Use of Doubly Chained Tree Structures in File Organisation for

Optimal Searching

F. SURAWEERA
Mathematics Department, Kuwait University, P.O. Box 5969, Kuwait

The problem of minimising the search length (time) associated with a variable length, doubly chained tree structure with
weighted terminal nodes and its implications on the organisation of a file are investigated. The main result is an
algorithm which constructs an optimal doubly chained tree as a static data structure. Also considered are a few
ramifications, particularly when the search steps have unequal costs. The supporting activity of file maintenance is also
discussed. Two methods of updating a data file organised as a doubly chained tree structure are presented, which allow

the realisation of a dynamic data structure.

Received April 1984

1. INTRODUCTION AND LITERATURE

Storage and retrieval problems occur not only in the area
of conventional libraries. Many commercial and
government file problems are exactly as complex as the
conventional library problems and often involve severe
time and cost restrictions. Presently, the world around us
is full of people and organisations who have become
concerned with generating and handling information.
There is a much greater dependence on recorded
information than a few years ago. Furthermore, we
demand easier access to previously recorded information
and try to reduce or maintain the amount of total effort
involved.

In this paper we discuss the problem of minimising the
average search time associated with a variable length,
doubly chained tree (d.c.t.) structure when the terminal
nodes are weighted. We also discuss the implications of
the weights on the organisation of the file, as for example
in the case of a subject catalogue. First a static d.c.t.
structure is considered, then we study dynamic aspects.
We also consider, albeit briefly, a few extensions,
particularly when the search mechanism consists of
unequal costs. This is a reasonable and justifiable
assumption when one recognises that getting the
information associated with a node involves two different
actions: (a) finding the exact node, and (b) reading the
record associated with that particular node.

Many of the information retrieval applications centre
on large data files which must both be searched and
updated frequently. It quickly becomes apparent that
there are many ways of organising and updating these
files, depending upon the particular structure and the
application in mind.

The d.c.t. structure for processing large data files was
first introduced by De la Briandias.! In the following year
Fredkin? proposed a similar approach for handling
multi-attribute keys by using a tree structure which he
called a trie. Later, in a classic paper Sussenguth®
analysed various properties of the d.c.t. structure; his
solution required that all terminal nodes lie on the same
level of the tree, and he assumed equal probabilities of
file items being requested. He also showed that an
N-record file could be searched and altered in s *log, N
time, where s is a parameter of the tree.

Patt* in a later paper relaxed a restriction which
appeared in Sussenguth’s paper, namely, that all the
terminal nodes should lie on the same level of the tree.

O
O
He also derived an expression for the minimum averagez
search time as a function of the number of terminal nodesm
Stanfel® ¢ has investigated some aspects of updating of&
data files in the form of doubly chained treesZ
Subsequently, combining the concepts of d.c.t. and listi
Stanfel” was able to produce files with expected searchg
time smaller than that of the pure tree. It is worthwhilg
to recall that, in a d.c.t., it may take twice as long to gon
down a sequence of rlght branches than that of lefig,l
branches. /
A variety of tree-structured schemes have been proposedg
for organising, searching, and updating data files.***. Fof?
a general reference on indexing the reader is invited to se@
Knuth.® It seems that practically nothing on d.c.t.s hasy
appeared in the literature since 1977. The materiaE.
reported in this paper is inspired by the earlier works o
Sussenguth, Stanfel and Patt.

2. DEFINITIONS AND NOTATIONS

A rooted tree is a special type of directed graph which hag
at most one branch entering each node. Since a tre€;
contains no cycle, the length of a path in a tree i€
bounded, and there exist maximal paths which are nog
included in any longer paths. The initial node and finaf
node of a maximal path are called the root and th&
terminal node respectively, A terminal node is also calleds
a leaf. The root is said to lie on the first level of the treeZ
and a node which lies at the end of a path with lengtlt:
k—1 from the root is on the kth level. The filial set of &
node x is the set of nodes which lie at the end of a path™
of length one from node x, and x is called the parent node
of that set. Every individual member of a filial set is
referred to as a brother. The set of all nodes reachable
from x is said to be governed by x and comprises the
nodes of the subtree rooted at x. We do not exclude the
possibility of having a collection of rooted trees. In case
we have such a collection of trees we require that the roots
of such trees are on the same level. Fig. 1 illustrates some
of the notions defined so far.

