A Password-Capability System

M. ANDERSON,* R. D. POSE anD C. S. WALLACE

Department of Computer Science, Monash University, Victoria, Australia 3168
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1. INTRODUCTION

A tightly coupled multiprocessor is being built in the
Computer Science Department of Monash University.
The Machine consists of several processors sharing access
to a common pool of memory modules. Their common
access path is a fast bus of sufficient capacity to support
the memory traffic of up to 20 processors of about one
Mip.

The machine is not intended for dedicated applications
making explicit use of knowledge of the exact configura-
tion of the system. Rather, we conceive the system as
being an environment in which many processes may be
active and may, if they so desire, communicate and
cooperate with each other.

The primary research aim of our project is to ascertain
and study the advantages that may accrue from the use
of tightly coupled multiprocessors and the impact of
difficulties such as congestion arising from competition
among the processors for the use of the processor-memory
access path.

A generalised virtual memory interface has been
devised which defines a uniform virtual memory. All
entities in the system communicate through this interface.
It uses a somewhat unusual capability-based addressing
scheme.

2. THE VIRTUAL MEMORY

The virtual memory and the capability system through
which it is used are the bases of our architecture.
Although our multiprocessor will be able to accommodate
several different processor types, with different instruction
sets and different addressing structures, all must operate
within the framework of the virtual address space. We
have therefore tried to keep the definition of and interface
to the virtual memory as flexible and general as possible.

The virtual address space is divided into a number of
volumes, each containing a number of objects. Most
volumes are associated with single permanent data-storage
devices such as fixed or removable disc packs. The
association is permanent. A volume cannot be moved
from one storage unit to another. Some volumes are
associated with a particular multiprocessor system rather
than a data storage unit. Again, the association is
permanent. Volumes are thus always associated with
pieces of hardware. Conceptually, a volume is created
when a disc is manufactured or a new multiprocessor is
assembled. They are not dynamic constructs. Every
volume is identified by a volume identifier, a number

* To whom correspondence should be addressed.

assigned to it ideally at the time of manufacture of the
device containing the volume and permanently recorded
on the device. The volume identifier is unique. Although
we do not require that volume identifiers never be re-used, o
we do require that all extant devices, no matter where 2 s
located or on what computer they are used, have different & g
identifiers. The management of a numbering scheme %
meeting this requirement is probably simplest if the =
identifiers are some sort of manufacturers’ serial ;
numbers, in which case identifiers would be historically 5
unique.

Objects are, in general, dynamic constructs. They may 3
be created and destroyed by the actions of processes.
When an object is created, it is assigned to some volume &
and remains in that volume for its life. An object cannot &
be divided among two or more volumes. A serial numberg
which is different from that of any other object in the same g
volume is assigned to the object when it is created. It 3
retains this serial number throughout its life. Thus the 8
volume number and serial number together form ans
object name which uniquely identifies an object among £
the universe of all extant objects on all hardware devices. &
The same serial number may of course be assigned to two 15
objects in different volumes. We do not require that serial =
numbers never be re-used within a volume.

Our design provides for a 32-bit volume identifier and & o
a 32-bit object serial number, which seem adequate for 3
the foreseeable future. An increase in these lengths would &
have no significant impact on the design apart from a“g
small percentage increase in the sizes of some system &
tables, and would require no change to the hardware of S
our present implementation. It would however, be visible 3
at the user level.

With the. present design, the volume identifier and 3
object serial number form a 64-bit object name.
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3. CAPABILITIES

The virtues of capability-based addressing have been
discussed in some detail.? Ideally, capabilities can provide
security of access with more flexibility than hierarchically
nested protection domains, and an unambiguous method
of naming objects which does not depend on the context
of the processes in which the object is visible.

