A Philosophy for the Teaching of Computer Science and

Information Technology

L. CAPPER

School of Information Sciences, the Hatfield Polytechnic, Hatfield, Herts

Much adverse criticism, most of it informal, has been directed at programmes of study in Computer Science. Part of
that criticism has been concerned with the apparent lack of theory and a unifying philosophy within the subject. This
paper, presenting the views of the author, proposes that the discipline, whatever its title, can be described as having two
central unifying themes. One is based upon a study of data, information and knowledge at different levels of complexity
or abstraction, and from which the other areas of the discipline can be developed. The second theme is developed from
the premise that Computer Science is essentially a technology concerned with the development and use of particular

types of human-created artefacts.

Received February 1984

1. INTRODUCTION

Because of the changing technology, hardware and
software, and the growing experience in their use and
teaching, it has become necessary to develop and update
our curricula. But before proceeding it is essential to
decide what academic strategy or strategies to employ in
this process. Is it enough just to tinker with the earlier
proposals or is a fundamental rethink necessary? Jones

& Loomes! suggest that four possible strategies, or a

mixture of more than one, can be used, as follows:

— input/output education process; decide on what the
product should be and, from that specification, design
the education process given an expected intake.

— existing scheme modification; criticise the existing
programme and attempt to modify the weaknesses.

— what is Computer Science? Specify the essential
characteristics of the discipline, and from that decide
what are the concepts, domain of knowledge,
boundaries and interfaces with other disciplines and
the essential skills. From this detailed specification a
total programme can be developed.

— central core; identify a central core which is
fundamental to the discipline and which can be
expanded, while still emphasising the central theme, in
the development of a programme.

These strategies are not mutually exclusive and are
designed to give direction to any planning committee
and/or individuals.

The first directive is in the form of a question, namely,
is it necessary to put and answer certain fundamental and
searching questions about the nature of the discipline,
what it is and, because of the major developments that
may have occurred, if a major rethink is necessary. If that
is the situation, then tinkering with existing schemes or
using existing ideas on the input/output strategy will not
produce a viable proposal.

Undoubtedly major changes have occurred in the last
decade, in the technology, in our understanding of
fundamentals and in their application. One has only to
look at the developments in the use of microcomputers
and text processing, for example, to realise this and
therefore to decide that a major rethink is necessary. The
author, because of earlier work,® selected the fourth
strategy. But to establish a central core the question
“What is Computer Science?’ had to be explored, if not
initially, at least in parallel and iteratively.

2. THE BACKGROUND CRITICISM

In a half-remembered broadcast of some few years ago,
of the type used to fill the interval between the two halves
of a concert, an equally forgotten speaker discussed
different approaches taken over the years in courses of
higher education, describing in the process some of the
differences between a good and a great course. Of the
relevant factors, the need for a central unifying
philosophy was emphasised and illustrated by a number
of examples, one of which was an undergraduate
programme read by the writer himself. A highly respected
and successful course in Zoology run under the leadership
of the then head of department, Professor Sir James Gray,
used Evolution to provide the basic, central and unifying
theme and bring cohesion to this traditional, yet diverse
and expanding discipline.

A further example referred to what is possibly the most
diverse of sciences, encompassing the greatest volume of
knowledge in one discipline, namely Chemistry, and how
an approach based upon reaction mechanisms was
successful.

This need for a central unifying theme and philosophy
has been stressed by many people and organisations. In
Britain the degree-validating body for Polytechnics and
Colleges, the CNAA (Council for National Academic
Awards), has stated this formally in publications,? private
reports to individual institutes and discussions.