A file entry or an item is defined as the basic unit which
is processed as a single unit. An item consists of two parts:
the key field and the data field. The key which is
associated with an item uniquely identifies the item. A set
of items is a file. Items of data in the file are stored as
terminal nodes in the doubly chained tree structure and

9¢/2G/L/6Z/o10ETU

52 THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986

DOUBLY CHAINED TREE STRUCTURES IN FILE ORGANISATION

Roots
N Level

/K 1
MA
\

Leaf on
level: 2

Filial set
of node D

J K L M 4

Leaves on level 4

Figure 1. A tree illustrating some terminology.

may be physically implemented as words in the processor
storage, tape blocks or disk regions.

The structure of a doubly chained tree is well
documented.?- 8- 7-14.15 For the sake of completeness we
give below a brief review. The unique key corresponding
to a leaf of the tree is partitioned into several disjoint
elements. Now each of these elements is made to
correspond to a tree node as follows: the first element
corresponds to a node on the first level, the second
element to a node on the second level, and so on. The
value of a node is defined to be the element corresponding
to that particular node.

More formally, a doubly chained tree is a data
structure for representing a tree in a digital computer. In

case of processor storage each node is represented by one
or more computer words consisting of three fields. The
first field contains part of the key which is queried during
a search. If the component query key-value and the value
at a node does not match, the computer follows the
second field, which points to the address of a brother
where the same component query key-value will apply. If
there is a match, the next node to be queried is obtained
by following the third field which is the address of the
first son of the given node. Fig. 2 illustrates the
organisation of a file, using a basic d.c.t. structure.

Let k,, k,, ..., ky be N attributes belonging to a file
item. In general, the domain of an attribute will be the
set of integers; but we do not rule out other types of
values, for example character strings or real numbers. The
N-tuple (ky, k,, ..., ky) is defined as a query key value or
simply a key value. In this notation k; represents the ith
component of the query key value.

2.1 Search procedure for a doubly chained tree structure

The search procedure for such a d.c.t. structure is
extremely simple. The first component &, of the query key
value is tested from left to right in the stored tree
representation, against the first level nodes (i.e. the first
filial set) of the tree; when a match is found, the filial set
containing the sons of the matching node on the second
level are compared with k,, and so on. The search
continues in this fashion until all the key components are
matched, whereupon a terminal node is reached. A
simplified flowchart of the matching process is shown in
Fig. 3.

3. OPTIMAL TREE STRUCTURES

In this section we consider the determination of optimal
tree structures, when there is a weight associated with

Level 1

I Level 2

Database

Level 3

Level 4

Il

Figure 2. Basic doubly chained tree file organisation (Reproduced by permission of Alfonso F. Cardenas from The Computer Journal,

Vol. 20).

THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986 53

¥202 I4dy 01 uo 1senb Aq §8059¢/2S/1/62/2101e/|ulwoo/wod dnoolwapede//:sdiy wolj papeojumo(q

F. SURAWEERA

Define the first root
as current node;
Seti=1

Is key component

C

equal to current node

i

N—"

son

label?
Yes
< Is current node >
i 9
a terminal node? No
Yes
No Current node is
the desired node
Does current node have Does current node have
a son which can be a brother not yet tested?
tested?
No No
Yes [Desired item not in file] Yes
Seti=i+1and Use pointer to
use pointer to take up next
locate the first brother

Figure 3. Flowchart for matching process (Reproduced by permission of Gerard Salton from Automatic Information Organization and

Retrieval, McGraw-Hill (1968)).

each terminal node. These weights could represent or
measure such features as the relative importance of the
items, the frequency of use and so on. A simple example
would be the design of a hierarchical index for the
purpose of storing and retrieving records. In particular,
we present an algorithm to construct optimal tree
structures; the term optimal tree structures means those
with minimum expected search time.

