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A 1-1 mapping between the set of extended ordered trees with n internal nodes and the set of feasible binary bit-patterns
with 2n bits is established. By manipulating the feasible bit-patterns, the set of ordered trees with n nodes can be
enumerated lexicographically. The ranking and unranking functions are also described. It has been shown that the
bit-pattern representation of ordered trees leads to simple construction and easy understanding of the enumerating,

ranking and unranking algorithms.

1. INTRODUCTION

The problem of enumerating all ordered trees has
attracted a great deal of attention in the recent
literature.’® Knott® establishes a 1-1 correspondence
between the ordered trees and the tree permutations using
the in-order labelling and pre-order traversal of ordered
trees. To generate successive ordered trees, it suffices to
apply the unranking function to the corresponding
successive natural numbers. Ruskey and Hu? encode the
ordered trees using the levels at which the leaves appear;
the enumeration of ordered trees turns out to be a
transformation of those strings of digits to their
successors. Rotem and Varol® show a 1-1 correspondence
between the ordered trees and the stack-sortable
permutations which can be represented as ballot
sequences. These ballot sequences are then used for
enumerating the ordered trees. Proskurowski® generates
the ordered trees by expanding the leaves of extended
ordered trees. Solomon and Finkel® give a detailed
description of their enumerating algorithm based on the
definition of (natural) ordered trees, without coding.
Zaks® proves the 1-1 correspondence between the
ordered trees and the z-sequences. A successor function
applied to the z-sequences is used for generating the
ordered trees.

Of these great many methods, some methods are rather
ad hoc. Predictably, their algorithms are very complex.
The simplest idea of encoding the ordered trees as binary
bit-patterns has not been fully exploited, though de Bruijn
and Morselt,! Er,2 Proskurowski,* Read® and Zaks? have
touched on it. We shall show in what follows that the
binary bit-pattern representation of the extended ordered
tree indeed simplifies the enumerating function.

Algorithms constructed from this enumerating function
are simple and efficient. Furthermore, the ranking and
unranking functions are also detailed. Algorithms
implementing the ranking and unranking functions turn
out to be shorter and simpler compared with others,
owing to the conceptual simplicity of the encoding
scheme of extended ordered trees.

2. DEFINITIONS AND NOTATIONS

There are many ways of permuting the ordered trees. The
two common ones are natural and local orderings.

Let T be an ordered tree. Then by definition, T'is either
empty, or it has a node linking to two subtrees, each of
which is an ordered tree. We use root (7)), left (T) and
right (7)) to indicate the root, left and right subtrees of

T respectively. Furthermore, the number of nodes in an
ordered tree is denoted by | T'|.
We now define the two commonly used orderings oé

trees. 2
8

(0]

Definition 1 (natural ordering) %
Given two ordered trees T and 7, we define that T < T’i
if g
(1) |T|<|T’}, or <
(@) |T|=|T’| and left (T) < left (T"), or S
(3) IT|=|T’|and left (T)=Ileft (7’) and rights
(T) < right (T7). 3

o

Definition 2 (local ordering) %

wo9,

Given two ordered trees T and 7”, we define that 7 < T

[

if 2
(1) Tis empty and T” is not, or 2
(2) both T and T’ are not empty, and left (T) < left%

(T), or &

(3) both T and T’ are not empty, and left (T) = left
(T”) and right (T) < right (7).

These two orderings differ sharply in that the natural®
ordering takes a global view of the tree structures whereas§
the local ordering takes a local view of the tree structures. >
The permutations of ordered trees according to these
two orderings will therefore be different. We shall dealS
with an enumeration of ordered trees according to thef
local ordering exclusively in this paper. By lexicographical >
ordering, we mean local ordering.

Let T(n) be the set of ordered trees with n nodes, i.e.

T(n) ={T:|T| = n}.

Let | T(n)| denote the number of distinct ordered trees
with 7 nodes. It is well known that:
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where C,, is the nth Catalan number.1°

Suppose T(n) = {T,, T, ..., T}, and its elements are
arranged according to the lexicographical order. Then
T; < T; when i < j. A lexicographical listing of 7(4) can
be found in Appendix A.

Given an ordered tree with n nodes, T, it can be
converted to an extended ordered tree T by adding
another (n+1) leaves to T (see Refs 5 and 10). An
extended ordered tree can be encoded as a binary
bit-pattern using the usual technique: representing an
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internal node as a 1 and a leaf as a 0 in pre-order traversal.
The resulting bit-pattern comprises (2n+ 1) bits. As the
last bit of every encoding bit-pattern is a 0, it can
therefore be ignored without affecting the representation.
We use B, = (b, b, by ... b,,), where b, is either 1 or 0, to
denote such a bit-pattern. B, is said to possess the
dominating property if the number of 1s is not less than
the number of 0s at any state while scanning from b, to
by,. Furthermore, B, is said to be feasible if and only if
it has the dominating property and the numbers of 1s and
Os in B,, are equal. The set of extended ordered trees with
ninternal nodes and the set of feasible binary bit-patterns
with n 1s are denoted as 7(n) and B(n) respectively.

