The Semantics of New While Loop*

TADAO TAKAOKA

Department of Information Science, University of Ibaraki, Hitachi, 316 Japan

A new control structure called ¢ new while-loop’, abbreviated ‘ nwhile’ is introduced. The meaning of nwhile B do S is

that if B is False S is not executed. If B is true, S is executed repeatedly while B is true. If B becomes false

anywhere inside S, the computer goes out of loop. An example of program for the new control structure is given.
Although the nwhile structure can be given using loop and exit statements in ADA, the programmer does not have to

worry where to put exit statements in the proposed nwhile loop.
Received June 1984

1. INTRODUCTION

Isomichi! proposed a new control structure for a
while-loop for FORTRAN 77. His idea is that the
computer goes out of loop as soon as the boolean
condition goes untrue. The present note discusses a
rigorous logical basis for the new while-loop and applies
it to give a formal proof to the algorithm of partition used
in quicksort.

2. LOGICAL BASIS
Let a general form of the new while-loop be as follows.
nwhile B do S 1)

where ‘nwhile’ stands for ‘new while’. An informal
description of (1) is as follows. If the boolean expression
B is false when the computer comes to (1), the computer
does not execute S at all and goes to the next statement.
As long as B is true, the computer repeatedly executes S,
but as soon as B becomes false at any point inside S, it
goes to the next statement.

Figure 1. Loop S.

Similarlyanewrepeat (abbreviated ‘ nrepeat’) statement
is expressed as follows.

nrepeat S until B 2)

The computer goes out of loop as soon as B becomes
true. If we reverse the sense of B we have the same
meaning between (1) and (2). In other words, there is no
essential difference between (1) and (2), whereas in the
conventional while-loop and repeat-loop, there is a great
difference between testing the condition B before S and
after S. Hence we have only to investigate the nwhile-loop.

First let us change program (1) into (3).

loop S 3

* Part of this work was done while the author was on leave at the

Department of Computer and Information Sciences, University of
Alabama in Birmingham, Birmingham, Alabama, U.S.A.

where the computer goes back to the beginning of S after
executing it. The flowchart for (3) is given in Fig. 1.
The semantics for (3) is given by

91510}, P> Q
{P} loop {0} S

where the assertion P is the precondition for (3) and we
have no postcondition for (3). The style of (4) is from
Hoare? and Alagi¢ and Arbib.?

Now we turn to the semantics for (1). Let S,, ..., S, be
assignment statements in S, which affect the condition B.
Assume that P,...,P, hold immediately before
S,,...,S,, respectively, in program (3) under precondition
P. Under these circumstances, we have the following
inference rule for (1).

(4)

I1(P.AB S}, TICBAQ;>0Q). PAB>Q
i=1 =1 (5)

{P} nwhile B do S{Q}

........ P
;{>
0
........ Pl/\B
s,
........ Q[AB
-------- P, AB
S‘n
........ QnAB

Figure 2. New while-loop.

THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986 33

20z Iudy 1| uo }senb Aq 0G0G9E/EE/L/62/2101E/UlWOD/W0d dNo"dlWspeoe)/:SAjY WO} POPEOJUMOQ



TADAO TAKAOKA

I<r
J All..r] =4,

Al )< X<A[j..rli<j

A=AV =40 1y < x<aG..ri=)

<<l<> F All..r]—{A[i} U {X} = 4,
T

A< X<A[..rli<])

L All..r]—{4li} U {X} = 4,

Al X< A(G..rli<j
A[l..r]—{A[]} U {X} = 4, Ali]l< X

AU D<SX<AG..rli<j Al..i1<X<A[i..r]
---------- AlL.r]—{ALB U (X =4,  A[l..r]= 4,
All< X

(.S X<AG..rli<j
[[..r]—{Al} U {X} = 4,

. )SX<SAG..rli<j
A[L..r]={A[J]} U {X} = 4,

FoooAll )< X<AG..ri<)
.......... All..r]={AlT U (X} = 4,
Alil> X

AL« A[i]

Figure 3. Flowchart for PARTITION.

20z Iudy 1| uo }senb Aq 0G0G9E/EE/L/62/2101E/UlWOD/W0d dNo"dlWspeoe)/:SAjY WO} POPEOJUMOQ

This gives a formal semantics to the nwhile statement, where the procedure PARTITION is given below.
and is illustrated by a flowchart in Fig. 2. This style of
flowchart with assertions is borrowed from Floyd.* The procedure PARTI TION(, r);
condition in the double diamond in Fig. 2 applies to every var x:real; j:integer;
point in the loop, but is put on the top position for begin
simplicity. The semantics for conventional statements is x:= A[ll;
from [3]. iir=1;, ji=r+1;
nwhile i < j do
begin
3. APPLICATION 'Af’[‘;‘]’?t_j;af]'fl until A[j] < x;
The following is a procedure for quicksort. repeat i:= i+ | until A[i] > x;
Alj]:= Ali]
procedure QUICK(/, r); end;
var j:integer; Alil:=x
if / < r then end @)
begin