In any system, capabilities must be protected against
accidental or malicious alteration, and must be unforge-
able. Two main methods have been used. The first method
uses tags on all memory cells and registers to distinguish
between capabilities and other information.* %13 The
hardware or microcode is designed to restrict the
operations which may be performed on cell or register

THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986 1

cprJ 29



M. ANDERSON, R. D. POSE AND C.S. WALLACE

contents tagged as being capabilities. No unprivileged
operation can construct a capability value from other
data. This kind of scheme can meet the basic objectives
of a capability architecture, but has a number of
disadvantages.!''®* One disadvantage is the space con-
sumed by the tag fields.

The second approach is to segregate capabilities from
other data, keeping them in special segments or fenced-off
parts of segments.®: 1% 18, 20 Such segments are often called
‘capability lists” or ‘C-lists’. Schemes of this kind suffer
the difficulty that capabilities cannot be freely treated as
items of information to be stored, copied and communi-
cated like other data. In particular, it is difficult to
arrange for capabilities to be sent to and accepted from
processes outside the computer system, such as processes
in a remote machine or human users.

We now describe a capability mechanism that does not
require the segregation of capabilities and data and has
no tagging.

In our system, a capability is a 128-bit binary value
comprising two 64-bit fields. The first is the name of the
object. The second is a password permitting certain forms
of access to the object. We reserve the term ‘capability’
for those 128-bit values which do indeed identify an
extant object and permit some access to it.

There may exist many different capabilities for the
same object. The rights afforded by different capabilities
for the same object may be the same or different. Since
we define a capability to be a value, rather than a record
or other data storage structure, different instances or
representations of the same value are different instances,
representations or copies of the same capability rather
than distinct capabilities. However, different 128-bit
values conferring the same rights over the same object are
distinct capabilities.

All capabilities for the same object have the same object
name but are guaranteed to have different passwords even
if they confer identical access rights. Note that the*
password does not contain a coded representation of the
access rights. There is no algorithm for mapping from
password values to access rights or vice versa.

We say a capability is created when a value not
previously a capability becomes a capability. We say a
capability is destroyed when a value which was a
capability ceases to be one, i.e. it no longer allows any
access to any object. Note that destruction need not
involve the alteration of any visible storage cell in virtual
memory. No instance of the value need be overwritten or
destroyed. All instances of the value simply lose their
status and validity as capabilities.

The set of extant capabilities for an object is regarded
as part of the object, and resides in the object’s volume.
If a disc pack containing an object is removed from the
multiprocessor and later mounted on the same or a
similar machine, all the capabilities for the object remain
valid and may be used just as if the object had always
resided in that machine.

3.1. Storage and security of capabilities

Because our capabilities are values, they may be stored
wherever any data values may be stored, in or out of the
computer system. They may be communicated freely
between different computer systems or between computers
and human users by any means of data communication.
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They may be encoded into other representations and
encrypted.

Our system clearly can given no absolute guarantee of
security. Since our capabilities are values, not storage
structures, anything capable of generating an arbitrary
128-bit value can in principle get access to any object. We
offer only a probable level of security. The probability of
guessing a valid capability is very low, even if the name
of the object is known. The password field of a capability
is 64 bits long. Even if some thousands of valid
capabilities exist for an object, the probability of an
arbitrary 64-bit value being a valid password for the
object is less than 10715,

The probable security implied by the sparseness of
valid password values would be vitiated if it were possible
to choose forged values more efficiently than by random
selection. That is, we must ensure that knowledge of any
number of valld capabilities, together with any othgr
information accessible to a user of the virtual memory,
gives no clue as to the values of other passwordg.
Therefore, whenever a capability is created, our systeth
gives it a password generated by an unpredicta
physically random process. The present implementaticn
uses a thermal noise source attached to the system asz
shared, high-speed peripheral. A pseudo-random numbéir
generator would not suffice, since the output sequences
of such generators are 1nherently of finite algonthm&
complexity and hence predictable given enough examples
Note that it is not essential that the sequence of valugs
generated by the random process be free of bias ard
correlation. Even fairly severe defects of this so,
sufficient to make the generator unsuitable for Mon
Carlo and similar calculations, will result only in 31
reduction of security equivalent to reducing the passwo@
size by one or two bits.