3. ENUMERATION

Itis obvious that the encoding of an extended ordered tree
always yields a feasible B,. Thus the mapping between
the set of extended ordered trees with n internal nodes,
T(n), and the set of feasible binary bit-patterns, B(n), is
1-1. As the mapping between T(n) and T(n) s clearly 1-1,
therefore, the mapping between T(n) and B(n) is also 1-1.
The following theorem is simple to prove but is important
for our enumerating, ranking and unranking algorithms
to function.

Theorem 0

The lexicographical order of T(n) is maintained in the
lexicographical order of B(n). In other words, the
mapping between T(n) and B(n) is isotone.

Our strategy of enumerating all ordered trees takes
advantage of this isotone property: instead of generating
all ordered trees directly, B(n) is enumerated in the
lexicographical order by manipulating the bit-pattern.

Now we describe an enumerating algorithm for
generating B(n). This algorithm is based on a grid
traversal approach. Let T(x, y) be a point at coordinates
(%, y) in a grid. B(n) can be generated lexicographically
by calling the following procedure as GenOrdTrees (n, 0).
procedure GenOrdTrees(x,y :integer);

{ This procedure generates bit-patterns consisting of
x Is and (x+y) Os in the lexicographical order. To
generate B(n) lexicographically, it should be activated
as GenOrdTrees(n,0). }
begin
if x = 0 and y = O then PrintBitPattern ()
else begin
if y # O then begin
ban—ax4yy41:= 0;
GenOrdTrees(x,y— 1)
end;
if x # O then begin
an—(x+y)+1: = 13
GenOrdTrees(x—1, y+1)
end
end
end { GenOrdTrees };

Note that the procedure PrintBitPattern simply prints
a complete bit-pattern when it is activated.

GenOrdTrees can be seen as a grid traversal algorithm
operating on a grid shown in Fig. 1. Viewing the
algorithm in this light, the problem of enumerating the
ordered trees lexicographically turns out to be equivalent

to the problem of generating systematically all paths
between (n, 0) and (0, 0).

The parameters of GenOrdTrees are coordinates in the
grid, and they have the following meaning: x regulates
the number of 1s yet to be generated in B,,, and y controls
the number of Os that can be generated in succession
beyond the state concerned.

GenOrdTrees is obviously convergent, because all
paths from (x, y) are oriented towards (0, 0) and bounded
by the x and y axes.

We can prove that the procedure GenOrdTrees is
correct. Firstly, we show that exactly n 1s and n Os are
generated in B, when it is called with parameters (n, 0).
There is only one place in the procedure a 1 may be
generated, and when it does, x is decremented by one.
Therefore the total number of 1s generated in B, is n.
Furthermore, from the structure of the algorithm, the
total number of Os in the tail of B, following bit b,,, _(3,4,,
is (x+y). Thus, by induction, the total number of 0Os in
B, is n. Secondly, we show that a B, so generated is
feasible. Starting from GenOrdTrees (n,0), a 0 cannot be
generated until a 1 is generated. In a more general case,
when GenOrdTrees (x, y) is about to be activated, the
total numbers of 1s and Os generated in between b, and
byn—_(2z+yy are (n—x) and (n—x—y) respectively. As
(n—x—y) <(n—x) when x and y are non-negative
integers, a B, so generated is always feasible. Note that
these two properties can also be obtained from the grid
directly. Finally, we show that the successive B,s
generated are in lexicographical order. It may be seen
from the procedure GenOrdTrees that when two B,,s with
same prefix are generated, a 0 is always assigned to b;
before a 1 is assigned to it, where b, is the leftmost bit that
makes the two B,s distinct. Therefore, we have proved
that GenOrdTrees always generates the encoded form of
extended ordered trees in lexicographical order.