Consider a file system organised as a d.c.t. structure in

which the filial set of each node is completely know in
advance. A typical example of the above type of situation
occurs in a special dictionary tree. Clearly the set of all
possible letters of words beginning with the letter ‘V’ is
(A, E, I, O, U and Y). In our terminology, the set (A, E,
I, O, U, Y) is the filial set of V and we say that the filial
set is completely specified a priori. It should be noted here
that although the filial set of every node is fixed, the order
in which the brothers of the filial set are searched is not
known in advance.

Consider any terminal node v in the d.c.t. structure 7.

Recall that in 7"we may have more than one rooted tree.
Let n[root,, v] denote the unique path from the left-most
root, root,, to the terminal node v. Then the time required
to reach v is clearly proportional to the number of nodes
queried along the path nfroot,, v]. In the present paper
this time is referred to as the search cost tor node v. The
search cost C(v) is given by,

54

h(v

)
Co) = X P0)

THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986

where P,(v) denotes the position of the node within the
filial set on the rth level, in the path to the terminal node
v, and Ah(v) denotes the level of v. Let V' be the set of
terminal nodes. Suppose there is a weight w(v) associated
with every terminal node v in V. Then the average (or
total) search cost Cp(v) of the variable length d.c.t.
structure T is defined to be

h(v)
Cr(v) = EV w(v) C(v) = EV w(v) §1 P, (v).

Fig. 4 illustrates a tree which is searched according to
the procedure described in Section 2.1. The circled
number near each leaf is the number of chaining branches
required to reach that node. The numbers on the edges
count the branches at each level. Suppose that we
associate a weight with each leaf as shown in the figure.
Then the average search cost C(v) is given by

Cr(v) =2w.442w.5+w.6+w.7+w.8
+4w.6+5w.7
= 98w.

In order to prove the main theorem which leads to our
algorithm, we note first the following simple but
important lemma. For a proof of this result see Ref. 17,
p. 261.

Lemma

Let (a) denote the finite set a,,a,, ..., q; ..., a, of
non-negatives and (@) be the set (a) rearranged in

20z Iudy 0} uo }sanb Aq G80G9E/ZS/1/62Z/310NE/UlWOD/W0d dNo"olWwapese)/:sdRy WO} POPEOJUMOQ

DOUBLY CHAINED TREE STRUCTURES IN FILE ORGANISATION

Level 1

D OO0 ©)
2w 2w oow ow 2w 4w Sw

Figure 4. Computation of C(v).

ascendingorder,sothata, < a, < ... < a@,. Define the sets
(b) and (b) similarly. If (a) and (b) are given, then Zab is
greatest when (a) and (b) are monotonic in the same sense,
and least when they are monotonic in opposite senses;
that is to say
n _ n n _
L by < X a;by < X a;b;.
=1 j=1 j=1
We define the weight factor of a node x to be the sum
of the weights of the subtree whose root is the node x.
We will denote this by WFACTOR(x).

Theorem 1

Suppose a data file is organised as a variable-length d.c.t.
structure and the filial set of each node is specified a priori.
If the nodes of every filial set are ordered according to
decreasing weight factors, then the tree structure has
minimum average search cost.

Proof

Let T denote a variable length d.c.t. structure. Let
A, =1{ay, a,, ..., a;, ..., a,} be the filial set of a node q,,
where a; is the ith node, ordered from left to right.

Let R(a;) be the number of terminal nodes reachable
from a;; a;;, v;;, the terminal nodes reachable from a;; wy;,
the weight associated with terminal node v;;.

