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This paper reports on an implementation of the functional data model and the associated data language. The notable
features of the data model underlying the implementation include its object orientation, use of the extended function
concept to model both attributes and relationships, hierarchically organised entity types with property inheritance, and
the specification of derived functions which are used to infer automatically the data implied from that held explicitly in
the database. The implementation provides an interactive user interface that supports a high-level set-based query and
update language. Facilities for defining and using named views are provided. Meta data is made part of the database so
that it can be examined using the data language. The implementation is done using the persistent algorithmic language

PS-Algol.
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1. INTRODUCTION

The Extended Functional Data Model (EFDM) system is
a prototype implementation of a database management
system supporting the functional data model. The system
provides an interactive user interface based on the
DAPLEX language, proposed earlier by Shipman.!
EFDM extends the DAPLEX language to provide
limited facilities to perform general-purpose computation,
to specify integrity constraints, and to define and use
named views of databases. Meta data is made part of
databases and is automatically updated whenever the
database schema is modified. The users can examine the
meta data at any time using the query language con-
structs.

The data model underlying EFDM is entity based. An
entity is some form of token identifying a unique object
in the database and usually represents a unique object in
the real world. All inter-object associations are modelled
by relating the corresponding entities and not their
external references or keys. As a consequence, the
referential integrity constraints®® are part of the data
model itself and need no explicit enforcement. It also
accommodates the well-known data abstraction mechan-
isms like classification, generalisation and aggregation.
All the information associated with entities is modelled
as functions mapping entities to entities. Entity attributes
and inter-entity relationships are modelled as extension-
ally defined functions, i.e. as tables of arguments and
results. Because such functions correspond to semanti-
cally irreducible relations,® there is no necessity for
normalisation.® This simplifies the database design
considerably. Functions can also be specified by means
of algorithms to compute the result, given the arguments.
Such functions help to incorporate procedural informa-
tion as part of the schema, thus capturing the large part
of the information that is normally spread out in applica-
tion programs.

Functional approach is attractive from the point of
view of database use also. First, because queries can be
formulated as function applications, functional data
languages resemble the familiar programming languages.
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Secondly, functional data languages can provide full
computational power; there is no necessity for embeddin
them in conventional programming languages for th§‘
purpose. <

We present a brief discussion of the data modeﬁ
underlying EFDM in Section 2 and discuss variou§
aspects of the user interface of EFDM in Section

Section 4 covers the implementation details.
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2. DATA MODEL

A good exposition of the Functional Data Model (FDM5
is given by Shipman!' and Kulkarni.” Briefly, thg
information corresponding to a real-world application i§
modelled as a set of entities and of functions relating th§
entities. Entities are created by an explicit create actiorid
signifying the start of interest in the corresponding
real-world object for which it serves as the representatives
When the interest in a certain object ceases, thgl
corresponding entity is removed from the database by am
explicit delete action. Scalars like integers and strings are
also considéred as entities, but they have the addition%
property of having a pre-defined representation and the

can neither be created nor deleted by user actions. 5

Functions with arguments model properties of theip
arguments, by defining a result entity which is the valu§>
of that property. A function may be single-valued (thg
result of the function is an entity) or multi-valued (th§
result of the function is a set of entities). The model allows
multi-argument functions, and these provide a convenient
means toestablish n-ary relationships without introducing
artificial entities. A function specified by explicitly
providing a table of arguments and results is called a base
JSunction. A function specified by providing an algorithm
to compute its result is called a derived function.

The entities within a database are organised by a type
system which is used to define the domain and range of
functions. These types are arranged in a hierarchy so that
(i) an instance of an entity type is an instance of all of
its supertypes and (ii) a function which applies to entities
of a given type also applies to entities which belong to
subtypes of that type. This mechanism provides property
inheritance. The extensions of entity types are allowed to
overlap, thus making it possible to model facts like
‘person X is both an employee and a customer’.
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declare person() —> > entity

declare student() — > > person

declare staff() — > > person

declare course() — > > entity

declare tutorial) — > > entity

declare cname(person) — > string

declare sname(person) — >  string

declare sex(person) — > string

declare course(student) — > > course

declare tutorial(student) — > tutorial

declare grade(student,course) — > string

declare title(course) — > string

declare staff(course) — > staff

declare group(tutorial) — > integer

declare staff(tutorial) — > staff

define course(stafff — > > inverse of staff(course)
define lecturer(student) — > > staff(course(student))
define tutor(student) — > staff(tutorial(student))

Figure 2-1. Functional schema for a student database.

constraint cl on sex(person) — > total

constraint c2 on sex(person) — > fixed

constraint c3 on cname(person),sname(person) — > unique

constraint c4 on student,staff — > disjoint

constraint c5 on grade(student,course) — > some cincourse(student) has
¢ = course

Figure 3-1. Examples of constraint specifications.