The odds of at least 10'® against generating a valﬁi
password seem more than sufficient to protect agam@
accidental misuse of a capability. Even were users of tlﬁ
virtual memory to make mistaken attempts to uge
incorrect or out-of-date values as capabilities eve
microsecond, one would expect to wait about 30 years
before any attempt succeeded. It is scarcely concelvab%
that the innocent mistake rate could be of this ordeg
However, it may be thought that the odds are on
marginally secure against a determined attack by =
malicious user with knowledge of a valid object name. We
have arranged, using the money system described lateF,
that any attempt to use an invalid value as a capabilify
incurs a cost penalty small enough to be tolerable for the
occasional innocent mistake, but large enough to make
a systematic attack prohibitively expensive in
expectation.

A somewhat similar password scheme is used by
AMOEBA®® and, though not in the same context, by
Girling® to ensure the integrity of objects on a
heterogeneous network.

DIe

3.2 Master and derived capabilities

Whenever an object is created, a single capability is
created for the object and returned to the creator. This
capability is called the master capability for the object.
Its rights are specified by its creator, and no other right
may ever be exercised over the object. Other capabilities
may be derived from the master capability or from
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previously derived capabilities. To create a derived
capability, one must present a valid .capability and
indicate what subset of its rights are to be attached to the
derived capability. All its rights may be passed on to the
derivative, but no new one added.

The capabilities for an object have interdependencies
which may be modelled by an inverted tree with the
master capability at the root, and a derived capability
atevery other node. The capability at the root of a subtree
is an ancestor of all other capabilities in the subtree, and
they are its dependants. The immediate ancestor of a
derived capability is its parent. The master has no parent
or sibling. No capability occurs more than once in the
tree. When a new capability is derived from an existing
one, the new capability is inserted in the tree as an
immediate dependant (child) or the existing one.

The tree structure of capabilities for an object is
logically part of the object. It has several effects, the most
important being that destruction of a capability implies
automatic destruction of its descendants. Destruction of
a master capability results in the destruction of all
capabilities for the corresponding object, and hence
destruction of the object itself, since no further access to
it is possible.

The tree structure facilitates unrestricted derivation of
capabilities. If unrestricted derivation were permitted
without making derivatives dependent on their parents,
a kind of rights amplification could occur. For instance,
suppose a process X derived a capability 4 and passed
a copy to process Y, which derived from it a capability
B with equal rights. In an important sense, B is stronger
than A, since it is immune from destruction by process
X, which has no knowledge of its existence. The tree, by
recording the dependence of B on A, prevents B from
becoming stronger than A.

A single-rooted tree ensures that only one capability
(the master capability) need be examined to determine the
status of an object.

Since it is very easy to share a capability, i.e. the same
bit pattern in many locations can represent the same
capability, the need to create and distribute additional
capabilities for an object is reduced. Thus, the size of the
tree of capabilites for an object is expected to be
considerably smaller than if it were implemented in a
system with either a tagged or segregated capability
scheme.

The space used to represent a password capability in
a system table is of the order of eight words.

4. OWNERSHIP AND GARBAGE

A problem that faces capability-based architectures is the
identification of objects that are no longer needed or are
inaccessible. Such objects are defined as garbage.

Most solutions, to identify and remove garbage, use
some combination of an ownership scheme, reference
counts, and reference tracing.® 14,18

The basis of an ownership scheme is to mark specific
capabilities for every object as ‘owner’ capabilities. If all
owner capabilities for an object are destroyed then the
object is defined as garbage. It is interesting to note that
ownership schemes were rejected in the HYDRA system
design on philosophical grounds.®

Schemes based on reference counts involve keeping
a count of the number of capabilities that refer to an

object. If the count drops to zero then the object is defined
as garbage. However, circular references can occur, thus
rendering an object inaccessible while still having existing
capabilities for it. Any garbage collection mechanism
must be able to detect this condition and remove, as
garbage, an object that falls into this category.