PARTITION(, r); The procedure QUICK(/, r) sorts the portion A[!]. . A[r]

QUICK(, i—1); of array A in increasing order. The procedure PARTI-

‘?UICK(H' 1,r) - TION partitions the portion A[/]. . A[r]in such a way that

en

34 THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986



THE SEMANTICS OF NEW WHILE LOOP

Ve(I<k<i)Alkl < x
V(i < k <r)A[k] > x
Alil=x
All. .r] = A, ®)

where All. .r] =[A[l}, ..., A[r]}

and A4, is the set A[/..r] before the procedure
PARTITION is executed. The above condition (8) plays
the role of postcondition for PARTITION. Here we
prove that the procedure PARTITION is correct. The
precondition is given by

I<r
All. .rl= 4,
We introduce additional notations as follows.
All. i)y ={A4[l], ..., Ali—1]}
A(G. .rl={A[j+1],..., Alr]} 9)
All. )< xe=Vk( <k <i)Alk] <
A(j. .rlz2xeVk(j<k<r)Alk] = x (10)

The notations A[/. .r] < xand A[j. .r] = x are defined
similarly. We have two statements which affect the
condition i < j, thatis, j:=j—1and i:= i+ 1. Assertions
P, and P, are given by

P All. )< x<A[j..r]
A[l. . r]—{ALT U{x} = 4,

Py All. )< x<A(. .1
Al r]={A[J T} U{x} = 4,

The precondition for the nwhile-loop is given by

X

P: All. ) <x<A[j..r], i<]j
All. .r]—{Ali]} U {x} = 4,

The assertions Q, and Q, are given by

0,: A[l. . D <x<A{..r], i<j+1
A[l. .r]—{Ali}U{x} = 4,

0,: All. . D<x<A@G..r), i—-1<j
Al .r]—{A B U ix) = 4,

REFERENCES

1. Y. Isomichi, On new FORTRAN statements, Information
Processing, Japan (Joho-Shori) 21, (9), 1000-1001 (1980).

2. C. A. R. Hoare, An axiomatic basis for computer pro-
gramming CACM 12, (10), 576-580 (1969).

3. S. Alagi¢ and M. A. Arbib, The Design of Well-Structured
and Correct Programs Springer-Verlag, Heidelberg (1978).

4. R. W. Floyd, Assigning Meanings to Programs. In Proc.
Symp. in Applied Math. Vol. 19, Mathematical Aspects of
Computer Science, edited J.T.Schwartz, pp. 19-32
American Mathematical Society, New York (1967).

The assertions (i < j) A Q, and (i <j) A Q, imply

Q: A[l. . ) <Sx<A({..r], i=j
All. .r]—{A[i} U {x} = 4,

P A B can imply anything.
From Q with the statement A[i]:= x we can easily
derive
All. )< x < A[i. 1]
All. .r]=4,, Alil=x

which is the desired postcondition (8). The flowchart is
illustrated in Fig. 3 annotated with necessary assertions
for correctness.

Remark 1. In the above proof we assume that the
elements in array A are all distinct. If we had equal
elements in 4, we would need to interpret sets and set
operations in the above proof as multisets and operations
for multisets.

Remark 2. The algorithm presented here partitions »n
elements with n— 1 comparisons between data, which is
theoretically minimum. Hence we have the following
recurrence for the expected number 7(r) of comparisons
for quicksort for n elements.

T(n) = n—1+% % (T(i— 1)+ T(n—i))
—n142'S 10

=1

T(0) =0, T(1)=0.
Hence as in Aho, Hopcroft and Ullman (see p. 94),° we
have

T(n) ~ 2nlog,n.

In typical books, such as Knuth,* Aho, Hopcroft and
Ullman® and Wirth,” the number of comparisons between
data is greater than n— 1, which makes the analysis of the
algorithm a little harder. Also the comparison of i and
j appears more than once in the partition algorithms in
those textbooks, whereas it appears only once in program
(7), which makes the program more readable.

Remark 3. The meaning of new while is closer to the
original meaning of ‘while’ in English.

5. A. V. Aho and J. E. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, Mass.
(1974).

6. D. E. Knuth, The Art of Computer Programming, Vol. 3,
Sorting and Searching. Addison-Wesley, Reading, Mass.
(1973).

7. N. Wirth,  Algorithms+ Data  Structures = Programs.
Prentice-Hall, Englewood Cliffs (1976).

THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986 35

20z Iudy 1| uo }senb Aq 0G0G9E/EE/L/62/2101E/UlWOD/W0d dNo"dlWspeoe)/:SAjY WO} POPEOJUMOQ