An example to represent a class of students and
associated entities is given in Fig. 2-1. Note that declare
or define introduces a new function, which if it has no
argument is a new entity type with the result type as its
supertype. entity, string, integer, real, and boolean are
pre-defined entity types provided by the system. entity is
the ultimate supertype of all other entity types. declare
statements introduce base functions (e.g. cname(person)
function relating a person to his Christian name), and
define statements introduce derived functions (e.g.,
tutor(student) function relating a student to his tutor).
Single-headed arrow — > implies the function is single-
valued, and double-headed arrow — > > implies it is
multi-valued. Overloading function names is allowed,
and resolved by the type and number of arguments.

3. USER INTERFACE

EFDM provides an interactive language interface which
allows for creation, retrieval, and modification of both
structure and contents of databases. EFDM allows
shared concurrent use of databases with either multiple
readers or one writer at any time. The system provides
a primitive transaction mechanism, in that the whole
session between opening and closing a database is treated
as a transaction. The database opened under write mode
gets locked during the transaction. The system provides
automatic crash recovery for write transactions.
ADAPLEX DBMS implementation, currently under
development at Computer Corporation of America
(CCA)® is also based on Shipman’s proposals. It

supports a composite language which is an embedding of -

a DAPLEX subset into the language ADA.® In choosing
ADA as the host language, ADAPLEX hopes to exploit
the modules, tasks, and generics etc. of ADA to provide
some of the encapsulation needed for supporting a
number of concurrent users with different views of the
database. However, the need to adhere to the syntax and

the semantics of ADA has forced the ADAPLEX
designers to compromise on the power of the functional
data model. In particular, the language supports no
multi-argument (base) functions, does not allow the
derived functions (or the procedures of ADA) to be made
part of the entity type definitions, and does not permit
new functions to be defined over a type or deleted, once
the database is implemented.

The formal syntax of EFDM is given in Appendix A
using the syntax specification language proposed by
Wirth.1® Detailed description of the various facilities can
be found in the user manual.!' The principal features are
briefly discussed in the following sections.

3.1. Data definition

As described earlier, declare and define statements are
used to add new functions to the schema. Constraints are
specified using the constraint statement (see Fig. 3-1).
Each constraint is identified by a unique name. Prior to
accepting a constraint specification, a check is made to
ensure that the existing data satisfies it. If this check fails,
the request is aborted and the user informed of the cause
of this action.

Currently cne can constrain the functions to be total
(constraint c1) or non-updateable (constraint c2), a group
of functions to act as entity designators (constraint c3),
or a group of entity types to be non-overlapping
(constraint c4). One can also specify constraints on
arguments or results of functions by means of predicates
(constraint c5).

Functions and constraints can be removed using drop
command. Removing a function definition removes all
the values associated with that function as well as all the
other function definitions which depend on it. However,
before carrying out this operation, the system displays a
list of functions that will be dropped by the action, and
seeks confirmation from the user whether to go ahead or
not.

EFDM allows the individual function and constraint
declaration or deletion statements to occur at any time
so that the structure of a database may be refined when
it is already populated.

3.2 Data retrieval

As in DAPLEX, for each statements and expressions
involving function applications are used to formulate
queries. for each statement is used to iterate through the
members of a set. Such for-loop statements can be nested
to any depth. Expressions consist of names, literals, and
operators. Every expression has a value and a type. An
expression which evaluates to a set of entities is called sez
expression while that which evaluates a single entity is
called singleton expression. The expression type corre-
sponds to the entity type under which these entities are
to be interpreted.

Every set expression has to be associated with a
reference variable using the in operator. An example
query formulation is shown below:

(Q 1) Find the Christian and surname of all students.
for each s in student print cname(s),sname(s);
Here, the variable s is successively bound to the instances
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of student entity type. The print statement is used to
output the results.

A set expression can involve a Boolean predicate. For
example, consider the following query:

(Q2) Find the Christian and surname of all female
students.

for each s in student such that sex(s) = ‘f”

print cname(s),sname(s);

Here only those student entities for which the boolean
expression following such that evaluates to true are
included in the result of the set expression.

