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There is growing awareness of the high risk and excessive cost of poor-quality software design. The problem is especially
critical in complex programs where design errors are most frequently committed, and latent errors are particularly
difficult to diagnose and correct.* The origin of this ‘software crisis’ lies in the late realisation that there is much more
to good software design than knowledge of a programming language. Structured programming and the various software

design methodologies seek to control software quality by imposing a discipline on the designer which controls the
complexity of design tasks and supplements the rules of the programming language.

This paper outlines the process of evolving a complexity-controlling software design methodology, based on the
general principles of sound engineering design, but devised particularly for logic-based programming. It reports on
experience with the use of the methodology'®-*"-3°: 53 and compares the complexity properties of programs designed

using different methods.

An example is given to show how complexity control may also be achieved retrospectively, or in the course of software
maintenance. The procedure is to measure the complexity parameters of a finished program, identifying its most
complex parts; these are then reconstructed as hierarchical structures of simple autonomous components, while

maintaining functional equivalence.

Based on experience, the paper proposes further refinements of the well-tried complexity measures, suggesting the
next stage of evolution of the complexity-controlling methodology for logic-based programming.
Finally, the paper proposes areas for further research into complexity control and its applications to logic-based

programming.

1. BACKGROUND TO THE
MEASUREMENT AND CONTROL OF
SOFTWARE COMPLEXITY

In their interesting paper® Curtis et al. propose a
distinction between two types of software complexity:
computational and psychological.

Computational complexity takes account of the
quantitative aspects of the algorithm which solves a
given problem, estimating the speed of the execution
of a program. By contrast, psychological complexity
measures the difficulty of the processes of design,
comprehension, maintenance and modification of the
program itself.

In this paper we concentrate attention on psychological
complexity in the above sense. We shall look for objective
and quantifiable indicators of the complexity of the
design of programs, and regard these as predictors of the
cost effectiveness and length of useful life of the software
as a product. By devising the complexity measures
appropriately, and keeping their values within well-defined
bounds, we shall claim to achieve control over important
aspects of software quality.

Several attempts have been made in recent years to
propose representative and objectively quantifiable
measures of psychologlcal complexity. Perhaps the best
known of these is Halstead’s complexity theory,!! which
measures the effort of program generation and assumes
that to be a measure of complexity. He identifies four
parameters:

nl, the number of different operatorswithina program;

n2, the number of different operands within the
program;

N1, the total number of occurrences of operators;

N2, the total number of occurrences of operands.

All four parameters are directly countable from the
program listings and Halstead argues his way to the
formula:

nl N2(N1+2)log2 (nl+n2)
2n2

E:

where E is the measure of complexity.

The value and validity of Halstead’s theory was
questioned by Frewin and Hamer.® Curtis’ research
group?® undertook its detailed evaluation, based on its
application in programming practice. They found that
Halstead’s measures did not capture all aspects of
psychological complexity. In particular, Halstead’s
measures take no account of structural properties of
programs, thus giving no consideration to the complexity-
controlling effects of modern methods of software design
(e.g. 32 and ¢).

McCabe? adopted a completely different approach to
software complexity. He developed a theory, based on the
modelling of programs as directed graphs; he then
measured the complexity of the program by the
cyclomatic complexity of their digraph. McCabe’s work
was refined and developed by a number of authors,
including Myers,3? Oulsnam,?? Williams3® and Prather.3¢
Since these methods concentrated on structural properties
of programs, in principle they provided suitable support
for structured software design. However, close examina-
tion revealed the arbitrariness of the methods, stemming
from lack of rigour in the formulation of the
theories.3 38 22,23 These weaknesses undermine confi-
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dence in any complexity measures which may be based
upon these theories.

McCabe’s graph-theoretic approach inspired the
search for a rigorous method of measuring the structural
complexity of software.4 2 The research culminated in a
generalised mathematical theory of structured programm-
ing by Fenton, Whitty and Kaposi.” The theory provides
methods for designing software of controlled structural
complexity; it also offers procedures for analysing
existing software and for reconstructing it automatically
in complexity-controlled form. Whilst it has a broad
scope of applicability, the theory has been developed in
the context of conventional rather than logic-based
programming languages.