Our virtual memory involves no concept of ownership.
No object is dependent on any other object. Of course an
object may contain a capability for another object, and
hence effectively point to it, but the capability may be
represented in any kind of code and its representation
may be unrecognisable as a capability. Hence the
behaviour of the virtual memory cannot depend on the
existence or structure of any such pointers. Further,
records of valid capability values may be held outside the
multiprocessor system. It is clearly impossible for the
virtual memory to determine if an object has become
inaccessible. Hence our system can use neither of the
above schemes to identify garbage.

We have addressed this problem in two ways. First, an
object is destroyed when no capability value for it is
defined, since there is then no way of referring to the
object or creating a new capability for it. More
interestingly, we have incorporated a charging system
into the design of the virtual memory. The charging
system was originally introduced as a solution to a
resource allocation problem, but was found to be so
useful that it has been expanded into a cash economy
defined as an integral part of the multiprocessor
architecture. Every object is charged a rent depending on
its size, and an object is defined as garbage if it cannot
pay its rent. Since the charging of rent, and the sources
of funds from which rent can be paid, are included in the
definition of the virtual memory, the virtual memory can
automatically dispose of garbage defined in this way. The
money mechanism is further discussed below, but note in
this context that it does not introduce a concept of
ownership of objects. The rent for an object is claimed
from the object itself, not from any owner or ‘user code
account’.

5. MONEY

Money is a quantity which can be held in an object
and transferred from one object to another. It can be
viewed as a generalised, transferable right to use any of
the services provided by the virtual memory or other
system services. Unlike other rights, it is consumed when
the service is provided. Money is not an alternative to the
rights provided by a capability. Charged services will be
provided only when an appropriate capability is provided
and money is paid.

Every object can, and must, contain some money. Sums
of money are not normal data items and cannot be copied
or processed. Money obeys a conservation law: if money
is transferred from A to B, the sum at A4 is decreased by
the same amount as the sum at B is increased. The money
held in an object is distinct from any data, code,
capability or other information stored in the object.
Access to the money in an object or to information about
the money requires a capability with an appropriate right.

A monetary value is associated with every capability.
In the master capability, the value represents the sum of
money held by the object. In a derived capability, the
value is not a further sum of money, but shows how much
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of the object’s money can be withdrawn using the derived
capability. Withdrawals and deposits using a derived
capability are treated as being made via its parent. Thus
withdrawal of a sum using a derived capability requires
that its money value and those of all of its ancestors
including the master at least equal the sum to be
withdrawn. A permitted withdrawal or deposit decreases
or increases the money values of the capability used, and
all of its ancestors. It is not required that the money value
of a capability equal the sum of the money values of its
children: it may be higher or lower than this sum.

The money mechanism allows our design to avoid some
common problems not by solving them but by redefining
them. The parallel garbage collector found in other
systems!# 18 has, in this system, been transformed into a
rent collector. The rent collector periodically scans
volumes to inspect the master capability for each object
and deduct rent from its money. Any object whose money
is exhausted is regarded as garbage and destroyed. Thus,
by defining garbage as bankrupt objects, we make it
unnecessary to find all references to an object or to keep
reference counts. Similarly, the money mechanism may
be used to assist in the management of various resources.
For example, consider the case of a process X that
possesses a capability for a line printer. By creating and
revoking derived capabilities, and receiving payment
using the capabilities, X can rent out the printer. If rent
is not forthcoming then the appropriate capability can be
revoked and the next resource request attended to. The
objective of X is not to ensure that the line printer is used,
but to ensure that it is paid for. X need not be concerned
about processes that become deadlocked using the
printer. By transforming X’s method of management for
the printer, i.e. from ensuring the printer is used, to
payment of rent for the printer, responsibility for
deadlock avoidance is shifted to the user.

6. PROCESSES

We define a process as a single sequence of instruction
executions and virtual-memory interface calls, performed
above the virtual-memory interface level. A process has
no internal parallelism, and can run on at most one
processor at a time. There may be different types of
processes running in the multiprocessor, and different
types may require to run on different types of processor,
but a process may run on any available processor of
suitable type, and does not remain tied to any one
processor. Sequences of instructions executed to support
parts of the virtual memory, e.g. to manage page
swapping, physical storage allocation and processor
scheduling, are not regarded as processes.