The comparison operators supported by the system
consist of: < (less than), < = (less than or equal to), >
(greater than), > = (greater than or equal to), = (equal
to), and ~ = (notequal to). = and ~ = are defined on all
entity types. <, <=, >,and > = are defined on integer,
real, and string types only. There is one unary operator
not, and two binary operators and and or defined on
entities of type boolean. They have the usual meaning. In
addition to the comparison and Boolean operators,
existential and universal quantifiers can be made use of
in formulating predicates. For example, consider the
following query:

(Q 3) Find the Christian and surname of all the students
taking the IS1 course.

for each s in student such that

some c in course(s) has title(c) = ‘IS1’

print cname(s),sname(s);
In this query, the expression following such that evaluates
to true if at least one ¢ in course(s) meets the
title(c) = *IS I test. Other such quantifiers are all, no, at
least, at most, or exactly.

In general, each argument for a function application
can be either a set expression or a singleton expression.
When the argument is a set expression, the result of the
function application is obtained by iteratively applying
the function to each member of the argument set and
taking the union of results. For example, consider the
following query:

(Q 4) List all the courses taken by female students.
for each c in course(s in student such that sex(s) = ‘f”)
print title(c);
Here, the result of the set expression is calculated by
taking the union of sets of course entities returned by
applying the function course(student) to each member of
the argument set.

Arithmetic may be performed on entities of type integer
or real. The operators are: + for addition, — for
subtraction, * for multiplication, / for real division, div
for integer division throwing away the remainder, and
rem for remainder after integer division. Currently, only
one operator + + is defined on entities of type string. It
concatenates the two operand strings to form a new
string. The set operators union, intersection, and
difference may be used to combine set expressions.

In addition, two special operators, the and as, are
provided by the system. The the operator applied to a set
expression returns a single entity if the result set has the
cardinality of 1, otherwise an error condition is raised.
For example, consider the following query:

(Q 5) Find the courses taught by Hamish Dewar.
for the s in staff such that
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cname(s) = ‘Hamish’ and sname(s) = * Dewar’

for each c in course(s)

print title(c);
The above formulation expresses the fact that only one
staff entity in the database is expected to have the
Christian name ‘Hamish’ and surname ‘Dewar’.

The as operator is useful to specify the type of an entity

explicitly during an expression evaluation. For example,
consider the following query:

(Q 6) Find the names of those students who are taking
a course which they teach.

for each s in student such that

some ¢ in course(s) has

some cl in course(s as staff) has ¢ = cl

print cname(s);

3.3 Derived functions

Derived functions are specified by means of expression§,
For example, the function rtutor(student) in Fig. 2-1 &
specified by the expression staff(tutorial(student)). Not@
that student acts both as the formal parameter and as
indication of the parameter’s type. If more than oné
argument has the same type, explicit variables can e
introduced using in. For example, consider the following
boolean function definition,
define greater(i in integer, j in integer)— > i>j;
EFDM allows recursion for defining derived function

ojumoqg
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For example, consider the following familiar bill of
materials example: 3
declare part() —> > entity S
declare subpart(part) —>> part 2
declare quant(pl in part, p2 in part) — > integer &
declare incremental . cost(part) —> integer &
The derived function to provide the total cost of
manufacture for a part is defined using recursion a¥f
follows: g

define total.cost(part)— > incremental . cost(part}
+total (over p in subpart(part) quant(p,par@
*total . cost (p)); o

Additionally, EFDM provides three special operators:
inverse of, transitive of, and compound of, for defining
derived functions. The following derived function deﬁne@*
using the inverse of operator >

define students(course)— > > inverse of
course(student)
is equivalent to (and a short-form for) the followin
function definition

define students(course)— > > s in student such that

some c in course(s) has ¢ = course

Corresponding to the bill of materials example men-
tioned above, consider the following derived function
define subparts(part) — > > transitive of subpart(part)
This function returns the set containing the subparts of
a given part, the subparts of subparts, subparts of
subparts of subparts, etc.

The compound of operator is used to define new entity
types only. This operator creates derived entities
corresponding to the elements of the cartesian product of
its operands. For example, the following derived entity
type,

dv ol

yeo@|u

define enrolment() — > > compound of
student,course(student)
returns entities of enrolment type. The new type being



EXTENDED FUNCTIONAL DATA MODEL

defined will be a subtype of entity and will include one
entity for each student—course tuple. In addition, the
system implicitly defines the two functions
student(enrolment) — > student
course(enrolment) — > course
which return the student and course entities for each
enrolment entity.