The notion of a graph-theoretic approach to complexity
control has been adopted by workers in software design
and other fields,® 3617, 1.13,18 and research is in progress
into general-purpose complexity-controlling systems
design methodologies. 20 24, 12,37

2. EVOLUTION OF A
COMPLEXITY-CONTROLLING DESIGN
METHODOLOGY FOR LOGIC-BASED
PROGRAMMING

Knowledge-based systems are finding increasing use in
many applications. Such systems may be implemented
in PROLOG, a language based on first-order predicate
logic, in which the specification of the problem and the
means of realising the solution can be expressed. The
problem-solving strategy is based on a hierarchical
problem-reduction technique, and is implemented by
means of deduction and search mechanisms.

Early experience with the use of PROLOG?26 pointed
to its potential in a wide range of engineering
applications. This experience was gained at a time of
growing awareness of the problems of complexity, and led
to an attempt to measure the complexity of PROLOG
programs.!®

The rules of the PROLOG language demand the
explicit statement of the problem on hand, and the
composition of the solution as a strict hierarchical
structure of related and explicitly specified parts called
‘partitions’. Each partition could be considered as an
autonomous entity, hence the complexity of the
designer’s task could be related to the ‘local’ complexity
of partitions rather than to the ‘global’ complexity of the
PROLOG program as a whole. This led to the conclusion
that we needed to measure and control local com-
plexity.16

The complexity of a partition appeared to depend on
the data relating it to its environment, the number of
subtasks within it, the relationships among subtasks, and
the data flow through the structure. We therefore decided
to measure local complexity as a function with these four
arguments as parameters.

As an approximation, we proposed the complexity
function as the unweighted sum of the complexity
parameters. Thus, we defined the complexity of a
partition'® as follows:

1=Pl+P2+P3+P4 1)
where

P1 is the number of new data entities in the positive
atom of the partition, i.e. in the problem to be solved
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Program extract
task(I, O):- task1(I, O),
task2(X, O).
task1([Q, S], X):-task3(Q, Y)
task4(S, Y], X).

Complexity
parameters Comments
pl=2 I decomposed into Q and S
p2=2 taskl defined in terms of task3 and
task4
p3=0 taskl is an AND partition
p4d=1 New argument Y introduced

Local complexity: /=pl+p2+p3+p4=>5
Figure 1. Example of complexity analysis

Complexity Complexity code
Range bound of partition
1<I<3 Trivial T
4<1<7 Simple S
8<1<17 Complex C
18 <1 Very complex v

Figure 2. Complexity bounds

by the partition;

P2 is the number of negative atoms in the partition, i.e.

the number of subproblems into which the problem

divides;

P3 is the measure of the complexity of the relations 2

between between negative atoms; we chose the value 3

of this parameter to be initially 0, adding 2 for each 2

recursive call (a recursive call is considered to haveS

higher complexity than simple AND or OR partitions,
because of the potential for infinite recursion);

P4 is the number of new data entities in the negative 3

atoms, i.e. the number of local variables linking the =

subproblems.

PROLOG syntax, together with the use of the
complexity parameters and complexity function, is
demonstrated on a program extract, reproduced from 16
using DEC10 PROLOG syntax (Fig. 1).

One could then define program complexity as a
function with partition complexities as its arguments. We
proposed the following definition.

The global complexity of a PROLOG program is the
unweighted sum of the local complexity of all n
constituent partitions, i.e.

n
g=2X1li
i=1
where /i is the local complexity of the ith partition.

When used for analysing PROLOG programs, the
local complexity measure reflected the intuitive feeling of +
experienced designers about the relative complexity of
design tasks. Global complexity measured program size,
but was, as hoped, quite remote from the complexity of
any individual local task.