A process is represented in virtual memory by an object
which contains, inter alia, the following.

(1) A process type code, determining the type of
processor required by the process and the format of the
rest of the object.

(2) A processor state, including at least a program
counter value comprising a capability for an object
containing code and an offset.

(3) A sum of money (‘cash’) from which payment is
made for services used by the process. This sum is
additional to the sum associated with the master
capability of the object, and is more easily accessible to
the processor on which the process is running. The
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process may transfer money between its cash and the sum
associated with its master capability. It has the
responsibility of ensuring that it has sufficient cash to pay
for the services it uses, including processor time.

(4) A buffer (‘mailbox’) for the receipt of messages.

(5) The capabilities and view-defining information
associated with any window registers used by the process
(see section 10).

(6) A 63-bit lockword (see section 7).

All references to a process require use of a capability
for the object representing the process. We therefore call
this object the process, and may regard a process simply
as an object capable of autonomous behaviour. The
master capability of a process has rights which allow the
object to be viewed as a process.

7. CONFINEMENT

O
There has been a certain amount of interest concerniﬁg
the containment of information.® 12 Several writers have
described mechanisms, some based on capabilities, f?ér
allowing a process to call on a software package to
perform some service with the assurance that the callgd
package cannot capture or transmit to an unauthorised
receiver any information about the data passed }};o
t2 11,17

The password capability system permits a ﬂex161e
implementation of the desired information contammegt
based on a simple encryption of passwords. o

First, we distinguish between capabilities which ge
strictly read-only and those which permit some kind of
alteration of the state of the addressed object (alt&r
capabllltles) One bit of the password field of a capabllgy
is set to 0 if it is read-only, or 1 if it is an alter capablhtg
Thus, only 63 bits of a password are in fact choseal
randomly. o

Every process contains a 63-bit ‘lockword’ which is ngt
readable by the process. Whenever the process create@
capability, either by creating a new object or by
derivation from an existing capability, the value return&i
to the process contains the true password P if the created
capability is read-only. If it is an alter capability, the valge
returned contains an encrypted password Q, being the
exclusive OR of the password and the process lockwofd
L. Q =P®L. Whenever a process tries to use an alter
capability, the virtual memory interface decrypts its
password by exclusive OR with the process lockwoﬁi
before checking its validity.

Normally, most processes will have a zero lockworﬁ
so the passwords they see are not encrypted. Howevqg,
if a process P1 with lockword L1 wishes to use an
untrusted package, it will create a new process P2 to
execute the package. In creating P2, P1 may specify an
arbitrary lock value V to be applied to P2. P2 is then
created with lockword L2 = L1@®V. Before passing any
alter capability to P2, P1 encrypts its password by ex-
clusive OR with V. The password known to P1 is already
encrypted by L1, so this operation creates a password
encrypted by LI®V = L2. Hence P2 may successfully use
the passed capability. Further, if P2 creates any new
object, the alter capabilities it gets for the object are
encrypted with L2. If P2 returns such a capability to P1,
Pl may partially decrypt it by exclusive OR with V,
giving a password encrypted by L1. Pl may then use
the capability to refer to the returned object.

/o0
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P2 may alter any object it creates, or for which it is
given an alter capability by P1. It cannot alter any other
object, even if it knows an alter capability, since it has no
way of discovering its lockword L2. Note that even if P2
knows both an (L2-encrypted) alter capability and an
(unencrypted) read-only capability for the same object,
it cannot deduce L2, since the true passwords of these
capabilities are not related. P2 may, however, use
read-only capabilities built into the code of the package,
e.g. to create additional processes, to use other packages,
or to access databases.

Although P2 may create objects in which it can place
information, it cannot convey their capabilities except by
placing them in the objects to which P1 has given it alter
access or objects which it has created.

P2 may itself use packages which it does not trust by
creating processes under further locks.