If GenOrdTrees is involved in an application, then an
application routine should be called from within
GenOrdTrees replacing PrintBitPattern. If GenOrdTrees
is built as a library routine, then one way of establishing
communication with an application routine is to use
co-routine construct. Moreover, it is sometimes required
to generate the successor of a given ordered tree.
GenOrdTrees always generates ordered trees starting
from the first one in lexicographical order; this may not
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be desired sometimes. We now give an algorithm which
will generate the successor of a given B,, without
generating all the predecessors.
procedure GenSuc;
{ Given a feasible bit-pattern b,b,...b,,, this
procedure manipulates the tailing block of 1s so that
the resulting bit-pattern is the immediate successor
of the given one. }
var i,j,k,m:integer;
begin
i:=2n-—1;
while b; =0doi:=i—1;
ji=i—1;
whllej>0andb =1ldoj:=)—1;
k:=i—j—1;
form:=j+1to2(n—k)—1dob,:=
while k > 0 do begin
byn-tg+1:=1;
2(n-k) - = Y5

end;
ifj=0thenb,:=1else b;:= 1
end{ GenSuc };

Define a block of 1s to be a sequence of consecutive 1s
such that it is surrounded by Os or empty bit. Let by...b,
be the rightmost block of 1s in B,,. The basic strategy of
GenSucistomove b, to b,,_,, Wthh must be a 0 or empty
by definition of the block and spread b, ... b, to the
rightmost positions such that the resulting B, is feas1b1e
The former operation moves b, to its next significant
position, and the latter operatlon spreads b,,, ... b, to
their least significant positions. Of course, if p = g, the
latter operation amounts to a null operation. It can be
shown that the resulting B;, is the immediate successor of
the given B,. Note that when the last B, in the
lex1cograph1ca] order is given as input, GenSuc w1ll return
the first B, as a result. In this sense, the algorithm indeed
generates B(n) in the lexicographical order cyclically.

Let C(x, y) be the number of calls of GenOrdTrees
when x and y are given as parameters. From the
algorithm, we may derive the following recurrence
equation,

Clx,y)=C(x,y—1D)+C(x—1,y+1D+1
with the following boundary condition,

Clx,»)=0

Solving the above recurrence equation for C(n,0) and
then dividing C,, into it, the average time-complexity of
GenOrdTrees is 0(1) or approximately 1.33+lower
order terms’.

Note also that GenSuc manipulates the same number
of bits as GenOrdTrees on average. Hence the average
time-complexity of GenSuc is the same as GenOrdTrees.
The only programming difference between them is that
GenSuc computes the ‘backtracking points’ explicitly by
iteration, whereas GenOrdTrees carries out the same task
implicitly by recursion.

if x<0 or y<O.

4. RANKING FUNCTION

Let I(T) be the position index of an ordered tree T in the
lexicographical ordering. More specifically, I(T;) = i. It is
often necessary to associate such a position index with an
ordered tree for some applications. Our approach is to

establish a 1-1 mapping from B(n) to the set of position
indices. This 1-1 mapping is termed the ranking function.
As there is a 1-1 mapping between B(n) and T(n),
therefore I(T) equals the position index of B,. The
ranking algorithm is given below.
function Rank(B,,:bitpattern):integer;
{ This function computes the position index of B,, as
a result. }
var cnt, index, i, posn:integer;
begin
cnt:=n—1;
index:=1;
fori:=2to2n—1do
if b; = 1 then begin
posn:= 2n—i;

index: = index + (posn) - < posn ) ;
cnt cnt—1

cnt:=cnt—1 g

end; 3

Rank: = index 9
end { Rank }; g

The basic ideas behind the ranking algorlthm are =
explained in the following. Suppose we are given a 3
feasible B, = (b, b, ... b,,). Let f{i) be the number of 1s =
between b,- and bzn . inclusively. Then the rankmg 2
algorithm computes precisely the following summation.

Rank(8) =1+ 2 (%5)~( 5

Equation (1) can be shown to be correct. Let V(i) be the ©
number of feasible B,s such that they all have the same S 3
prefix b,...b,_, as B but preceding the B, concerned 5
lexxcographlcally, when b;=1.

~
ok
R

dnoo!wepe:)E/

Lemma 1
0= (o)
Proof

V(i) is indeed equal to the number of permutations of f{i)
Is and (2n—i—f{i)) Os between b,,, and b,,, inclusively,
such that the resulting B,s are feasible. The number of
permutations of f{i) Is and 2n—i—fi)) Os is

2n—i
(o)
However, the number of non-feasible B,s amongst them
' ( 2n—i>
fi)—1
Therefore the number of feasible permutations is
2n—i 2n—i
(o )-(gp-1) teem

We now apply lemma 1 to prove equation (1).