3.4 Aggregation functions

Aggregation functions provided by the system include
count, maximum, minimum, average, and total.

The count function applied to a set expression returns
the cardinality of the result set in integer form. For
example, consider the following:

(Q7) Find the number of courses taken by Angela
Pearson.
for the s in student such that
cname(s) = ‘Angela’ and sname(s) = ‘Pearson’
print count (c in course(s));

The maximum and minimum functions applied to an
integer-valued set expression return the maximum and
minimum values, respectively, of the result set. The
average and total functions applied to an integer-valued
multiset expression return the average and total,
respectively, of the result multiset. (A multiset or a bag
is a set which may contain duplicate elements.) A multiset
expression is formed using the over operator, which takes
a set specification and an expression defined over
members of that set. For example, consider the following
request:

(Q 8) Find the average tutorial group size.

print average(over t in tutorial size(t))
where the size(tutorial) function yielding the number of
students belonging to a tutorial group is derived as
follows:

define students(tutorial) — > > inverse of
tutorial(student)

define size(tutorial) — > count (s in students(tutorial))

3.5 Database updating

Update operations in EFDM correspond to creating a
new entity, assigning or modifying function values for an
existing entity, extending or reducing the set of types for
an existing entity, or deleting an existing entity. Updates
on base functions result in updating the corresponding
stored data structures. As in the relational context,'? it
may not be possible to translate updates on derived
functions to updates on stored data structures in all the
cases. Along with Shipman,! we envisage allowing
updates on derived functions only if the designer of the
derived function has specified a procedure describing how
it should behave for each applicable update. Since this is
still the subject of implementation experiments, it is not
described here.

The following examples
operations:

illustrate the various

(U 1) Create a new student entity and assign Christian
name as Moyana and surname as Johns.

for a new s in student

let cname(s) = ‘Moyana’

let sname(s) = ‘Johns’;

When a new entity of a specified entity type is created,
all the supertypes of that entity type get populated
simultaneously with that new entity. All functions over
the entity for each type are undefined unless explicitly
assigned. Whenever a new entity is created, all functions
applicable to it and constrained to be total must be
assigned values and all groups of functions constrained
to be unique must be assigned values which uniquely
identify that entity. Otherwise, the whole entity creation
will not be permitted.

(U 2) Assign CS 1 and CS 2 courses to Moyana Johns.
for the s in student such that
cname(s) = ‘Moyana’ and sname(s) = ‘Johns’
let course(s) ={the cl in course such that
title(cl) = ‘CS1°, the c2 in course such that
title(c2) = ‘CS2’};

(U 3) Add IS1 course to the current course assignment
of Moyana Johns.
for the s in student such that
cname(s) = ‘Moyana’ and sname(s) = ‘Johns’
include course(student) = {the c1 in course such that
title(c1) = “IS17};

(U 4) Drop CS1 course from the current course
assignment of Moyana Johns.
for the s in student such that
cname(s) = ‘Moyana’ and sname(s) = ‘Johns’
exclude course(student) = {the c 1 in course such that
title(c1) = ‘CS1°};

The the operator in all the above statements ensures
that the entities corresponding to the student named
Moyana Johns and the courses named CS1,CS2,and IS 1
actually exist in the database. If any of these entities are
not present, the update statement will not be executed and
the user is informed about the missing entities. This is an
example of EFDM’s treatment of referential integrity.
Updates on functions constrained to be fixed are not
permitted. If there are any constraints on the argument
or the result values of the function to be updated, the
update is allowed only if there are no violations.

Since any entity can potentially belong to more than
one entity type, EFDM supports update actions that
extend or reduce the set of entity types for an existing
entity. For example, an entity already a student may be
made a staff and subsequently cease to be a student.
Following examples illustrate these operations:

(U 5) Include Moyana Johns into staff type.
include staff = {the sl in student such that
cname(s 1) = ‘Moyana’ ard sname(s 1) = ‘Johns’}
This will work only if there is no constraint which
specifies the student and staff entity types are disjoint.

(U 6) Exclude Moyana Johns from student type.
exclude student = {the sl in student such that
cname(s 1) = ‘Moyana’ and sname(s 1) = ‘Johns’}

Excluding an entity from the extension of a type results

in removing its reference from the extensions of all

subtypes of that type, if any, and from all functions
defined on those types in which it is participating either
as an argument or result. Before carrying out the
operation, a list of these implicit updates is displayed and
the user is asked to confirm the request.