Retrospective analysis of programs also revealed that
task complexity was quite out of control. We sorted
partitions into four ‘complexity bands’ according to the
value of their complexity function (Fig. 2).

The rationale for the choice of range boundaries is
arbitrary but fits in with psychological theory (‘magic
number 7°). Fig. 5 shows extension to even higher
complexity ranges.

In programs which had been designed for real
engineering applications the mean value of the complexity
function was found to be quite high. Even more worrying
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Table 1. Statistics of the three program versions

Number of partition

PROLOG PRIMLOG NEW PRIMLOG
Degree of local
complexity
Trivial (T) 4 21 10
Simple (S) 9 25 27
Complex (C) 8 7 6
Very complex (V) 3 — —
Average measure of
local complexity 10 (C) 5(S) 5.7(S)
Complexity measure of
most complex partition 34 (V) 11 (C) 11 (C)
Total no. of partitions
in program 24 53 43
Global complexity 245 266 246
No. of hierarchical
levels of the program 4 10 7
PROLOG PRIMLOG NEW PRIMLOG
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Figure 3. PROLOG, PRIMLOG and NEW PRIMLOG equivalents of a CAD program for architectural application.

was the high deviation from the mean, with one or two
partitions being excessively complex, usually those
dealing with the most problematical areas of the design.
This was considered an indicator of error-prone program
features.

Our confidence in the value of complexity control was
boosted by its aiding the diagnosis of latent logical errors
in high-complexity partitions of programs already
installed in the field which had been carefully designed
and tested by the experts, but not with the aid of
complexity control. Clearly, the rules of the PROLOG
language provided too liberal a regime, and needed to be

supplemented by a stricter discipline of coding rules,
based on a deep understanding of the causes of
complexity, its measurement in the course of design
practice and a method for its control.

Control could be achieved by setting upper bounds on
the value of each of the complexity parameters and upon
the complexity function itself, but the question was how
to choose the value of these bounds. Rather than relying
on common sense alone, we decided on evolving design
rules by a deliberate strategy, as follows.

A ‘minimal complexity’ method called PRIMLOG
(PRIMitive proLOG),!> was defined, constraining the
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Figure 4. Complexity distribution of three programs. Graph 1, building design program; graph 2, tower design program;

graph 3, fixture design program.

designer to the strict essentials consistent with hierarchical
refinement (see Appendix A). PRIMLOG was considered
a first approximation to a usable design methodology.

PRIMLOG was imposed as a discipline for designing
CAD programs, and programmers’ reactions were noted.
In view of these, the rules were relaxed in those respects
where they raised the most justified complaints, while still
retaining complexity control. This resulted in the
proposition of NEW PRIMLOG, as Mark II in the
evolution of the methodology. The design rules of NEW
PRIMLOG were formulated simply as restrictions on
normal PROLOG syntax, constraining each of the four
parameters of the complexity function, as shown in
Appendix B. These rules were further supplemented by
the strong recommendation that designers should avoid
the use of ‘very complex’ partitions. This effectively
constrained the value of the global complexity function
itself.

Controlled experiments were conducted to compare
the unconstrained PROLOG design with that obtained
by PRIMLOG and NEW PRIMLOG, all three program
versions meeting the same specifications. The objects of
these experiments were, by necessity, programs of modest
scale, but they were nevertheless useful CAD programs
in their own right. The outcome of one of these
experiments was reported in 8. The effect of complexity
control upon the tree of hierarchical refinement is shown
in Fig. 3, and some of the statistics of the three program
versions are given in Table 1. The results are discussed
in some detail in 18.

As an outcome of these trials, sufficient confidence had
been established to introduce the rules of NEW
PRIMLOG into some areas of engineering practice,
enlisting the help of some designers to record their
experiences and opinions.