202 Iudy 60 uo 1senb Aq t7991LV/SEQ/Q/SZ/SIO!IJE/IU[UJOO

Theorem 2

Rank (B,) = l+b‘>§1 ( 1) ’)—(,ff;:)
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Proof

The given B,, is preceded by other B,,s which have similar
prefixes in the lexicographical order. For each b, = 1 in
the B, concerned, b,...b;_, is a prefix. Therefore, the
total number of B,s preceding the B, concerned in the
lexicographical order is (by lemma 1):

= (o))

Hence the position index of B, is:

2n—i 2n—i
2, (') -(15-1) e

Corollary 3

yi)=0
Proof
By the property of feasible B,,

M) =n
Therefore

1) = (Znn— l) _<2nn_—ll>
=0 [QED]

Theorem 2 and corollary 3 are used in Rank for setting
the initial values of cnt and index. Furthermore, the
expression of lemma 1 can be simplified into an
expression consisting of one binomial coefficient. As there
are n 1s in B,, the running time of the ranking algorithm
is O(n) units of the computation time of binomial

. . . . n
coefficient. Note that a binomial coefficient (1) can be

computed in 0(lgn) arithmetic steps.!!

5. UNRANKING FUNCTION

The unranking function is the inverse of the ranking
function. It maps a set of natural numbers to B(n). The
unranking algorithm is given in the following.
procedure Unrank(p:integer);
{ This algorithm constructs the bit-pattern of a given
position index p. }
var cnt, i, V:integer;
begin
cnt:=n;
for i:= 1 to 2n do begin
Vi (2n—1)_< 2n—i >;
cnt cnt—1
if p > V then begin
bi: = 1 ,
cnt:=cnt—1;
p:=p-V;
end
else b;:=0
end
end { Unrank };

The unranking algorithm basically computes equation
(1) in reverse. It compares the position index p with V(i).
If p < V(i), obviously a 1 at b; will make the position
index of the constructed B,, larger than the given position

index; consequently, b; should be a 0. Conversely, if
P > V(i), b; should be assigned a 1; otherwise, the given
position index will not fall within the range covered by
the subset of B,s having the prefix b,...5,_,1. By
induction, we have established that Unrank is correct.

Here, we assume that (;) = Owheny < 0. As there are 2n

bits in B, the running time of the unranking algorithm
is O(n) units of the computation time of binomial
coefficient.

6. CONCLUDING REMARKS

This paper exploits the advantages of encoding the
extended ordered trees as binary bit-patterns. The
enumerating algorithms of ordered trees, the ranking and
unranking functions are shown to be very simple, based
on this encoding scheme.

Note that generating random-ordered tree with n nodes
becomes a trivial exercise with this encoding scheme. All
we need to do is to generate a random number between
1 and C, and then apply the unranking algorithm to it.

As a conclusion we compare the complexity of our
algorithms with that of the published algorithms. Knott?
gives no enumerating algorithm at all, but specifies a
ranking and unranking algorithms, both running at
0(n®) units of time and requiring an array of Catalan
numbers. Rotem and Varol® present an enumerating
algorithm running at constant units of time on average,
a ranking algorithm at 0(n2) and an unranking algorithm
at O(nlgn)—-both require a 2-D array filled with
pre-calculated values which take 0(n2) units of time to
compute. Solomon and Finkel® detail no algorithm at all,
but argue that their enumerating and ranking algorithms
run at O(n) units of time, and their unranking algorithm
takes O(n lgn) units of time. Proskurowski* does not
discuss a ranking and an unranking algorithms at all, but
his enumerating algorithm requires to generate all
ordered trees with nodes less than n even if they are not
needed. Read® describes no algorithm at all, but gives an
example of enumerating ordered trees. Ruskey and Hu?
improve the running time of enumerating algorithm to
0(3) on average, and also present a ranking algorithm and
an unranking algorithm — both run at 0(n lgn) units of
time and require a 2-D array of Catalan numbers. Zaks?
also details an enumerating algorithm running at
constant units of time on average, a ranking algorithm
running at 0(n) units of time and a non-trivial unranking
algorithm — both require a 2-D array with pre-calculated
values. In contrast, our enumerating algorithm runs at
0(1) units of time on average, and our ranking and
unranking algorithms both run at 0(n) units of time with
a 2-D array of Catalan numbers or at O(n Ign) units of
time without the array. More importantly, our algorithms
areconceptually simpler compared with the corresponding
published algorithms. This is because our algorithms
generate and manipulate bit-patterns, whereas some of
the published algorithms generate and manipulate actual
trees.

Furthermore, a similar encoding scheme is applicable
to the extended t-ary ordered trees. The results discussed
above can also be extended to the enumerating, ranking
and unranking algorithms of ¢-ary ordered trees.
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Position Ordered
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11001100
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Position Ordered

indices trees Encoding in binary bit-patterns

8 Q 11010010
9 < 11010100
10 § 11011000
11 /\ 11100010
12 /< 11100100
13 ( 11101000
14 / 11110000
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