Programming Denotational Semantics 11

LLOYD ALLISON

Department of Computer Science, University of Western Australia, Nedlands 6009, Western Australia

The Denotational Semantics of a small programming language is coded into Algol-68 to give an interpreter. The
Semantics incorporates many of the notions of Standard Semantics including declarations, declaration continuations,
final answers and stores or memory which are used to define block structuring, output and parameterless procedures.
This extends work previously reported®. The coding in Algol-68 is quite straightforward and the result is a type checked
and executable semantics which is as readable as the original semantics to one familiar with Algol-68. No special
software is needed other than a compiler for the general purpose language Algol-68.

1. INTRODUCTION

Any given technique of language definition, here
Denotational Semantics, can be expressed in various
notations. Pagan? suggested the use of Algol-68 as a
metalanguage in which to write the Denotational
Semantics definition of a programming language, but he
came to the conclusion that Algol-68 would have to be
extended with partial parameterisation to be used for this
purpose. The present author! showed that quite a good
job could be done, at least on the definition of a very small
language, by uncurrying the denotational equations and
expressing them directly in a modest metalanguage such
as Pascal, and hence in Algol-68 as it is. Here the
technique is extended to the so called Standard
Semantics® of a bigger language which includes procedures
and block-structuring. The semantics incorporates de-
clarations, declaration continuations, final answers and
stores or memory. The fit between these Standard
Semantics and Algol-68 is better than that obtained
before!. The results suggest that the technique is
applicable to more than just toy languages.

As before, the semantics coded in Algol-68 constitute
an interpreter for the defined language in the same way
that coding syntax gives a recursive-descent parser. The
interpreter is not efficient but this was not an objective.
It is mechanically type-checked and executable. It is
claimed that the Algol-68 version of the semantics is as
readable to one who knows Algol-68 as the conventional
denotational version is to one who knows lambda
calculus.

Ideally in some sense, one would directly execute the
definition of a programming language to give an efficient
interpreter or compiler. Parser-generators® have long
made this possible for the syntax of programming
languages. Nevertheless recursive-descent parsing remains
an important technique in practice as it requires no
special software nor the learning of any new language
above the chosen recursive programming language. The
development of (true) semantic compiler-compilers®:¢:?
may make it commonplace to formally define a new
language and to derive implementations automatically
from the definition. Another approach is to use a
functional programming language as the metalanguage,
and ML is particularly suitable.

The purpose of this note is to investigate how far it is
possible to use a conventional block-structured language,
with its benefits of compilation, strong typing, wide

availability and readability, in expressing Denotational
Semantics. The technique requires no special software &
above a recursive programming language with a3
reasonable type system, here Algol-68.

2. BASICS

Q

U Wo.ly papeojum

It is assumed that the reader is familiar with the aims, if =

not the details, of Denotational Semantics; Gordon®?

provides a readable introduction and Milne and
Strachey?® is a reference work.

This paper discusses the coding of definitions in3
Algol-681°, although it applies to any block- structured o

2]

o

apeoe,

3

O

language with a reasonable type mechanism and strong13

type checking. In fact an Algol-68S system!! was used, |

the important omissions being union modes and flex and 5
the lack of multiples in structures. Full Algol-68 is used

appendix, is written in Algol-68S. The interpreter has =
been compiled and run; this is felt to be very important;

as it is otherwise easy to make errors in the semantic @
equations, particularly when using lambda calculus &
rather informally, confident in the knowledge that it will
not be subject to mechanical scrutiny.

Denotational Semantics is usually written in a typed

lambda calculus making much use of high-orderm

O

o

3
in the text but the final interpreter, which is given in an =

=
Q
=
]
CD

A
O

SYLLY]

N

o

functions. The mathematical foundations will not be@

treated here at all. Given domains A and B, the domain &
of functions from A to B is written A—B, or in Algol-68 5
proc(A)B. The domain A—-B—C or A—»(B—»C) can be ~.
written as proc(A)proc(B)C except as pointed out by

CD

O

>

Pagan? a procedure cannot return as a result a proc which 2.

depends on a local object because this would violate scope

N
o

rules. However as is well known, given f:A-B—-C, X

there is an f":A x B»C defined by f'(a,b)=f(a)(b) and
called the uncurried version of f. Provided that it is the
final result in C that is of interest, f” is as good as f, and
this turns out to be the case in the semantic equations
given here, so that proc(A,B)C can be used.