Define

n R(a

(a)
C) =T T wilClvu) = Cla)]

k

where C(v,) and C(q,) are the search costs of v;;, and q,
respectively.
C(A,) can be written as

n R(a;)
Cldg) = T X wy [COu)—{Cla)+i}+i]. (1)

From the description of the search procedure we have:
C(ay)+i = C(ay). 2)

The rest of the proof is similar to the one given in Ref.
4. Let A, be the roots of the n-tuply rooted tree 7, so that
C(A,) becomes equal to the average search cost of the tree

structure. Finally from (1) with (2) and simplifying we
obtain

CAy) = T W@)+ T iWa)+...
=1 i=1

t

+ 3 iWag)+...)

i=

where W(a;) = 27" wy, and is referred to as the weight
factor of the subtree rooted at the node a@;. From the
lemma it can be shown that the summation X?_, iW(a;)
is minimum if

W(a;) > W(a;) implies that i<j forall a;, a;€4,
i.e. if the nodes are ordered according to decreasing
weight factors of each. Full details of the proof are given
in the Appendix.

If w;, = 1/N where N is the number of terminal nodes,
then we get Theorem 1 of Patt!; when w;, = 1/N, the
average search length of d.c.t. structure is minimised if
the nodes of every filial set are ordered according to
the number of terminal nodes reachable from each.

Next we take an example of a d.c.t. structure in
unoptimised form and convert it to the optimised form
using an algorithm which is a direct consequence of
Theorem 1. Fig. 5 illustrates the various stages behind the
re-structuring.

Suppose we are given a tree with the weights as
indicated (see Fig. 5a). Let the two nodes on level 2 be
x, and x,. WFACTOR(x,) = 2w, and WFACTOR(x,) =
15w. Now rearrange the subtrees rooted at x, and x,
so that the subtree with the larger weight factor becomes
the leftmost subtree.

Let x,, x, and x; be the three nodes on level 3, in
Fig. 5(b). WFACTOR(x,) = 9w, WFACTOR(x,) = 6w
and WFACTOR(x;) = 2w. Since WFACTOR(x,) >
WFACTOR(x,) > WFACTOR(x;) no change will be
done to the subtrees. Finally, within each filial set
belonging to the least level interchange the weight
associated with the brothers so that the node with the
largest weight becomes the leftmost node and successively
smaller ones are placed adjacently. In Fig. 5(c) we have
accomplished this, and the tree so obtained is the minimal
cost tree.

Although the example shows that all the leaves are on
the same level, the algorithm will work equally well for
a tree where the leaves are on different levels.

4. PRACTICAL VARIATIONS OF A D.C.T.
FILE

Consider a data file organised as a tree structure 7, where
every filial set is defined a priori. Now imagine a user is
interested in acquiring the information associated with a
terminal node v. Suppose also the information associated
with the terminal node v is in the form of a record. For
instance, in a library system it may be a list of references.
We face a situation where the user searches through the
file as if it were a variable length, doubly chained tree.
When the user gets to node v, let us suppose he reads the
record associated with v. Then the user effort involved
consists of two actions, (a) finding the terminal node; (b)
reading the record associated with v. The effort expended
in (a) could be measured by the number of chaining links
and the effort expended in (b) could be measured by the
length of the record read. Suppose the steps corresponding

THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986 55

¥202 I4dy 01 uo 1senb Aq §8059¢/2S/1/62/2101e/|ulwoo/wod dnoolwapede//:sdiy wolj papeojumo(q

F. SURAWEERA

b ¢ ()
¥)
<
O
2

®» OO ©

Sw 4w 2w 2w owow 2w

Figure 5. Construction of an optimal d.c.t. structure. (a)
Cr(v) = 103w; (b) Cy(v) = %0w; (c) Cr(v) = 87w.

to these two actions have unequal costs. Let p and s
denote the cost per chaining link and cost per record item
read respectively. Let C(v) denote the number of chaining
links to reach v; let d(v) and u(v) be the number of record
items and users associated with v respectively. Let V
denote the set of all terminal nodes of T and D denote
the total number of records associated with V.