Further experience by users revealed the value of NEW
PRIMLOG as an aid to design, maintenance and
management of software development. It also showed the
way to simplify the methodology without the loss of
complexity control; instead of individually controlling
each of the four arguments of the complexity function of
Equation 1, as the NEW PRIMLOG rules sought to do,
it was found sufficient only to keep the value of the

function itself within bounds. Thus, the Mark III version
of the methodology was established, and was put to use.?®
This paper summarises the insight gained in more than
two years and in the course of several projects (e.g. 273
531 and 19). Recent experience showed a deficiency of the
complexity function of Equation 1 in capturing all of the
aspects of task complexity. Section 5 of the paper
discusses recommendations for further refinement, pro-
posed by user-designers. This will be evaluated by the
research team, taking into account conclusions drawn
from systems research. The procedure of successive
refinement will continue as the methodology is evaluated
in practice and is developed by systems research.

3. EXPERIENCE WITH COMPLEXITY
CONTROL. TECHNICAL
CONSIDERATIONS

User experience is discussed with reference to three of the
CAD programs designed by logic-based programming, as
follows.

A ‘building design’ program, concerning the modular
design of many-storeyed dwelling houses built of
prefabricated elements (3> column 1 of Table 2, graph 1
of Fig. 4). The program was designed in a strictly top-
down manner following the rules of NEW PRIMLOG.

A ‘tower design’ program, concerning the design of
building blocks for supporting mechanical engineering
parts in the course of machining,® column 2 of Table 2,
and graph 2 of Fig. 4). The program was designed by
using a mixed top-down and bottom-up strategy and by
use of the Mark III version of complexity control.

A ‘fixture design’ 5 program, related to the same
application area (column 3 of Table 2 and graph 3 of Fig.
4). The program was designed by an expert programmer,
interested in, but not subjecting to, complexity control.
Mixed top-down/bottom-up strategy was used.

Strict top-down design under NEW PRIMLOG tends to
lead to low average local complexity. This has benefits of
short development time and ease of diagnosing and
correcting errors. However, if local complexity drops to
very low values then the number of hierarchical levels,
and the number of intermediate subproblems, tends to
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Figure 5. Extension of complexity bounds.

increase, and there is a corresponding increase in the
number of logical errors. There seems to be some optimal
value at which average local complexity should be kept
so as to optimise program quality. Clearly, it seems
advantageous not only to keep average complexity near
such an optimum but also to avoid undue deviation from
the average within a given program. There will be
reference to this later in this paper.

When the designer used a mixed top-down and bottom-up

Table 2. Complexity analysis of three CAD programs

approach, and only controlled local complexity rather
than its individual parameters, the tendency was for
average local complexity to increase. It is interesting to
compare the statistics of the ‘building design’ and ‘ tower
design’ programs (columns 1 and 2 of Table 2). The latter
is a smaller program, as indicated by the lower global
complexity, but its average local complexity is higher and
the number of partitions is very much smaller. Errors
were fewer but they were harder to find; both
development time and testing time were higher than was
the case for the larger, simpler structure of the ‘building
design’ program.

Design followed a mixed strategy without complexity
control. The size of this program is virtually the same as
that of ‘building design’. Full information is not
available, but Table 2 and Fig. 4 show the startling
difference in programming style.

Analysis of programs which had been designed without
complexity control showed the need to subdivide the
‘very complex’ band of the value of complexity functions.
By plotting the width of bands on a linear scale, the graph
of Fig. 5 was obtained. The ‘very complex’ region is far
too wide and we therefore created 4 subdivisions: V, V',
V”, V”. The most complex partition of the ‘fixture
building’ program (1 = 156) falls in the last of these
bands.

It is interesting to note the uniform programming style
resulting from use of NEW PRIMLOG and top-down
design. In the ‘building design’ program 719 of
partitions are ‘Simple’ or ‘Complex’, only 199, are
‘Trivial’ and none is ‘ Very complex’.