In addition, the disjoint sum of domains A + B can be
written union(A,B) and the product A x B can be written
struct(A,B) in Algol-68. Certain recursive types such as
list=empty + (int x list) would directly translate as

mode list = union(empty,struct(int,list))

This is illegal but it is easily recast as
mode cell =struct(int,list); mode list =ref cell
nil represents the empty list.

480 THE COMPUTER JOURNAL, VOL. 28, NO. 5, 1985

\ \\4; =

PROGRAMMING DENOTATIONAL SEMANTICS II

<program > = <statement>
<statement > = begin <stat list> end |
if <exp> then <statement> else <statement> |
while <exp> do <statement> |
<ident>:= <exp> |
<ident> |
<dec>
<dec> 1:= var <id list> |
proc <ident> = <statement>
<id list> 1= <ident> | <ident>, <id list>
<stat list> := <statement> | <statement>; <stat list>
<exp> i= <sexp> <relop> <sexp> | <sexp>
<sexp> := <sexp> <addop> <term> | <term>
<term> = <term> * <opd> | <opd>
<opd> = (<exp>)| <ident> | <integer>
<relop> ==|<>|<|<=|>]|>=
<addop> =+ |-

Figure 1. Concrete Syntax

3. SUBJECT LANGUAGE

The concrete syntax of the language to be defined is given
in figure 1. It includes if and while statements and is
Algol-like in general flavour. Blocks are delimited by
begin and end. Declarations and statements can be
interleaved; the precise semantics of this depends on the
Denotational Semantics to be given, but informally the
effect of a declaration runs from the declaration to the end
of the block.

There is only one data-type, integer, but 1 doubles as
true and 0 as false. Because of this and for conciseness,
the only aspect of context-sensitive semantics defined here
concerns the scope of identifiers.

4. STORES AND ANSWERS

In what follows some of the well known concepts of
Standard Semantics (see Chapter 5 of reference 3) are
introduced in conventional notation and in Algol-68.

To define block structuring, it is usual to introduce
locations and stores. The environment at a point in a
program is a mapping of declared variable identifiers to
locations, and the store maps locations to values (for
procedures see later)

e:env = ident—location
s:store = location—value

or

mode env = proc(ident)location,
store = proc(location)value

In fact some storage may not be bound to any identifier
and some bound locations may not be initialised

store =location—value + {undefined value, unbound}
or
mode store = proc(location)union(value,undef,unbound)

In early considerations of semantics it is natural to
think of computations as store transformations store
—store, proc(store)store. However the machine store is
not available to a Pascal programmer (say) at the end of
a run, only the final output file is. To model this final
answers are introduced, answer=empty + value x
answer. An answer is a sequence of output values, mode
anscell =struct(value,answer); mode answer =ref anscell.

Computations now map stores to answers store —answer,
proc(store)answer.

One particular sort of computation is a continuation.
A continuation c:cont can be thought of as something else
to do. The return address for a procedure is a
continuation; it is something else to activate when the
procedure has done its own work.

Tounderstand acommand one requires an environment
to interpret local names, a continuation to do after the
command, and a store to act upon before a final answer
can be produced. The meaning of commands is given by

cc:cmd —env—cont—store—answer

this can be uncurried to

cc:emd x env x cont x store — answer

or

proc cc=(tree cmd, env e, cont c, store s)answer: ...

The introduction of answers brings a hidden bonus in that
the result of cc is automatically a data-structure.

5. PROCEDURES

The language being defined includes parameterless
procedures. The environment must map identifiers onto
denotable values, here locations and procedures

e:env=ident — location + prok
prok =cont—store —»answer

The type prok requires a continuation as the return
address for each procedure and a store for that procedure
to produce a final answer; it can be coded as
proc(cont,store)answer.