User cost for the search pattern just described is given
by pC(v)+sd(v). Define the average cost per user per
record to be

C,= 1 Y u(v){pC(v)+sd(v)}.
D E u(v) vev

veV

C, is referred to as the total user effort and may be written
as

= WO {pC)+sd(v)}

veV
where w(v) = u(v)/ZveV u(v), or
[p Z w(v) C(v)+s ZV w(v)dv)]. (4
veV Ve

Let us digress for a moment to consider the following
minimisation problem, whose objective function is also
the second term of equation (4).

Minimise
ZV w(v) d(v)
subject to
2 wv)y=1
veV
Y dv)=D

X vevV
d(v) and w(v) are non-negative.

papeojumoq

Three possibilities for w(v) and d(v) are as follows: (i)3
w(v) = constant, (ii) d(v) = constant, (iii) the distributionsi
{w(v)} and {d(v)} are known, but arbitrary. Now we shall=
present three corollaries corresponding to the three casesZ
above.

"DlWepeoe

Corollary 1

Let the user effort C,, be defined as in equation (4) and:
let w(v) = constant. Then C, is minimized if the nodes of;
every filial set are ordered accordmg to the number of3
terminal nodes reachable from each.

Proof

Let i and j satisfy 1 < i,j <|A|, where | 4| is the numbe
of brothers in the ﬁhal set 4. Since w(v) = constant (
say), C, becomes

[ohue/ulwoo /RSt

——— z C()+D X d).

veV veV
Consequently

6 4Aq 98099€/ZS/L/62§9

cu=% T Cv)+ws.
vev

From Theorem 1 it follows that C, is minimised if for
every filial set 4,

uo 1sen

0z Iudy 01

R(a;) > R(a;) implies that i< forall g; a;e4

1.e. if the nodes of every filial set are ordered accordmgw
to the number of terminal nodes reachable from each.

Corollary 2

Let the total user effort be defined as in equation (4) and
let d(v) = constant. The C, is minimised if the nodes of
every filial set are ordered according to decreasing weight
factors.

Proof

Since d(v) = constant, d say, equation (4) can be written
as

P
C,= D VGZV w(v) C(v)+sd.

The rest follows from Theorem 1.

56 THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986

DOUBLY CHAINED TREE STRUCTURES IN FILE ORGANISATION

Corollary 3

Suppose the total user effort be defined as in equation (4)
and suppose both distributions {w(v)} and {d(v)} are
known. Then C, is minimized if the nodes of every filial
set are ordered according to decreasing weight factors.

Proof

Since both distributions {w(v)} and {d(v)} are known, the
summation X, , w(v) d(v) is fixed and consequently C,, is
minimised if the first summation of equation (4) is
minimum. The rest of the corollary follows from
Theorem 1.

So far the principal concern has been the total user
effort and how the data file should be organised to
mimimise the user effort under various conditions. A
supporting activity, which we have not considered yet, is
the maintenance effort (or the indexer effort). We assume
that the maintenance cost is equivalent to the setting-up
cost, where the person in charge reads the document first
and then traces the path to the corresponding terminal
nodes. The effect of including the maintenance effort in
a measure of tree performance is considered next. Define
the average maintenance cost C,, for a file item to be

1 h(v)
C,=—= X {s+p h)) P,(v)} d(v)

D veV r=1

and let

C=C,+C,
ie.
C= 1 p) [sd(v)+sd(v) w(v)+ p{w(v)
D vev

h(v)
+do) T 2O)| ©
r=1
C is referred to as the overall cost.