This is considered an attractive feature and is likely to
lead to good performance in the field, provided that the
average complexity is set at a more appropriate level.
‘Too many’ ‘trivial’ partitions may obfuscate the true

Building design Tower design Fixture design
¢)) ©)) 3
Number of partitions 251 164 108
Global complexity 1636 1349 1629
Average local complexity 6.5 8.2 15
Trivial partitions T (1-3) 49 (19%) 43 (27%) 18 (17%)
Simple partitions S (4-7) 120 (48%) 3(32%) 32(29%)
Complex partitions C (8-17) 82 (33%) 5533%) 27 (25%)
Very complex partitions V —_— 13 (8%) 21 (19%)
(17-34)
Very complex partitions VI —— —_— 70%)
(35-59)
Very complex partitions VII _ —— 22%)
(60-100)
Very complex partitions VIII _— —_ 1(1%)
(101 - any)
Maximal complexity 17 23 156
Number of hierarchical 13 8 8
levels
Method of developing NEW PRIMLOG With Without
the programs complexity complexity
control control
Program development (man-day) 24 28 —_
Program testing 49 52 —
Total time 73 80 —
Number of semantic errors 42 25 —
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Table 3. Complexity analysis of a reconstructed partition

Complexity
No. Partition name Type P1 P2 P3 P4 | code
1 Task CASE 4 28 — 23 55 vi
1 Task CASE 3 3 — — 6 S
2 Task 1 AND 2 6 — 5 13 C
3 Task 2 AND 2 5 — 2 9 C
4 Task 3 AND 2 4 — 3 9 C
5 Value AND — 4 — 3 7 S
6 Task33 AND — 2 — 3 5 S
7 Data AND — 3 — — 3 T
8 Count AND — 5 — 4 9 C

Global complexity of reconstructed TASK: 61

] %:7.6 Simple

function of a program section as well as impose an
execution efficiency penalty. Too many ‘very complex’
partitions are also hard for the programmer to
understand and may increase the opportunity for error.
Our experience shows that complexity levels between 7
and 10 may be considered ‘appropriate’ (to expert
PROLOG programmers).

4. SOFTWARE
MAINTENANCE/RECONSTRUCTION
UNDER COMPLEXITY CONTROL

We have selected one of the very complex (V' band)
partitions of the ‘fixture building’ program, which bears
the name of TASK, to illustrate hierarchical reconstruc-
tion in detail. In the original design the local complexity
of the partition was 55. The reconstruction produced a
structure of 8 partitions, with an average complexity of
7.6 (nearly ‘Simple’), and a global complexity of the new
TASK of 61, an increase of just over 109, (see Table 3).

Among the advantages of the reconstruction was that
it became possible to isolate a partition named VALUE
which was found to have repeated applications in TASK
and in two other places elsewhere in the program. This
partition was defined as a separate entity and its use
contributed to the elegant design of both TASK and other
parts of the program. Simplifications also occurred in the
hierarchical reconstruction of the third argument of the
partition. To illustrate this, and help in tracing the two
versions of the design of the partition, the relevant parts
of the program texts are enclosed in Appendix C.

The number of partitions in the reconstructed partition
increased by 7 and the number of hierarchical levels by
2. There are some indications that in some cases the
reconstructed programs may carry higher run-time
overheads than the original (see also 1¢). It seems that such
overheads may correlate with global (rather than local)
complexity and with the number of partitions in the
program. If future experience shows that this is so, there
would be an even stronger case for encouraging a more
uniform design style by setting both upper and lower
bounds in emphasising the importance of run-time
efficiency when evaluating software quality. In the case
of off-line applications such as CAD, cost-effectiveness of

the life-cycle performance is far more likely to correlate
with low task complexity than with run-time efficiency.

5. THE NEED TO REFINE THE
COMPLEXITY-CONTROLLING
METHODOLOGY

It was mentioned earlier that when comparing the values
of the complexity function with the designers’ relative
difficulties in developing program partitions, anomalies
were found. This is because the complexity measures of
Equation (1) fail to penalise the complexity of relations
between new data entities, hence designers are not
deterred from using various and highly complex
compound operators within the arguments of positive
atoms. A case in point is the third argument of TASK (see
Appendix C).

