’s tacticals and interactive proof com-
mands do this bookkeeping.

2.4. Rewriting

Every implementation of LCF includes a simplifier for
applying rewrite rules and solving tautologies. Rewriting
can simplify terms, formulas, or theorems. It is most
commonly used, via a standard tactic, to simplify goals.
Most proofs rely heavily on the simplifier.

A theorem of the form

- tx,, .. » Xu]
is a rewrite rule. The simplifier instantiates the variables
Xy, ..., X, by pattern-matching: searching in the goal, it

replaces every occurrence of f[a,, ..., a,] by ua,, ...,a,].
A theorem of the form

s Xp] = ulx,, ...

= Alxy, .o x] =Xy, o x,] = ulxg, .., x,)

is a conditional rewrite rule. The simplifier replaces
fda,,...,a,] by ula,,...,a,] whenever it can prove
Ala,, ..., a,] by recursively invoking simplification. When
simplifying a formula 4 = B, where 4 contains syntacti-
cally acceptable rewrite rules, the simplifier assumes these
while simplifying B.

Cambridge LCF uses operators for combining primitive
rewriting functions into powerful ones, as tacticals
combine tactics. This makes it easy to implement a
desired rewriting strategy.2?

2.5. Building Theories

You can extend the logic with new constants, infix
operators, types, and axioms. The ML function for
declaring an axiom A returns the theorem — A. LCF
stores this information on a theory file, along with
theorems proved within the theory. In a later session you
can load in the theory file for proving additional
theorems.

A theory may be an extension of other theories, called
parents. This theory can itself become the parent of later
ones, forming a directed acyclic graph. Suppose we have
a theory nat of the natural numbers, and theory list of
lists. A theory defining the length of a list would have
parents nat and list. Long proofs involve months of
interactive sessions and dozens of theories.

Sannella and Burstall have implemented new operators
for building theories.?®* A theory can be abstracted,
producing a theory whose details of construction are
hidden. A parametrized theory is a function yielding
theories; it can be applied to any theory satisfying stated
logical properties.

3. A BRIEF HISTORY
3.1. Proofs in denotational semantics

For her dissertation,? A. J. Cohn verified

three schemes for recursion removal;

a compiler from an if-while language into a goto
language;

a compiler for an abstract language with recursive
procedures.

The compiler proofs involve denotational definitions of
direct and continuation semantics, and also operational

definitions. The second compiler involves four semantic
definitions, descending from an abstract to a machine
orientation. For the source language Cohn gives a
standard denotational semantics, a closure semantics,
and a stack semantics. The target machine has an
operational semantics. The equivalence between the
highest and the lowest level is proved as three
equivalences between adjacent levels. Due to the proof’s
size and complexity, Cohn performed it only on paper.
She later proved in LCF that the standard and closure
semantics are equivalent.?

A related problem is the equivalence between
denotational and axiomatic definitions of semantics.
Sokotowski has proved the soundness of Hoare rules for
anif-whilelanguage, relative to adenotational definition.
He allows infinite programs, defining the while command
as an infinite nest of if commands. (In PPLAMBDA,
infinite data structures are easier to handle than finite
ones!) Verification of Hoare rules is a largely routine but
tedious process of expanding definitions and searching
down chains of implications. Sokotowski’s paper illus-
trates the search in action. The same tactic verifies every
rule except while, which requires fixed-point induction.
Verifying each Hoare rule demonstrates the soundness of
the Hoare logic, by induction on proofs. He could not
formalize induction on proofs in LCF; one attempt
violated PPLAMBDA s requirement that all functions be
continuous.

Mulmuley has implemented theories and tactics for
proving the existence of inclusive (recursively defined)
predicates.?® He has LCF theories of the universal domain
U and the domain V of finitary projections of U. The
correspondence between domains and elements of V
allows quantification over domains to be expressed in
PPLAMBDA. Asked to prove the existence of a
predicate, Mulmuley’s system generates goals and gives
each one to an appropriate tactic. The tactics use
rewriting and resolution. The system, which totals sixty
pages of ML, handles several predicates in the literature.
It verifies Stoy’s predicate automatically;*? in another
example, only one goal out of sixteen requires human
assistance. Mulmuley relies on a machine-verified
predicate in his construction of fully abstract models of
the lambda-calculus.2

Inclusive predicates typically occur in compiler proofs,
as the simulation relation x ~ y between the denotational
semantics of the source language and the operational
semantics of the target machine. Although domain theory
makes it easy to introduce recursive functions, recursive
predicates may cause inconsistency. Establishing them by
hand is extremely technical and tedious. This was the
major concern in Cohn’s compiler proof. Her simple
language and machine, and intermediate semantic levels,
allow simple simulation relations. Each has the form
x ~ y if and only if f{x) = g(y), for particular functions

S and g. Mulmuley’s techniques pave the way for more
ambitious compiler proofs.