Theorem 2

Suppose C be defined as in equation (5) and both
distributions {w(v)} and {d(v)} are known. Then C is
minimised if for every filial set 4

W(a;))+D(a;) > W(a))+D(a;)=>i<j forall a;a;e4

Proof

Let i and j satisfy 1 < i,j < |A4]|. Let V(a;) denote the set
of terminal nodes of the subtree rooted at a; and D(a;)
denote the number of records associated with this
subtree. Alternatively, we shall call D(a;) as the number
of records governed by the node a;. After separating the
terms in equation (5), C can be written as

C=%[s Y dv)+s X dv)w(v)

veV veV 0
+p T W) +d0) T BO)|
Ve r=
Since both distributions {w(v)} and {d(v)} are known, the

summation X, ,, d(v) w(v) cannot be controlled. Since D,
p and s are constants, C is minimised if

v)
Y {(w(v)+d)} hﬁ‘, P,(v) is minimum.
veV r=1

From Theorem 1, the above expression is minimised if for
every filial set 4,

X {wv)+dv) > E){W(V)+d(1’)}=>i<j
veV(a;

veV(a;)
for all a;, a;e 4, i.e. if

W(a;)+ D(a;) > W(a))+D(a;) =i < j

forall a;a;ed (6)

Note. Suppose D(a;) # D(a;). Then the inequality (6)
reduces to

D(a;) > D(a))=i<j forall a;a;eA.

The result is immediate because both W(q;) and W(a;) are
less than unity and D(a;), D(a;) are integers; i.e. when
D(a;) # D(a;), the overall cost C as defined in equation (5)
is minimised if we arrange the nodes within each filial set
with respect to decreasing number of records governed by
each.

S. UPDATING TREE STRUCTURES

Updating is necessary to use the d.c.t. as a dynamic data
structure and depending on the application in mind there
are, conceivably, a variety of ways with which a tree
structure can be updated. For instance, in a library system
it may be worthwhile to know whether it is cost-effective
to augment the structure by splitting on a terminal node.
It should be pointed out that the augmentation of the
structure would greatly enhance precision. The phrase
‘splitting on a terminal node’ will be defined shortly. In
this section we take up the question of updating a tree
structure subject to the following restrictions: (i)
augmenting the tree structure by splitting on a terminal
node; (ii) rearranging or swapping two subtrees, rooted
within the same filial set.

Consider a terminal node v, in T and suppose that the
list of records associated with v, is of considerable size.
In a situation like this we may partition the list associated
with v into m,, sublists and store each sub-list at a node
v,/ which lies at the end of a path of length one from v,.
Fig. 6 illustrates the expansion of the tree structure by
splitting on the terminal node v,. It is worthwhile to note
that after the splitting v, becomes a nonterminal node.
In fact it becomes the apparent node of the newly created
filial set.

In other words the set v/, where j=1,2,...,m,

/
/

/ /
/ /
/ /

Vg

nodes
Figure 6. Illustration of splitting a terminal node.

THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986 57

¥20¢2 I4dy 01 uo 1senb Aq 68059¢/2S/1/62/2101e/|ulwoo/woo dnoolwapede//:sdiy woli papeojumo(q

F. SURAWEERA

becomes the filial set of v; and the information items
previously associated with v, are now associated with v,7,
so that

3 dwd) = dv)

and

3 W) = w0

The above procedure is referred to as augmenting of
the structure by splitting on v,. The next result
characterises the effect of splitting a terminal node
restricted to a uniform distribution of users and records
over the new subdivisions created, when the number of
records per user is still large.

Theorem 3

Let the tree structure be augmented by splitting on the
terminal node v,. If

(1) w(vk{) =w)/my, j=1,2,...,my,
@) dvy?) =dv)/my, j=1,2,...,my,

and
(i) d(ve) > w(vg),
then the overall cost decreases or increases according as

52 °<w(1vk))'

Proof

Suppose the search cost for the node v, be A. Then the
search cost for v,/ becomes equal to A+j, where
Jj=12,..,m.