Environments could be coded as

mode env = proc(ident)union(location,proc(cont,store)answer)

except that the scope rules prohibit the procedure result
again. The mode env cannot be uncurried as it stands
because of the union in the result but the environment can
be split into two

env=(ident—location) x (ident—cont—store—>answer)

for variables and for procedures. The second component
can now be uncurried. The two bits could be left as

THE COMPUTER JOURNAL, VOL. 28, NO. 5, 1985 481

31

cpJ 28

¥20Z Iudy || uo 1senb Aq GG/ /1/08/G/82/2101e/|ulwoo/wod dnosolwsepeoe//:sdpy wolj papeojumoq

s

LLOYD ALLISON

components of a structure but it is more convenient to
program them as two separate environments

mode env = proc(ident)location;
mode pnv = proc(ident,cont,store)answer

The choice, always present, of whether or not to allow
a name to denote both a variable and a procedure and
to use context to distinguish as in

begin proc x=...; var x;... x:=... X;... end

in our language is now more obvious. The easy way out
of leaving this to context-sensitive syntax or static
semantics, which is not treated here, is taken.

If jumps and labels were included in the language, the
environment would have to include a mapping for them.
If labels were syntactically distinct from identifiers, as in
Pascal, the following would do

env = as before x (label—cont).

Taking the previous approach would give a three
component environment for variables, procedures and
labels

env = (ident—location) x (ident—prok) x (label-cont).

Note that in the coding to Algol-68, both prok and cont
are procedure modes and can be uncurried. Jumps are
treated in reference 1.

If identifiers could denote other simple objects, perhaps
constants, there would be no problem in recoding the first
component of the environment

mode env = proc(ident)union(location, value, ...);
mode pnv = proc(ident,cont,store)answer

but if further procedure results were needed, it would be
necessary to split it again as above.

6. SEMANTICS

The semantics of the subject language is given in figure
2. The equations are still in curried form but use a
notation closer to programming languages than the usual
lambda calculus. The most important section is the
definition of the functions cc, ee and dd which give the
meaning of commands, expressions and declarations.
They are defined on a case by case analysis. In the
interpreter,procedures cc, ee and dd form the driving
routines.

There are three sorts of continuation in the semantics.
Command continuations cont=store—answer, or proc
(store)answer, represent some computation, typically the
rest of the program. An expression continuation
k:kont=value—store»>answer, is very similar except
that k must also absorb or use the value that is the result
of an expression. For example in evaluating an if
statement the controlling expression is evaluated with an
expression continuation called cond which uses the value
to pick one of the arms of the if statement to be evaluated.
Kont can be uncurried to value X store—answer
or proc(value,store)answer. A declaration produces a new
environment rather than a value so a declaration
continuation dc:dcont=env—store—answer, must use
that new environment and a store to produce an answer.
Dcont can be coded as proc(env,store)answer.

As an example, to evaluate the program
begin var x; x:=99; output x end

the semantics dictate that the declaration is evaluated
followed by a declaration continuation which consists of
evaluating the two statements in a new environment. The
new environment binds the first free location in the store
to x. The declaration continuation is now invoked, firstly
the assignment is evaluated with a continuation which
will evaluate output x. The assignment requires that 99
be evaluated with an expression continuation which
updates the location bound to x to the value, 99. Finally
output x is evaluated; the expression x is evaluated with
an expression continuation to do the output operation.
Evaluating x involves asking the environment what
location x is bound to and then asking the store what is
in that location. The expression continuation then
appends the value, 99, to the answer.