3.2. Verification of functional programs

Leszczylowski verified the algebraic laws of Backus’s
functional language FP.!8 He also proved!” the termina-
tion of the function NORM, which puts conditional
expressions into ‘normal form’ by repeatedly replacing

IF(IF(,v,w),y,2) by IF(uIF(v,y,z2), IF(w,y,2)).
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Leszczylowski proved (by structural induction on x) that
NORM(IF(x, y, z)) terminates for all x, y, z such that x is
defined and NORM(y) and NORM(z) both terminate.
The termination of NORM(x) for all defined x follows
(by induction) from this peculiar lemma. Boyer and
Moore devised this termination example [1]. Their
theorem-prover only accepts recursive functions that it
can prove total. They prove that NORM is total by
considering two numerical measures on conditional
expressions.

Cohn and Milner proved the correctness of a parser for
expressions composed of atoms, unary operators, and
binary operators within parentheses.® The proof is by
structural induction on expressions, followed by rewriting
and simple resolution. Cohn later verified a parser where
operators have precedence and associativity.® Both
parsers are verified with respect to a function for printing
an expression as a list of terminal symbols. Correctness
is stated as: printing an expression, then parsing it, gives
back the same expression. The precedence parser proof
unfortunately involves a large number of technical
lemmas.

I recently verified a function for unification,3®
formalizing a theory due to Manna and Waldinger.!® To
begin I provided Edinburgh LCF with a faster ML
compiler, the connectives Vv, 3, and <, a new simplifier,
and new tactics and tacticals. This produced Cambridge
LCF.

Manna and Waldinger’s theory involves lists, finite
sets, expressions, substitutions, and unifiers. They state
about two dozen propositions. The translation into
PPLAMBDA is straightforward: quantifiers must be
restricted to defined values, and every function proved
total. The LCF proof contains nearly three hundred
stored theorems, mostly trivial ones such as termination
proofs and basic properties of lists, sets, truth values, and
numbers. Manna and Waldinger prove the final theorem
by well-founded induction. PPLAMBDA does not
provide this general induction principle, but the
induction in the correctness proof can be achieved by
nested structural induction on the natural numbers and
on expressions.

The termination of the unification function relies on the
correctness of the results of the nested recursive calls it
makes, so termination and correctness must be proved
simultaneously. PPLAMBDA has the flexibility required
for difficult termination proofs. The price is that
termination must be explicitly considered at all times.

3.3. Verification of digital circuits

M. J. C. Gordon has been verifying hardware. His Logic
for Sequential Machines (LSM) extends PPLAMBDA
with bit strings and communication lines. A term can
represent a device with inputs and outputs, with a binding
mechanism for indicating how devices are wired together.
Only synchronous devices can be specified: the next state
depends on the current state and the values on the input
lines. The domain theory has been removed. The prover
for this logic, built on top of Cambridge LCF, is called
LCF_LSM.1

Gordon used LCF_LSM to verify a simple sixteen-bit
computer.'? Its eight instructions were implemented using
an ALU, memory, various registers, a thirty-bit
microcode controller, and ROM holding twenty-six

microinstructions. Gordon defined bit vector operations
such as field extraction and addition. Concise axioms
specified each component and the circuitry implementing
the computer (host machine), and also the intended
behaviour of the computer (target machine). Gordon
used forwards proof rather than tactics. Host and target
behaviour descriptions were expanded out, producing
enormous formulas that required hours of processor time
to simplify.