Since a process is required explicitly to nominate the
lock V to be applied to any process it created, and to
encrypt any alter capability it passes to the new process,
a process P1 may create two or more processes P2, P3,
etc. running under the same lock. Such processes can then
freely exchange alter capabilities with each other, but are
still contained as a group. More generally, P1 can create
processes P2, P3, etc. using different locks V2, V3, etc. If
P1 tells P2 the value V2@V3, then P2 may encrypt alter
capabilities to pass to P3, and decrypt ones created by P3.

There is no file access operation per se, all files being
objects in virtual memory paged in as required.
Accounting is done by the money system, the movement
of money requiring alter capabilities. Interprocess
communication via shared memory or via messages also
requires alter capabilities. Hence there are few if any
covert channels available for violating confinement.

The confinement scheme has been described in the
context that the calling process creates a new process to
provide the service. It is also possible to use the scheme
when the service is called as a procedure rather than as
a process. In this case, the process exclusive ORs its own
lockword with a nominated V as it enters the procedure.
To enable the original lockword to be recovered on exit
from the service procedure, the architecture of the process
type must provide a stack of lockwords in the process
object rather than a single lockword.

8. RIGHTS AS VIEWS

A right conferred by a capability may be regarded as a
right to see some specified aspect of an object. That is,
it defines a view of the object. The various rights which
are recognised in our system may usefully be classified by
the kind of view they permit.

8.1 Money rights

These permit an object to be seen as a store of funds. Any
object may be so regarded.

(1) Drawing right: the right to draw up to a certain
amount of money from the object. It is depleted by use
and augmented by deposits.

(2) Balance: the right to enquire what sum can be
withdrawn from the object by use of this capability. The
result may be less than the drawing right, being the
minimum of the drawing rights of this capability and all
of its ancestors.

(3) Deposit: the right to deposit money in the object.
Deposits require a specific right as they allow a process
to convey information and could be used to violate an
intended confinement of information.

8.2 Window rights

These allow an object, or part of an object, to be seen as
a set of consecutively numbered 32-bit words. The master
capability of any object includes a window right for all
of the object that can ever be seen in this way, and any
window included in any derived capability sees a
consecutive subset of the words in the master’s window.
No capability has more than one window right. The
words seen through a window are numbered from zero
up, no matter what the number of the first word when seen
through the master’s window. When a capability is
derived from another, the derived window must of course
be a subset of the original window, and may start and end
anywhere in the original window. Every window right is
defined by an offset and size, giving its start and end as
seen through the master’s window. Specific access rights
which may be associated with a window are read, write,
and execute.

8.3 Process rights

These provide a view of an object as a process.

(1) Message: the right to send the process a message,
and hence to awaken it if it was waiting for a message.
A message is a 16-word record of arbitrary content.

(2) Suspend: the right to suspend and resume the
process.

(3) Status: the right to find out some details of the
internal state of the process.

(4) Condition: the right to initialise a suspended
process. This right is exercised in order to perform
operations that partially define the state of a process. For
example, the setting of the process’s program counter.

8.4 Suicide right

The suicide right permits a capability to be used to
destroy itself. Consequently, the capability’s dependants
are destroyed. Suicide by the master capability for an
object implies destruction of the object. Suicide right may
be given to a derived capability even if the capability from
which it is derived does not have this right. This ability
may appear to go against the general rule that no
capability can have greater rights than the one used to
create it. However, a capability’s existence depends on the
existence of all of its ancestors, whether the capability has
suicide right or not. Thus, no amplification of rights takes
place.

9. CAPABILITY REGISTERS

This section describes an aspect of our implementation
of the architecture. It is included to suggest that a
reasonably efficient implementation is possible, but we do
not claim this to be the only or best possible approach.