The semantic equations were directly coded into
Algol-68 to produce an interpreter. By way of illustration,
the ‘classical’ rule for a procedure call (figure 1) is

cc‘<ident>’ecs =€ ‘<ident>’cs

that is to say, given a call on procedure ident, an
environment e to interpret names, a continuation ¢ to
follow and a store s, execute the prok denoted by ident
in e passing it ¢ to return to and store s. Recall that in
the interpreter the environment is split into a variable
environment e and a procedure environment p; only the
latter takes part in this rule which is coded as

p(op of cmd, c, s)

where op of cmd pulls the procedure identifier out of the
call.
The classical rule for procedure declaration is

dd ‘proc <ident> = <statement>’e dc s
= dc newenv s
where newenv = (identifier i) union(location,prok):
(cont c, store s)answer:
if i=" <ident>’ then cc ¢ <statement>’ newenv c s
elseeics

that is to say execute the declaration continuation with
an updated environment; the new environment maps the
ident onto the prok which is the meaning of procedure
body. Note that the prok is interpreted in the new
environment to make recursion possible. Within the
interpreter for the case of a procedure declaration we have
dc(e, new pnv, s). The updated (procedure) environment
is

pnv new pnv = (alfa id, cont ret addr, store s)answer:
if eq(op of sl of dec, id) then
cc(s2 of dec, e, new pnv, ret addr, s)
else p(id, ret addr, s)
fi

which is the old procedure environment changed only at
the declared procedure’s name. This is slightly longer
than the original in accessing the program data-structure
and in having type declarations. The latter should not be
looked upon as a draw-back for they enable the compiler
to rigorously check the Algol-68 form of the semantic
equations. The remaining semantic equations were coded
in the same way and with the same ease.

Due to the lack of union, the mode value could not be
coded in the preferred way in the interpreter given here

482 THE COMPUTER JOURNAL, VOL. 28, NO. 5, 1985

¥20Z Iudy || uo 1senb Aq GG/ /1/08/G/82/2101e/|ulwoo/wod dnosolwsepeoe//:sdpy wolj papeojumoq

PROGRAMMING DENOTATIONAL SEMANTICS II

answer = empty + (value x answer)
location ={1,2,3,..}
s: store = location — {value + undefined value + unbound}
env = ident — location + prok
prok = cont — store — answer
c: cont = store — answer
dc: dcont = env — store — answer
k: kont = value — store — answer

cc: statement — env — cont — store — answer
ee: exp — env — kont — store — answer
dd: dec — env — dcont — store — answer
cc ‘begin <statement> end’ e ¢ s = cc ‘ <statement>’ecs

cc‘<sl>;<s2>;. ecs =cc‘<sl>"es2cs
where s2c = (store s)answer:
cc‘<s2>;.’ecs

cc ‘<dec>;<s2>;." ecs = dd ‘<dec>’ e statpart s
where statpart = (env e, store s)answer:
cc‘<s2>;..’ecs

cc ‘if <exp> then <sl> else <s2>’ecs
= ee ‘<exp>’econd s
where cond = (value v, store s)answer:
ifv=1thencc‘<sl>’ecselsecc‘<s2>"ecs

cc ‘while <exp> do <statement>’ecs
= ee ‘<exp>'eloop s
where loop = (value v, store s)answer:
if v=1 then cc ‘ <statement>’ e again s
where again = (store s)answer:
cc ‘while <exp> do <statement>’ecs

cc ‘<ident> := <exp>’ecs = ee ‘<exp>’ e update s
where update = (value v, store s)answer: ¢ news
where news = (location l)value:
if 1=e(<ident>) then v else s(l)

cc ‘output <exp>'ecs = ee ‘<exp>’ e doio s
where doio = (value v, store s)answer: (v, c(s))

cc ‘<ident>’ecs = e ‘<ident>’cs

dd ‘var <identl >, <ident2>,..’'l edcs
= dd ‘var <identl >’ e otherdecs s
where otherdecs = (env e, store s)answer:
dd ‘var <ident2>,..”edcs

dd ‘var <ident>’e dcs = dc newenv news
where newenv = (identifier i) union(location,prok):
if i=‘<ident>" then new(s) else e(i)
and news =(location l)value:
if I=new(s) then undefined value else s(l)

dd ‘proc <ident> = <statement>’e dc s
= dc newenv s
where newenv = (identifier i) union(location,prok):
(cont c, store s)answer:
if i=‘<ident>" then cc ‘ <statement>’ newenv c s

elseeics
ee ‘(<exp>) eks =ee‘<exp>'eks
ee ‘<ident>’ eks = k(s(e‘ <ident>")), s)
ee ‘<integer>’ eks = k(value(‘ <integer>"), s)
ee ‘<expl>+ <exp2>’ eks = ee ‘<expl>’erhss

where rhs= (value vl, store s)answer:
ee ‘<exp2>’eops
where op = (value v2, store s)answer:
k(vl+4v2,s)
other operators similarly