J. M. J. Herbert used LCF_LSM to verify an ECL chip
designed for the Cambridge Fast Ring.'* The chip, an
interface between the ring and the slower logic, was
developed using the Cambridge Design Automation
system for gate arrays. Herbert modified the design
system to produce a file containing LCF_LSM axioms
describing the implementation of the chip. He verified an
implementation consisting of NOR gates, inverters, and
flipflops (equivalent to about 360 gates) with respect to
its functional specification. Error messages from
LCF_LSM helped to locate flaws in both the specification
and wiring. The chip was fabricated and found to work
correctly.

Moxon verified a number of adders, including a
carry-lookahead adder, in Cambridge LCF. Melham has
been using LCF_LSM to verify an associative memory
unit, uncovering errors in the gating and microcode.2?
The unit is intended for a real application. It contains a
microcode controller, memories, counters, buses and
drivers. The verification may never be completed: its
latter stages are putting tremendous demands on
LCF_LSM.

As a successor to LCF_LSM, Gordon has implemented
a higher-order logic (HOL) on top of Cambridge LCF.13
He uses it to represent hardware: each device is a
predicate, time is an integer, and each wire is a function
over time. A circuit is a conjunction of the predicates
representing its component devices; the arguments of a
predicate represent the wires connected to the device.
HOL also supports proofs in classical mathematics. It
allows quantification over predicate variables, directly
expressing inference rules such as induction.

4. THE DEVELOPMENT OF IDEAS
4.1. Data types

Consider recursive data structures such as lists and trees.
Deriving structural induction in PPLAMBDA is far from
trivial. In her compiler proofs, Cohn spent months
developing theories of syntax trees for the source
languages.? Then Milner wrote an ML program to derive
structural induction automatically. It handled recursive
data types defined as sums of products. Later proofs used
his program to generate theories of syntax trees. 8 36

Cohn and Milner® still had the problem of excluding
infinite data structures, which exist unless the constructor
functions are strict. (Example: for lists, CONS is strict if
CONS L/=CONSx L = 1.) I rewrote Milner’s pro-
gram to let the user specify whether the constructors
should be strict or not. I also studied mutually recursive
types and types where the constructors satisfy equational
constraints.?!

Monahan’s thesis is an extensive and detailed study of
LCF types using category theory.?* Monahan defines
concatenation for lists and shows it to form a free
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monoid, taking the empty list for the identity element. He
defines multisets as equivalence classes of lists, using a
computable function to test whether two lists represent
the same multiset (contain the same elements, regardless
of order). For most theorems he presents an informal
proof and one or more LCF proofs, discussing each step
and considering alternatives. He describes resolution
tactics, unification functions, and other tools developed
within Edinburgh LCF. He has extended Milner’s
program to accept a much larger class of recursive type
definitions. The bibliography lists a vast range of works
about theorem proving and data types.

Past LCF proofs have begun with a long phase of
laying the groundwork : theories of lists have been derived
again and again. Manna and Waldinger have put
together fundamental theories of data structures:
numbers, strings, trees, lists, sets, bags, and tuples.2°
These could be formalised into a library of LCF theories,
to be included when needed in any proof.

4.2. Tactics

The Edinburgh LCF manual lists only a handful of
tactics, noteven the basic CONJ_TACand DISCH_TAC.®
Early LCF users, especially Cohn, implemented additional
tactics to introduce or eliminate connectives, make use of
assumptions, perform special substitutions, and resolve
implications against other theorems. Cambridge LCF
provides many of these.

In an abstract study of tactics, Schmidt discusses the
interplay between forwards and backwards reasoning in
natural deduction proofs.?* Sokolowski’s new set of
tactics implements these ideas, providing systematic
rewriting and decomposition of the goal and assumptions,
and detection that the goal has been reduced to
tautologies.* Sokotowski’s major innovation is allowing
goals to contain pattern variables that can be unified
against assumptions. His proofs are remarkably clean:
the new tactics should be useful for most LCF
applications.?¢

More theorem-proving tasks should be automated.
The resolution tactics should use unification rather than
one-way matching. The Knuth-Bendix completion
precedure could help to eliminate ordering conflicts
among rewrite rules.'® The LCF philosophy insists that
heuristics be easy to understand and independent of other
heuristics. Otherwise only experts could hope to predict
the course of a proof.

4.3. Logics

Martin-Lof’s Intuitionistic Type Theory*! is a formal logic
for constructive mathematics. It can be seen as a
programming and specification language for total
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