The overall cost C before augmenting the structure is
given by

C= %[SD-}-S ¥ w)d()

veV

h(v)
+p 5, W0 +d0) E BO)]

where all the symbols are as defined before.
The overall cost C’ after augmenting the structure is
given by

C = l[sD+s >

D w(v) d(v) +sw(vy) d(v;)
veV—{v}

h(v)
+p, T wO)+do) T PO)

ve V—{vg}

+pj§‘l W)+ d)} +j)]

where V' —{v,} represent the set of terminal nodes without
vko

Since w(v/) = w(v,)/my
v forall j=1,2,...,m,
and d(vy/) = d(vy)/my

C—C = % [sw(vk) d(vk)<1 —mi> _Ii) wvy)

k
+d(v) (1 +m,c):| .

Thus, C—C’ 2 0 according as
s > I+ mlc)l{w(vk:) +d(ve)}
21— wo don

The right-hand side of the above inequality can be written
as

, my # 1.

=

l+m, my { 1 1 }
2 my—1 d(vk') w(vy)

Since d(v;) > w(v,) the above expression becomes
~ 1 +mk . my. . 1
T2 m—1 w(vy)

~0(555):

This implies that after augmenting the tree structureZ
subject to the conditions stated in the theorem, the overal'ﬁ
cost decreases or increases according as

725

The effect of rearranging two subtrees, rooted within th
same filial set, has been investigated earlier. We have see
that the search cost could be decreased if they
rearrangement is done in a certain prescribed way; ied
economies can be effected by ordering the file 11‘%
decreasing weight order. Thus, given a tree structure we
can find an optimal tree structure subject to our twoi
restrictions.

wioJy papeojumoq

0 udo@no-oiwepeoe//;

6. SUMMARY AND CONCLUSIONS

Theoretical studies on databases facilitate a better
understanding of how data can be organised and
searched, thereby leading to better implementations o
algorithms for accomplishing these two purposes. The:
doubly chained tree structure provides a compromlse—“»
between the fast search/slow update characteristics of
binary searching and the slow search/ fast updatg
characteristics of serial searching. The main result in th1s3
paper is the algorithm, which is an immediate consequencqg
of Theorem 1. The algorithm constructs optimal tree
structures (minimises average search cost), and is
extremely simple to apply. We begin at the first level of
the d.c.t. structure and compute the weight factor
(WFACTOR) of each root. It should be noted that the
only filial set on level one consists of the set of roots — i.e.
if there is more than one tree. Then we rearrange the
trees/subtrees so that the tree/subtree with that largest
WFACTOR becomes the leftmost tree/subtree and
successively smaller ones are placed adjacently. Now,
within each tree we do the same, level by level, for every
filial set recursively until the last but one level is reached.
At this stage we have an optimal d.c.t. structure. It is
worthwhile recalling that we are not allowed to swap two
subtrees if they belong to two different filial sets.

The supporting activity of maintenance effort or

8059¢€/29/L/6¢

58 THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986

DOUBLY CHAINED TREE STRUCTURES IN FILE ORGANISATION

indexer effort required to maintain the store of data is also
considered. Finally, the tree updating process has been
taken up. This makes it possible to use the d.c.t. as a
dynamic data structure. The action of adding a brother
to a filial set will not present any serious problems; once
the system and the environmental characteristics are
known the tree could be ordered to give an optimal tree
structure at the time of searching.

REFERENCES

1. René de la Briandais, File searching using variable length
keys. Proceedings of the Western Joint Computer Conference,
295-298 (1959).

2. E. Fredkin, Trie memory, Communications of the ACM 3,
490-499 (1960).

3. E. H. Sussenguth Jr, Use of tree structures for processing
files. Communications of the ACM 6, 272-279 (1963).

4. Y. N. Patt, Variable length tree structures having minimum
average search time. Communications of the ACM 12, 72-76
(1969).