THE COMPUTER JOURNAL, VOL. 28, NO. §, 1985 483
312

¥20Z Iudy || uo 1senb Aq GG/ /1/08/G/82/2101e/|ulwoo/wod dnosolwsepeoe//:sdpy wolj papeojumoq

LLOYD ALLISON

new = (store s)location:

(int 1:=0; while s(I) /= unbound do 1+:=1 od; 1)

to execute a program °‘ <statement>’:

cc ‘<statement >’ emptyenv finish emptystore
where emptyenv = (identifier i)union(location,prok):undefined id
and finish =(store s)answer:empty
and emptystore=(location l)value:unbound

Figure 2. Semantic Equations.

and a cludge of using two unlikely integer values as
unbound and as undefined value was adopted. The lack
of union can be programmed around by means of a
structure but this is rather heavy handed if correct.

The syntax of the language was also coded into a simple
recursive descent parser. This builds a tree which the
semantic interpreter walks. The interpreter is given in an
appendix.

7. DISCUSSION

Algol-68 can be used to code the given semantics easily
with only a little distortion where the restricted scope of
procedure results makes it necessary to uncurry an
equation. Whether the definition of a significant language
such as Pascal or Algol-68 would require so much
distortion as to make the method not worthwhile is an
open question at the moment, but there does not seem to
be any great obstacle in the definition of Pascal or a
substantial subset of it. Perhaps of more interest, a
semantics of Prolog!? has been written, and run, in this
way. The metalanguage requires a type mechanism of the
power of Algol-68’s to handle the high-order functions of
Standard Semantics. Note that although Algol-68 passes
parameters by-value, proc is an ordinary mode
allowing the effect of by-name parameters.

It is very easy to make type errors in semantic
equations such as forgetting one of the parameters for a
highly curried function or selecting an inappropriate
continuation type. The Algol-68 compiler catches all such
errors. More significant errors such as forgetting to apply
a continuation are quickly shown up by running the
semantics — by interpreting small test programs. Such
errors are so easy to make that it seems essential that a
formal definition be mechanically checked.

As indicated in the earlier paper! it is easy to change
the semantics of the language and try example programs.

REFERENCES

1. L. Allison, Programming Denotational Semantics, Com-
puter Journal V26 No2 (1983) p164—174.

2. F.G. Pagan, Algol — 68 as a metalanguage for Denotational
Semantics, Computer Journal V22 Nol (Feb 1979) p63 — 66.

3. M.J.C. Gordon, The Denotational Description of Program-
ming Languages Springer Verlag 1979.

4. R.A. Brooker, D. Morris, A General Translation Program
for Phrase Structure Languages, JACM V9 Nol (Jan 1962)
pl—10.

5. L.Paulson A Semantics Directed Compiler Generator 9th
Annual Symposium on Principles of Programming Languages
(Jan 1982) p224—233.

6. M.R. Raskovsky, Denotational Semantics as a Specification
of Code Generators, Proc’ 1982 Sigplan Conference on
Compiler Construction (June 1982) p230—244.

The aim here was to produce a formal definition of a
language that is automatically checked and is executable
without regard to efficiency. However note that the
interpreter presented is very inefficient in its use of the
Algol-68 stack. The heavy use of continuations means
that when it finally stops interpreting a program there is
an activation record in the stack for every evaluation of
every operand, operator and control structure in the
program. As pointed out by the referee this is a function
of the lack of tail-recursion optimisation, which is a
property of implementations of Algol-68 not of its own
semantics.