On the basis of this observation, designers proposed the
introduction of new parameters into the complexity
function of equation (1), accounting for the variety and
complexity of operators on the data. This proposition is
reasonable: it produces an even-handed treatment of
subproblems and data, whereas the earlier version of the
complexity function does not take data relations into
account. Accordingly, the proposed complexity function
would become:

1=Pl1+P2+P3+Pa+fl4+12

the number
of new data
entities and
the relations
between them

)

the number of new
subproblems and
the relations
between them

with

S1 as the number of different operators (infix or prefix)
within the partition, and

/2 as the measure of the complexity of the relationships
among the new data entities.

A more adequate notation would be:

1=t14+24+d1+d2+d3+d4

with parameters of corresponding interpretation
‘t’ standing for TASK, and
‘d’ standing for DATA ENTITY.

3
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Table 4. Examples of two new complexity parameters

fl 2 f1+f2 Example
Simple prefix operator 1 0 1 f1(L, D, H)
or function notation
Binary infix operator 1 0 1 i.P
List denoted by .
infix operator (tree structure 1 2 3 X1.X2.X3.nil
used in recursion)
Two different nested 2 3 5 f3(L, P1.P2, H)
operators
Three different nested 5 5 10 t(N, f2(Y, N.i, H),

operators* etc.

zax (N, Y, s(X, Y, Z))

All examples refer to parts of program under analysis in this paper in Appendix C.
* The structure includes five different operators: t, f2, ., zax and s. Of these only three are nested.

Table 5. Complexity analysis as in Table 3, considering two additional parameters

No. Partition name Type t1 t2 dl d2 d3 d4 1 Complexity degree
1 Task CASE 28 — 4 23 4 9 69 v~
1 Task CASE 3 — 3 — 3 — 9 C
2 Taskl AND 6 — 2 5 1 — 14 C
3 Task2 AND 5 — 2 2 1 — 10 C
4 Task3 AND 4 — 2 3 1 — 10 C
5 Value AND 4 — — 3 — — 17 S
6 Task33 AND 2 — — 3 2 3 10 C
7 Data AND 3 — — — — — 3 T
8 Count AND 5 — — 4 — — 9 C
Global complexity of reconstructed TASK: g = 72.
2_9 jo9
i =9.
Table 6. Comparing original and improved functions applied to three CAD programs
Old value New value
Name gof g of
of the Number of global . global .
program partitions complexity / complexity g'-g r
Building 251 1636 6.5 2010 374 8
design
Tower 164 1349 8,2 1674 325 10, 2
design
Fixture 108 1629 15 1834 205 17
design

We may now introduce a scale of ‘charges’ upon the
new complexity parameters, such as is shown in Table 4.

As an experiment with the newly proposed complexity
function, we may now re-compute the local complexity
of TASK in both its original and reconstructed version.
The results are shown in Table 5. It is interesting to note
that the global complexity of the reconstructed partition
only differs from the complexity of the original by
(72-68) = 4, although seven new part-problems were
included. This is considered an encouraging indicator of
the effectiveness of complexity control.

To check the performance of the newly proposed
complexity measure against the intuitive evaluation of

complexity by designers, we have re-computed the
complexity statistics of all three programs of Table 2. The
new measures are summarised in Table 6. The conclusions
are that the new measures represent a considerable
improvement in quantifying the difficulty of design tasks.

6. CONCLUSIONS AND FURTHER WORK

The complexity measures proposed here may be applied
in two ways:
to prevent errors, controlling the quality of newly
designed software; as a means of quality assurance, to
detect the areas of potential design weakness in existing
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software, and to guide the process of reconstruction
into functionally equivalent but complexity-controlled
form.

Although the measures are still rudimentary and

need further refinement, experience shows them to be
effective in both these contexts.
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APPENDIX A

PRIMLOG RULES
TASK:
AND:

OR:

RECURSION:

DATABASE:

where

and

COMPLEXITY CONTROL IN LOGIC-BASED PROGRAMMING

- R (d1, d2), P (r1, r2).