An implementation of our architecture must allow
access to the virtual-memory interface. It may also
provide constructs which are conceptually above the
virtual-memory interface which add to its efficiency or
ease of use.
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In the normal course of its execution, a process may
wish to exercise a window right very frequently, i.e. at
memory speeds. It would be intolerable if the process were
required on every occasion to present a full word or byte
address in the virtual-address space, since a virtual
address comprises a 128-bit capability and an offset-
within-window which may be as large as 28 bits. A
processor could therefore provide capability registers
which may be used as addressing bases. A process may
load a capability into a capability register, and thereafter
refer to words in the window defined by the capability by
some sort of logical address which implicitly or explicitly
names the capability register and gives an offset relative
to the beginning of the window. Similar capability
registers are used in other architectures.!-?

As will be seen below, our design recognises the
existence of capability registers, but their number,
organisation and logical addressing may vary from one
process type to another.

Strictly speaking, a capability register (or window
register as we call it) exists above the virtual-memory
interface, and its existence and use is no part of the
virtual-memory design. A window register is, in concept,
simply a device which a process may use conveniently to
construct a full virtual address, which is then presented
to the virtual-memory interface for interpretation as a
capability-offset pair. However, in our design the
production of a virtual address using a window register
and the interpretation of that address to yield a hardware
access path to the designated word can be collapsed into
a single step. The system-wide standard mechanism to
support such operations is described in the next section.
A particular processor design may elect to use this
mechanism or not. For instance, our first model of
processor, based on a National 32032 microprocessor,
uses the single-step window-register mechanism for
addressing words in windows, but not for some
operations on processes.

10. VIEWS

Given a capability, it is not a trivial matter to interpret
it to obtain access to an object. The capability itself
contains little information about the location of the
object (only the volume identifier) and no information
about the kind of view and access rights it provides. Thus,
if only the capability is known, it is necessary to consult
system tables to establish the validity of the capability,
its right to permit the kind of access requested, and a
hardware route supporting the access.

Our implementation has a large table, the Active
Objects Table (AOT), which inter alia acts as a
main-memory cache for such information. It is
addressed by a hash of the object name. None the less,
given a window capability, several memory accesses are
needed to find all the information required to support a
word access. This order of overhead is tolerable for
infrequent and complex forms of reference to an object,
such as the suspension of a process, but is hopelessly
inefficient if incurred on every reference to a word in a
window.

The design provides a system-wide interface to a level
below the virtual-memory interface. Using this interface,
a processor executing a process may present a capability
and obtain from the AOT the access rights and location
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information needed to implement the view defined by the
capability. The processor can then perform whatever
access to the object was required by the process it is
executing. In order that the time-consuming references to
the AOT needed to acquire this view need not be repeated
for every simple access, we permit the processor to retain
the view-defining information in association with a
window register. Thus, when a process loads a capability
into a window register, the processor executing it obtains
the corresponding view using the low-level interface and
loads the view information into an extension of the
window register. When subsequently the process uses the
window register to address virtual memory, the processor
can directly check the validity of the required access and
generate a hardware route to the word or words involved.
It does not need to refer to the AOT, and in fact need not
examine the capability stored in the window register.

A virtual address (capability, offset) does not prov1d3:
a convenient hardware route to a word. Since a wogd
may be specified by more than one virtual address,
hardware recognition of virtual addresses would
complicated. It would be easy to associate with eath
window register the information needed to convert offségs
relative to the window into offsets relative to the start af
the containing object, thereby yielding a unique address
for any word. However, the resulting object name, offsgt
pair would be very large. Some reduction could
achieved by assigning a ‘ segment number’ to every objekt
of current interest as a temporary but reasonably long-
lived synonym for the object name. We have chosen $o
use a logically similar but more compact scheme. 38

Inourimplementation the ‘hardwareroute’ componegxt
of a view is a base address in a linear Intermedié
Address Space (IAS). The IAS is much larger than
physical main memory, but small enough to allow:,a
manageable address width (32 bits in our present systef,
but the width is not fixed by the architecture). Evegy
object of current interest is mapped into this space aw
single block of consecutive words. This mapping as
recorded in the AOT, which contains entries for
objects currently mapped into IAS. ‘3

When a capability is loaded into a window register, the
IAS base address correspondmg to the beginning of tge
window, the window size and access rights are retainéd
by the processor in an extension of the window registér.
A logical address (window register number, offset)cis
converted by the processor to an IAS address by addigg
the offset to this base (Fig. 1). Checks are also performed
on the access rights and size. The IAS is large enoughito
allow an object to retain its IAS location for some houts.
Hence the view information associated with a window
register is not very volatile, and can usefully be retained
in a process when it is removed from a processor for a
short period, e.g. to fix a page fault.