5. L. E. Stanfel, Tree structures for optimal searching. Journal
of the ACM 17, 508-517 (1970).

6. L. E. Stanfel, Practical aspects of doubly chained trees for
retrieval. Journal of the ACM 19, 425-436 (1972).

7. L. E. Stanfel, Optimal tree lists for information storage and
retrieval. Information Systems 2, 65-70 (1976).

8. H. A. Clampett, Randomized binary searching with tree
structures, Communications of the ACM 7, 163165 (1964).

9. R. G. Casey, Design of tree structures for efficient
querying. Communications of the ACM 16, 549-556 (1973).

APPENDIX

Details of the proof of Theorem 1.
Define

n R(a;)
C(4,) = i§1 kz‘:l Wi C(vir) — Clay)]

C(4,) can be written as
n R(a,)

C) = T B wil Coi)—{Cla +i+ (1)

and
Clay)+i= C(ay) 2

After substituting from (2) and separating the terms
under the double summation, (1) becomes

n R(a,)
C(4,) = .z kz Wil Cvi) — Clay)]
i=1 k=1 n Ry
+ X X iwg
t=1 k=1
But % w,[C(vy,) — C(ay)] satisfies the defining equa-
tion of C(4;), where A, is the filial set of node q;.
Thus,
n n R(a;)
Cdp)= X CA4)+ X X iwy
i=1 i=1 k=1
or,
n n

C) = T CA)+ T iW(a)

where W(a;) = ZF* wy, and is referred to as the weight
factor of the subtree rooted at node a;.

Acknowledgements

The author wishes to express his gratitude to Dr
Christopher D. Green, University of Dundee, for his
many valuable suggestions and encouragement. This
research was supported in full by the Department of
Mathematics, University of Dundee, and is part of the
author’s Ph.D. Thesis.

Many thanks are due to the referee, whose suggestions
considerably improved the quality of exposition of this

paper.

10. J. Nievergelt, Binary search trees and file organization.
Computing Surveys 6, 194-206 (1974).

11. S. B. Yao, Tree structures construction using key densities.
ACM Annual Conference, Minneapolis, Minn. 337-340
(1975).

12. F. Suraweera, Classification, searching and graphs in
information retrieval. Ph.D. Thesis, University of Dundee
(1976).

13. D. E. Knuth, The Art of Computer Programming, Vol. 3,
Searching and Sorting. Addison & Wesley, Reading, Mass.
(1973).

14. G. Salton, Automatic Information Organization and
Retrieval. McGraw-Hill, New York (1968).

15. Alfonso F. Cardenas, Doubly chained tree database
organisation — analysis and design strategies. The Computer
Journal 20, 15-26 (1977).

16. Douglas Comer and Ravi Sethi, The complexity of trie
index construction. Journal of the ACM 24, 428-440 (1977).

17. G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities,
Cambridge, Cambridge University Press, 261-262 (1934).

Now let 4, be the roots of the n-tuply rooted tree T,
so that C(4,) becomes equal to the average search length
of the tree structure. Then C(q;) =i and consequently
C(a,) = 0. We can write C(4,) in terms of its filial set:

n
C(4,) = C(A4)+C(Ap)+... +C(An)+i2 iW(a,)
=1
Similarly for any filial set A we can write C(A4) in terms

of its filial set. Thus we can systematically obtain the
following set of equations:

C(4y) = C(A)+C(A4y)+...+C(4,)+ f‘, iW(a;)

C(Ay) = C(An)+ C(Ay) + ...+ ClAym) + E iW(ay)

Cla) = Clhg) + Cy) o+ ClA)+ T iW(an)

Since T is finite the above set of equations is also finite.
Combining the above equations we obtain

Cl4y = 3 i@+ 3 W@
t
+ot T iW(ag)+ ..
=1

where each filial set 4 contributes one term to the
right-hand side of the composite equation. The average
search length (cost), therefore, is minimised if for every
filial set 4, the summation XiW(q;) is minimised. Now
from the lemma the result follows.

THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986 59

20z Iudy 0} uo }sanb Aq G80G9E/ZS/1/62/310NE/UlWOD/W0d dNo"olWwapese)/:Sdjy WOL) POPEOJUMOQ