8. CONCLUSION

The Denotational Semantics definition of a small
language has been given and coded directly into Algol-68.
The definition includes the answers, continuations, stores
and locations of Standard Semantics. It defines block-
structuring, declarations, output and parameterless
procedures. The result suggests that the technique is
applicable to more than just toy languages; a semantics
of Prolog!? has been written in this way. The coding is
almost mechanical and gives a formal definition that is
mechanically checked and executable without the need
for any other software tools. For one familiar with
Algol-68, the interpreter is as easy to work with as the
original definition.

Such interpreters are quick and easy to write and are
useful in language experimentation and development.
Any recursive programming language with a reasonable
type mechanism could be used in this way as the
metalanguage. The use of Algol-68 enables the derived
definition to be executed on a wide range of machines!®
and to be widely understood.

7. R. Sethi, Control Flow aspects of Semantics Directed
Compiling, Proc’ 1982 Sigplan Conference on Compiler
Construction (June 1982) p245—260.

8. M.J. Gordon, A.J. Milner, C.P. Wadsworth, Edinburgh
LCF Springer Verlag, Lecture Notes in C.S. V78 1979.

9. R. Milne, C. Strachey, 4 Theory of Programming Language
Semantics, Chapman Hall 1976.

10. C.H. Lindsey, S.G. van der Meulen, Informal Introduction
to Algol—68, North Holland (revised) 1977.

11. C.H. Lindsey, Algol — 68S system, Dept.Computer Science,
University of Manchester.

12. W.F. Clocksin, C.S. Mellish, Programming in Prolog,
Springer — Verlag 1981.

13. Survey of Viable Algol—68 Implementations, Algol
Bulletin no 47, (Aug 1981), pl5.

484 THE COMPUTER JOURNAL, VOL. 28, NO. 5, 1985

¥20Z Iudy || uo 1senb Aq GG/ /1/08/G/82/2101e/|ulwoo/wod dnosolwsepeoe//:sdpy wolj papeojumoq

N \
s
PROGRAMMING DENOTATIONAL SEMANTICS II \\

APPENDIX.

(# Semantic Interpreter, Dept Computer Science U.W.A. 1983 #
mode alfa = [1:10] char;
proc eq = (alfa x,y)bool:

(loc bool b:=true; loc inti := Iwb x;

while b and i <= upb x do

b:=x[i]=y[i]; i+:=1

b

)5
mode node = struct(ref node s, s2, s3, ref alfa op, int i);
mode tree = ref node;
error and input routine omitted

#
syntax

proc program = tree:
begin
parse a program, body omitted
end # program # ;
#
semantics

mode value = int, location = int;

mode anscell = struct(value v, ref anscell next);
mode answer = ref anscell;

mode store = proc(location)value,

env = proc(alfa)location;
mode cont = proc(store)answer,

kont = proc(value,store)answer;
mode pnv proc(alfa,cont,store)answer ;

mode dcont = proc(env,pnv,store)answer;

value unbound = —max int, undefined value = —(max int —1);
proc dump = (answer s)void:
if s isnt nil then
print((newline, v of s)); dump(next of s)
proc new = (store s)location:
(loc location | := 1;
while s(I) /= unbound do
I +:=1
od;
1
);
cc: cmd—(env x pnv)—cont—store »answer
proc cc = (tree cmd, env e, pnv p, cont c, store s)answer:
begin
dd:dec—(env x pnv)—dcont—store —»answer
proc dd = (tree dec, env e, pnv p, dcont dc, store s) answer:
begin
env new env = (alfa id) location:
if eq(op of dec, id) then new(s)
else e(id)
fi;
pnv new pnv = (alfa id, cont ret addr, store s)answer:
if eq(id, op of sl of dec) then
cc(s2 of dec, e, new pnv #recursion! #, ret addr, s)
else p(id, ret addr, s)

dcont other decs = (env e, pnv p, store s)answer:
dd(s2 of dec, e, p, dc, s);

if dec is nil then dc(e, p, s)

elif eq(op of dec, ‘var ’) then
dd(s1 of dec, e, p, dc, s)

elif eq(op of dec, ‘proc ') then
dc(e, new pnv, s)

elif eq(op of dec, *, ') then # decl, dec2, ... #
dd(sl of dec, e, p, other decs, s)
else # varid #
store new s = (location l)value:
if 1=new(s) then undefined value
else s(l)
fi,
dc(new env, p, new s)
fi
end # dd #;