IAS addresses produced by processors are recognised
and translated to physical addresses by fast hash tables
in the memory modules of the multiprocessor. By having
the processors generate and the memory modules
recognise IAS addresses rather than physical memory
locations, movement of a page of an object between a
volume and physical memory does not require adjustment
of any view of the object held in a window register.

The use of retained views in the window registers of a
process allows efficient references to objects by bypassing
the full mechanics of the virtual-memory interface, but
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raises the possibility that a change to the status of a
capability may not be noticed by a process which has that
capability in a window register. The only change of status
that needs to be considered is the destruction of the
capability. If the destruction is a consequence of the
destruction of the master capability, i.e. of the object, no
problem arises since all pages of the object are removed
from physical memory and the memory modules will
cease to recognise the IAS addresses lately occupied by
the object. However, if the capability destroyed is a
derived one, other steps must be taken to invalidate any
window register view associated with the capability.

We do not attempt to locate and destroy all such views
which may be held in processes, but provide two means
for invalidating them. First, no process relies on the
continued validity of any view which it has not checked
in the last few seconds. The next use of a window register
containing such a view will cause the process to check that
the capability still exists. If it does, the view-defining
information in the window register is assumed still to be
valid. Thus, when a derived capability is destroyed, the
destruction is guaranteed to be effected within a fixed but
not negligible time. We expect this slow destruction will
not suffice in most cases.

A prompt destruction is also provided, but is more
expensive. It is effected by relocating the object in IAS,
which can be done without moving any of its pages in
physical memory. Attempts to use old views of the object

then result in a pseudo-page fault. Processes with valid
capabilities for the object can resolve the fault and
recover the new IAS address of the object, but users of
the destroyed capability will fail. At infrequent intervals,
processes are forced to revalidate the IAS addresses in
their window register views, to allow re-use of vacated
areas of IAS.

The periodic checking on the validity of a view in a
window register is no worse than checking undertaken in
other systems with hardware support for capabilities. For
example, the CAP!® flushes its implicitly loaded cache
whenever a capability is copied or refined, hence forcing
a process to re-evaluate the validity of capabilities it uses.

11. CONCLUSION

Password-checked capabilities, like tagged capabilities,
may be freely mixed with other data and need not be
segregated. Unlike tagged capabilities, they are ordinary
data values, and so can be held outside the computer
system. They can be protected by encryption when passed
through an untrusted agent or insecure medium. A simple
form of encryption can be used to implement a
confinement mechanism.

As in some segregated-capability schemes, capabilities
may readily be revoked without a time-consuming search
for instances. The dependence tree of derived capabilities
provides secure revocation without needing any restriction
on copying capabilities or making derivatives.

Although the use of a capability conceptually requires
an indirection to recover access and location information,
the view mechanism outlined provides an efficient
implementation so long as window registers are not
reloaded too often. The architecture thus favours use of
capabilities for relatively large and stable objects, but the
overheads incurred in a more volatile use of capabilities
are not intolerable.

The money system is an important feature of the virtual
memory. It allows recovery of garbage even though
accessibility of objects cannot be determined, removes
resource allocation deadlocks from the concern of the
system, and provides a flexible accounting mechanism
which, for instance, can require processes to pay for the
use of proprietary packages.

The design of the capability mechanism requires no
concept of ownership, either for object management or
accounting, and imposes no artificial hierarchic structure
on the virtual memory. It is ‘open’ in the sense that
objects, including processes, need not be subjected to any
authorisation procedure before becoming usable or
active. A communication line from another computer or
from a terminal can be given direct access to the
virtual-memory interface, and hence can create objects,
talk to processes, read and alter objects or anything else
for which it can show a capability.
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