The above operation removes an entity from the
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extension of specified entity type and its subtypes, but the
entity itself continues to exist in the database as a part
of the extension of other entity types, if any. delete
operation, illustrated below, removes an entity from the
database altogether:

(U 7) Delete Moyana Johns from the database.
delete the sin student such that cname(s) = ‘Moyana’
and sname(s) = ‘Johns’;
The semantics of this operation is that the specified entity
is removed from the extension of all the entity types it
belongs to and from all the functions in which it is
referenced. As in the previous case, the system displays
the list of entity types and functions from which it will
be removed and the user has the option either to abort
or to proceed with the request.

3.6 User views

EFDM provides a view mechanism which, while pro-
viding a different perspective of the global information,
also acts as an authorisation mechanism. Using this
mechanism a central database administrator who has
access to the entire database can define different
overlapping user views.

Views are defined using view command and removed
using drop command. Functions in a view are introduced
using deduce statements. For example, for the student
database of Fig. 2-1 we can define a view called male-
students within the global view as

view malestudents is
deducemale() — > > entityusingsinstudentsuch that

sex(s) = ‘m’
deduce name(male) — > string using name(student)
end

All functions introduced by deduce are treated as
derived functions. Notice that deduce is used to define
view functions instead of define. This is because view
function definitions involve change of name space; names
before the using keyword define the namespace of the view
being defined, whereas names after the using keyword
refer to names in the namespace in which the view is being
defined.

To use a view, the user responds to a request for a view
name at the start of the session. The user is restricted to
the names available in the namespace of that view; he has
no access to either the global namespace or the
namespaces of other views. The user can query the
database through his view but he cannot, at present,
perform updates. Each query statement issued from a
user view is translated into a corresponding query on the
global namespace by recursively applying the view
definition mapping. Thus it is not necessary to materialise
the entire view for every query execution. The user can
also define new views of his view.

As every view definition automatically creates a
different namespace, which is completely independent of
the global namespace as well as the namespaces of other
views, view mechanism acts as authorisation control
mechanism also. It is only by explicitly including an item
in the view definition that a user can gain access to it.
Correspondingly, redefining a view to exclude an item
from the view definition withdraws the right to access it.

metaitem() — > > entity
name(metaitem) — > string
text(metaitem) — > string
document(metaitem) — > string
function() —> > metaitem
nargs(function) —> integer
arguments(function) — > > function
result(function) — > function
type(function) — > string
status(function) — > string
constraints() — > > metaitem
view() —> > metaitem
outerview(view) —> view
within(view) —> > view

Figure 3-2. The functions to hold meta data of a schema

3.7 Meta data

The meta data of the schema corresponding to &nh
application is held in a set of EFDM functions shown;on
Fig. 3-2. These functions are automatically populated agd
modified when declare, define, constraint, view or dréip
statements are processed. Only the document functigh
may be explicitly updated by the user. The contents %f
these functions can be retrieved with the usual retne@l
statements.

3.8 Discussion of EFDM user interface

oIWBPEO.//:S

As discussed above, EFDM user interface follows the
DAPLEX language proposal quite closely. Additionalfy,
EFDM provides facilities to extend or reduce the set Hf
types of an entity, to delete an entity from the databasg,
to specify integrity constraints and views, and to remoie
existing functions, constraints or views. EFDM a]§o
provides built-in special entities that provide access £o
meta data. ‘D

A major difference between the user interface %f
EFDM and the DAPLEX language concerns the 1ssueocgf
providing general-purpose computation facilities in daga
languages. DAPLEX does not provide a compléte
programming environment. It lacks the power &f
conventional programming languages to perform ar&i-
trary computation Shipman proposes that DAPLEX‘%C
embedded in another host language for this purpos!é.l1
This is also the approach adopted in some relatiorfal
systems (e.g. SQL+PL1 in System R,'®» QUEL+C an
INGRES).!" In contrast, we have chosen to formulﬁe
a self-contained language. The motivation for thls,:;s
twofold: (i) the embedding approach suffers from maﬂy
shortcomings;!*~!7 and (ii) we believe that the functional
orientation of the model is ideal for developing an
integrated language thatcaters for bothdata manipulation
and general-purpose computation. In fact, in their query
language, FQL,'® Buneman e? al. show the feasibility of
this approach.