THE COMPUTER JOURNAL, VOL. 28, NO. S, 1985 485

¥20Z Iudy || uo 1senb Aq GG/ /1/08/G/82/2101e/|ulwoo/wod dnosolwsepeoe//:sdpy wolj papeojumoq

LLOYD ALLISON

ee : exp—(env x pnv)—kont—store—answer
proc ee = (tree exp, env e, pnv p, kont k, store s)answer:
begin
kont rhs = (value v1, store s)answer:
(kont operator = (value v2, store s)answer:
k((alfa opr = op of exp;

if eq(opr,' = ") then

if vi=v2 then 1 else O fi
elif eq(opr,' < > ’) then

if vi/=v2 then | else O fi
elif eq(opr,‘ < ') then

if vi<v2 then | else O fi
elif eq(opr,' < = ’) then

if vi<=v2then 1 else O fi
elif eq(opr, > ’) then

if vi>v2 then 1 else O fi
elif eq(opr,' > = ') then

if vi>=v2 then 1 else O fi
elif eq(opr, + ’) then v1+v2
elif eq(opr, — ’) then vl —v2
elif eq(opr,** ') then vi*v2
else error(‘ undef operator in ee’); skip
fi),
s

)
ee(s2 of exp, e, p, operator, s)
) # rhs # ;

if eq(op of exp, ‘—integer ’) then
k(i of exp, s)

elif (op of exp)[1]> =‘a’ and (op of exp)[l]< =‘Z" then
value v = s(e(op of exp));
if v=undefined value then error(‘ undefined variable’);skip
else k(v,s)
fi

else
ee(sl of exp, e, p, rhs, s)

end # of ee #;

the body of cc(cmd,env,pnv,cont,store)answer
dcont stat part = (env e, pnv p, store s)answer:
cc(s2 of cmd, e, p, c, §);
kont cond = (value v, store s)answer:
cc(if v=1 then s2 of cmd else s3 of cmd fi, e, p, c, s);
cont again = (store s)answer:cc(cmd,e,p,c,s);
kont loop = (value v, store s)answer:
if v=1 then cc(s2 of cmd, e, p, again, s) else c(s) fi;
cont s2c = (store s)answer: cc(s2 of cmd, e, p, c, s);
kont update = (value v, store s)answer:
c((location l)value:
if | = e(op of sl of cmd) then v else s(l) fi

konty do i 0 = (value v, store s)answer:
heap anscell : = (v, c(s));

if cmd is nil then c(s)
elif eq(op of cmd, ‘begin °) then
cc(sl of cmd, e, p, ¢, s)
elif eq(op of cmd, *; ’) then
if eq(op of sl of cmd, ‘var ")
or eq(op of sl of cmd, ‘proc ') then #dec; stats #
dd(sl of cmd, e, p, stat part, s)
else # stat; statlist #
cc(sl of cmd, e, p, s2c, s)
fi
elif eq(op of cmd, ‘if ') then
ee(sl of cmd, e, p, cond, s)
elif eq(op of cmd, ‘while) then
ee(sl of cmd, e, p, loop, s)
elif eq(op of cmd, ‘: = ") then
ee(s2 of cmd, e, p, update, s)
elif eq(op of cmd, ‘output °) then
ee(sl of cmd, e, p,doi o, s)
else # identifier : call on a proc #
p(op of cmd, c, s)

end # of cc #;
#
dump(cc(show(program),
(alfa id)location:(error(* undeclared id"); skip),
(alfa id, cont ra, store s)answer:
(error(* undeclared proc’); skip),
(store s)answer :nil,
(location l)value:unbound))

)
486 THE COMPUTER JOURNAL, VOL. 28, NO. 5, 1985

¥20Z Iudy || uo 1senb Aq GG/ /1/08/G/82/2101e/|ulwoo/wod dnosolwsepeoe//:sdpy wolj papeojumoq