R (t1, t2):- A (d1, d2),
B (rl, r2).

R (t1, t2):- A (x1, x2).

R (d1, d2):- B (r1, r2).

R (t1, t2).

R (1, d1):- A (x1, x2),
R (rl, r2).

A (t1, t2).

A (rl, r2).

A (d1, d2).

R, A, B, P are relation symbols or atom
names,

tl, t2, x1, x2, d1, d2, rl, r2 are terms.

Note: To minimise complexity at every level, compound
structures are permitted to contain at most two substructures.
This results in a binary decomposition of the problem.

APPENDIX B

NEW PRIMLOG RULES
(a) Extension of AND partition

A:- Bl, B2, B3.

if one of the negative atoms Bl, B2, B3 is a built-in
procedure or matches with a DATA BASE assertion.

(b) Extension of OR partition

A:- Bl, B2.
A:-Cl, C2.

if one of the negative atoms B1, B2, C1, C2 is a built-in
procedure or matches with a DATA BASE assertion.

(c) Introduction of
A:- Bl.
A:- B2.

A:- BN.
where N is arbit

APPENDIX C

CASE partition

rary.

Original and reconstructed program fragments
/¢ partition ‘task” is called in this way: Y¢/

task(X, Y, T, N, M, C).

/Y% partition ‘task’ —

task(X, Y, fI(L,i.P
data3(P, A, B),
plus(Y, A, E),
round(E, 50, G, D)
less(D, 10),
plus(G, B, M),
data0(, Q),
dataO(P, R),
times(Q, R, F),
times(45, F, C).

task(X, Y, f2(1,P.i,

original version %/
, H), X, M, C):-

>

H), N, M, C):-

round(Y, 50, M, D),

less(D, 12),
data2(P, D2),
plus(X, D2, N),
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dataO(P, Q),
data0(i, R),
times(Q, R, F),
times(45, F, C).
task(X, Y, f3(L, P1.P2, H), N, M, C):-
datal(P2, D2),
plus(Y, D2, T),
task(X, T, f2(L, P1.i, H), N, M, CQO),
data0(i, F1),
dataO(P1, F2),
dataO(P2, F3),
times(F2, F3, Q),
times(F1, F2, P),
times(18, Q, R),
times(54, P, S),
plus(R, S, C).

/¥ partition ‘task’ — rewritten version ¥/

task(X, Y, fI(L,D,H), N, M, C):-
task1(X, Y, fI(L,D,H), N, M, C).

task(X, Y, f2(L, D, M), N, M, C):-
task2(X, Y, f2(L, D, M), N, M, C).

task(X, Y, f3(L,D,M), N, M, C):-
task3(X, Y, f3(L,D,M), N, M, C).

task1(X, Y, fI(L,i.P,H), X, M, C):-
data3(P, A, B),
plus(Y, A, E),
round(E, 50, G, D),
less(D, 10),
plus(G, B, M),
value (P, C).

task2(X, Y, f2(L,P.i,H), N, M, C):-
round(Y, 50, M, D),
less (D, 12),
data2(P, D2),
plus(X, D2, N),
value(P, c).

task3(X, Y, f3(L,P1.P2,H), N, M, C):-
data(P2, D2),
plus(Y, D2, T),
task2(X, T, f2(L, P1.i, H), N, M, CC),
task33(P1, P2, C).

value(P, c):-
data0(i, Q),
dataO(P, R),
times(Q, R, F),
times(45, F, C).

task33(P1, P2, C):-
data(P1, P2, F1, F2, F3),
count(F1, F2, F3, C).

data(P1, P2, F1, F2, F3):-
data0(, F1),
dataO(P1, F2),
dataO(P2, F3).

count(F1, F2, F3, C):-
times(F2, F3, Q),
times(F1, F2, P),
times(18, Q, R),
times(54, P, S),
plus(R, S, C).
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