As a first step we have introduced arithmetic, string,
Boolean, set and comparison operators as part of our
implementation. We also allow recursion for defining
derived functions. We are now working on the
introduction of other features that make it a full
programming language. The main issue here is whether
to retain the predominantly functional style as in FQL or
to choose an Algol-like style. FQL is purely a query
language; it does not handle updates. Essentially the idea
of explicitly controlling the implementation or propaga-
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tion of updates is antithetical to pure functional
programming. Yet organising the storage of data and
hence updates is a dominant computing activity central
to databases. We are therefore considering borrowing
Algol-like features like variables, subprograms and other
control structures to yield a convenient and consistent
language with a form closer to familiar programming
styles.

4, IMPLEMENTATION OF EFDM

EFDM is implemented using the persistent algorithmic
language, PS-Algol.®:2° The major difference between
PS-Algol and other algorithmic languages lies in the way
they handle persistence of data objects. The notion of
persistence is concerned with the length of time the objects
in the language exist or are potentially accessible by some
programmer or program operation. One can envisage this
property as a continuum from the most transient values
constructed within individual instruction executions in
the CPU, to data held indefinitely as computer systems
come and go. Previously, programming languages have
treated this property of data consistently within the
context of a program (either as values of local variables
or as values on the heap) but have made radically
different arrangements for data of longer term persistence
(suchasthatin files orin a database). Incontrast, PS-Algol
accommodates the complete range of persistence and
moreover treats the persistence as an orthogonal
property of data, in that any data item may exist for any
length of time.

Before we discuss the specific implementation details,
we will briefly describe the PS-Algol language in the
following section.

4.1 PS-Algol

PS-Algol is an Algol-like language derived from the
strongly typed programming language S-Algol.*® The
base types of the language are integer, real, boolean,
string, pointer and picture. In addition. PS-Algol treats
procedures as first-class objects in the language. The type
constructors are vector and structure. Multidimensional
arrays may be formed by composing the vector
construction operations. Structure classes are ordered
cartesians of named fields belonging to one of the base
types, or to a vector or procedure type. Pointers are access
descriptors which can reference instances of any of the
structure classes but which may not reference instances
of base types or vectors. That is, a pointer is not bound
to a structure class. However, when a pointer is
dereferenced using a structure field name, a run-time
check occurs to ensure the pointer is pointing at a
structure with the appropriate field. All compound
objects — strings, structures, vectors and procedures — are
stored on the heap. The run-time system incorporates a
garbage collector which preserves all objects reachable
from identifiers currently in scope.

The concept of reachability for identifying limited data
persistence during the run of a program serves as the
means of identifying persistent data, i.c. the data that
outlives a program execution. For instance, the guiding
principle of garbage collection is that no object that is
reachable from identifiers currently in scope may be
reclaimed. PS-Algol extends this principle by introducing

a new origin for the transitive closure of references, under
explicit user control, which differentiates persistent data
and transient data. When a transaction is committed, it
is possible to identify a root object from which all
persistent data are reachable. Hence, preservation of data
is a consequence of arranging that there is a way of using
that data.

The run-time system of PS-algol undertakes the
responsibility for preserving the persistent data on
non-volatile store (disk) and for organising the movement
of persistent data from disk to active heap during the
program run. On the first dereference of a pointer to a
structure containing persistent data, that structure is
copied to the heap from the secondary storage, possibly
carrying out minor translations. Thereafter it is operated
on by the same mechanism as for any other data on the
heap. When a transaction is committed, all the data on
the heap that are reachable from the persistent objects
used during the transaction are transferred back to the
disk.

Some language systems, notably Interlisp,*! allow a
user to save a snapshot of his environment and to restore
that environment subsequently, thus providing the effect
of persistence. PS-Algol differs from such language
systems in the following respects.

PS-Algol moves only those persistent objects that are
referenced by the program to the active heap. Conse-
quently, databases handled by PS-Algol can be much
larger than the maximum heap size allowed. In addition,
the programs which make only a few small changes to a
large body of stored data do not pay a high I/O penalty,
as would be the case if the entire environment is to be
loaded and saved.

PS-Algol allows sharing of the persistent data by a
number of concurrent users.

PS-Algol provides a secure transaction mechanism.

4.2 Data structures

Traditionally, a large part of the data structure design
task concerns the organisation of data on secondary
store. As the PS-Algol run-time system handles this
aspect for all persistent objects, we were spared this task
in implementing EFDM. In order to implement EFDM
primitives, it was enough to design efficient data
structures using the structuring options provided by
PS-algol. In addition to making the task much simpler,
this allowed us to experiment with different high-level
data structures.

In a simple-minded implementation, the entities can be
represented as system-controlled unique integer numbers.
All base functions can then be implemented as tables of
argument and result numbers. Though this makes it easy
to accommodate schema changes, it suffers from an
excessive storage overhead. In addition, it results in an
overly fragmented database, and since it is frequently the
case that values for multiple functions applied to the same
entity are needed together, this has an adverse effect on
the performance.

In our current implementation, entities are represented
by a structure shown in Fig. 4-1. For a given entity, the
values of all one-argument non-inherited base functions
are stored in a vector whose elements are of type pntr. The
vector contains one element for each function, regardless
of whether the function is single-valued or multi-valued.
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Link to Function
super value
entity vector

Figure 4-1. Entity data structure.

User requests

Lexical )
analyser Database
Syntax
analyser
Database
handler
Interpreter

Figure 4-2. Block Diagram of EFDM.

For a single-valued function, the corresponding vector
element points to either another entity structure or an
instance of a dummy structure designed to yield a pointer
to a scalar value. For a multi-valued function, the
corresponding vector element points to the head of a
linked list. (In the current version, sets are implemented
as linked lists.) The elements of such a list may point to
either the entity structures or the dummy structures that
hold the scalar values. Because of the type hierarchy,
functions applicable to a given entity include those
defined on all the supertypes of the entity’s type. Hence,
each entity structure includes a pointer to another entity
structure belonging to its immediate supertype.

As the language itself ensures the uniqueness of
pointers, a pointer to an entity structure is taken as the
unique identifier to the corresponding entity. (It is to be
noted that because of the way PS-Algol implements
persistence, pointers to the persistent objects are
guaranteed to remain unchanged even though the actual
data on disk are relocated from one program run to an-
other.) Since entity structures can only accommodate
one-argument base functions, a separate representation
is required for multi-argument base functions. A multi-
argument base function with n arguments, say, is
implemented as a linked list of vectors of n+ 1 elements
(of type pntr) where the first n elements point to the
argument entities and the last element to the result which
is either a single entity or a set.

The meta data corresponding to a schema is stored in
a schema table which contains PS-Algol structures for all
function and constraint definitions. (PS-Algol provides a
library of routines to manipulate table structures.) The
structure for each base function with no arguments (i.e.
an entity type) contains a reference to the set of entity
structures belonging to it. The structure for a multi-
argument base function includes a reference to the
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corresponding linked list of argument-result value
vectors. The structure for a derived function includes a
reference to the syntax tree corresponding to its
definition. The schema table is made persistent so that
everything reachable from schema table, i.e. function
definitions and the data associated with functions,
persists.

4.3. Implementation details

The block diagram of EFDM implementation is shown
in Fig. 4-2. User requests formulated using the EFDM
syntax go through the lexical analysis and the syntax
analysis phases. The syntax analyser produces a syntax
tree for each successfully analysed statement. In addition,
it handles all schema modification requests by issuing
appropriate calls to the database handler. Other types of
requests, i.e. data retrieval and update requests, arg
passed down to the interpreter. The interpreter traverses
the syntax tree formed by the syntax analyser, issuing cal&
to the database handler whenever interaction with th%
database is required. The database handler provides
storage and retrieval facilities for all the data stored in the
system. This includes both user data and system data sucg
as meta data. 5

The lexical analyser, syntax analyser, interpreter ang
database handler are all written in PS-Algol. Because
this, we were not required to write code for many of thg
tasks associated with the traditional DBMS implementa2
tions, namely translations between the program’s form

. ]

data and the form used for the long-term storage mediungy
(disk), organising the transfer of data to and from the disk
and the transaction management mechanisms fog-
controlling concurrent database access. (Details of hov§
the PS-Algol run-time system handles these aspects ar&
described in Ref. 22.) The implementation consists ofs
about 3000 lines of PS-Algol code and represents
approximately half a man-year’s effort. Q

A user query is executed by systematically traversing
the corresponding syntax tree. There are separat§
procedures for evaluating functions, depending on the’
number of arguments and the nature of function. For an
one-argument base function, the value for a givesy
argument entity is obtained by accessing the appropriatg*
vector entry in the corresponding entity structure. For @
multi-argument base function, the value is obtained b
searching through the corresponding linked list. For il
derived function, the value is obtained by systematically,
executing the parse tree corresponding to its deﬁnition.§

All updates on base functions are implemented as
changes in the corresponding stored data structures.
Creating a new entity results in the creation of
appropriate entity structure(s) and adding it(them) to the
appropriate linked list(s). Deleting an existing entity
results in the removal of corresponding entity structure
as well as the removal of all references to it from the
extensions of entity types and functions in which it is
participating. All constraints concerning the functions
participating in a update are checked for violation, and
the update is allowed only if there are no violations.
Updates on derived functions are currently not
supported.

To handle the incremental schema changes, the
implementation adopts different techniques depending
on the number of arguments the function has and the

8¢
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nature of the function. The addition or deletion of a
one-argument base function results in creating new
instances of function value vectors in the corresponding
entity structures and copying corresponding values from
the old to the new instances. (PS-Algol allows specifying
the upper bound of a vector at the time of its creation.)
The addition or deletion of other kinds of function has
no effect on the stored entity structures.

EFDM has been used extensively for teaching
purposes at the University of Edinburgh. A number of
student projects have successfully been implemented
using it. The emphasis so far has been on getting a
reasonably efficient working system that clearly demon-
strates, at least at a conceptual level, the power and utility
of data model features like entity orientation, entity type
hierarchy and the unified treatment of data and programs
provided by the functional orientation. The current
implementation is expected to act as a test bed for
conducting experiments on the issues connected with
query optimisation, derived data control, enforcement of
integrity constraints, specification and use of views,
accommodating schema evolution, etc.

5. CONCLUSIONS

Inthis paper, we have described a workingimplementation
of the functional data model providing interactive user
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APPENDIX A: SYNTAX SPECIFICATION
OF EFDM IMPLEMENTATION

command = imperative|
declare funspec (‘ —>’|‘— > >) typeid|
define funspec (‘ — >’ | * — > >’) fundef]|
constraint consid on funlist — >
(total | fixed | unique | disjoint | singleton) |
view viewid is
{deduce funcspec (‘ — >’ | “— > >) typeid using
fundef} end.
drop (funspec|consid|viewid).
imperative = for each set imperative|
for singleton imperative|
update|print stuple.
set — vblid in setl
[such that] predicate [as typeid]
set 1 = mvfuncall|typeid| {’stuple‘}’|
‘(’ set {(unionlintersection|difference) set} ‘)’.
singleton = exp1 {or exp 1}
expl = exp2 {and exp2}
exp2 = [not] exp3
exp3 = exp4 [compop exp4]
exp4 = [prefix] exp S {addop exp 5}
expS = exp 6 {mulop exp 6}
exp6 = exp7 [as typeid]
exp7 = constant|vblid|svfuncall|aggcall
the set|a new typeid|
quant set (has|have) predicate]
‘(’ singleton ‘).
svfuncall = funcid ‘(’ stuple )’
mvfuncall = funcid ‘(" mtuple ¢’.)
stuple = singleton {‘,” singleton}.
mtuple = expr { ‘,” expr}.
expr = set|singleton.
aggcall = (countjmax|min) ‘( set *)’.
(total|average) ‘(’ over mtuple singleton ‘) .
update = let funcall ‘- =" expr]|
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include (funcalljtypeid) ‘ = set|
exclude (funcalljtypeid) ‘=" set|
delete singleton.
funcall = funcid ‘(’ stuple *)’.
fundef =
(expr |
inverse of funcspec |
transitive of expr |
compound of tuple).
funcspec = funcid ‘(’ [arglist] ©)’.
arglist = typeid { ‘,’ typeid}.
funlist = (typeid | funcid ‘(’ arglist )’ { *,’
(typeid | funcid “(” arglist *)’) }
compop=°‘>"|‘<’|*

integer = singleton.

predicate = singleton.
constant = int|str|bool.

int = digit {digit}.

str = *“*’ character {character}
bool = true|false.

vblid = identifier.

typeid = identifier.

funcid = identifier.

consid = identifier.

viewid = identifier.

identifier = letter {(letter|digit|.")}.
prefix = 4+°|°-".
addop="“+"’|"|'+ +".

mulop = “*’|* /’|rem.

[EER]

=’|6>=’|6<:’|‘~=’.
quant = some|all|no|(at (leastjmost)|exactly) integer.

00°dno-olwapeoe//:sdyy Wolj papeojuMo

Note. Bold-face words, and non-alphanumeric symbols
enclosed in quote marks represent terminals. Lower-case
words represent syntactic categories. Curly bracke®s
denote repetition. Square brackets denote optionalit.
Grouping is expressed by parentheses, i.e. (a|b)c stands

for ac|bc.
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