A lack of any coherent theory and philosophy has been
used to argue that Computer Science is not a single
discipline worthy of undergraduate study and it has even
been suggested that Computing is little more than
programming.® Following upon the largely informal
adverse comments about Computer Science, it being a
hotch-potch of techniques and experiences with few
theories and no philosophy and suitable only for training
courses, the writer asked, informally, a number of
Computer Science lecturers at a 1981 Cambridge
Conference (see Section 3 below) if they would advise
their own teenage children to study the subject for their
first degree. None said they would recommend it, as such
programmes have limited educational value. They
preferred Maths, Economics and Physics, for example,
followed possibly by a suitable MSc in Computer Science
or, probably better, good industrial training. As a career,
it was approved. On being asked to expand, some
mentioned the strong tendency to lecture at the level of

THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986 83

6-2

¥202 Iudy 60 U0 1s8nb Ag | L G9€/€8/1/62/2101e/|ulWwoo/woo dno-ojwsepeoe//:sdpy wolj papeojumoq

L. CAPPER

the state of the art, to follow trends, and to ignore even
the few underlying theories and principles that do exist.
Thus with a rapidly developing technology that has to be
applied, the graduates soon find their knowled ge obsolete
and, because of their poor education, are unable to
update themselves and apply new knowledge as easily as
they should. The oft-quoted views of employers that
graduates in Computer Science do no better in their
chosen field after the first few years than graduates in
other disciplines have been used to support these theories.
Do Computer Science programmes train for the short
term rather than educate for the long term? The
ACM,* ¢ TFIP"-8 and the BCS® curriculum working
parties have presented proposals that contain more than
just a selection of useful and relevant courses, but a
coherent whole. Unfortunately these recommendations
go no further in trying to produce a philosophy upon
which this rapidly changing and diverse subject of
computing, which contains elements of engineering,
social and financial studies, science and humanities, can
be based. This paper suggests that such a philosophy can
be developed based upon a central theme of * Knowledge,
Information and Data’.

3. DEVELOPMENT OF THE PHILOSOPHY

Following on from the annual working conference of the
Information Systems Teachers of the UK in July 1981 at
Cambridge University, and as described earlier by the
author,'® 1 a working group made up of two subgroups
was established to investigate a number of questions. One
subgroup examined the material to be taught; the second,
under the chairmanship of the writer, investigated the
possible impact of the changing technology and
environment upon what is taught. The work and
reports!?~14 of this second group provided one basis for
the development of this paper.

Against a background of criticism, increasing change
and economic restraint, the first discussions established
a need for a coherent programme with a unifying theme,
and a platform from which graduates can update
themselves as easily as possible. This argument led to the
specification of a central core of material, the statement
of which posed the question *Why has this material been
selected?’. In answering that question it was possible to
identify the underlying philosophy that had resulted in
this selection; cause and effect. With iteration the theme
was developed.

Reduced to its simplest level, computers and all other
electronic devices are essentially machines that when
programmed accept, move, process and store data, and
output information using some form of symbols, signs
and languages according to a particular set of paradigms
and algorithms. But what are data? What is information ?
Apart from saying that they are a representation or map
of reality, the answers given to these questions will depend
upon the view of the individual and the level of
abstraction at which he or she is working.

Perhaps a good way to approach these questions, and
show the central part that data/information play in
Computer Science, is by using the hierarchical principle —
or philosophy — of levels for the real-world complexity of
knowledge. This concept describes the knowledge we
have in terms of ‘levels of complexity’, or levels of
abstraction, with particular laws, properties, characteris-

84 THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986

tics, activities, etc., appearing or ‘Emerging’ at only one
level. For example, the peculiar properties of biological
systems do not appear at the the more fundamental level
of Chemistry, although they may be explained in terms
of chemical and physical phenomena. Such a hierarchy
is, for example,'® Sociology, Psychology, Biology,
Biochemistry, Chemistry, Physics. Not everybody may
agree with this list, but that is not important to us. It is
suggested that a relevant hierarchy can be developed from
one generally accepted approach to the design of
Information Systems, namely that of levels of design.
Two examples are:

Information Level
Conceptual Level
Physical Level

and

Total Systems Level
Information Level

Data Level

Physical Representation Level.

Similarly, with the development of levels of protocols
for data transmission such a hierarchy, a finer hierarchy,
can be seen. In an analysis of what is meant by Data and
Information we have, at the most fundamental level, the
study of electronics (and fibre optics). This study can be
used to explain at a higher level of complexity how a
digital computer can create and handle bits. This in turn
can be used to explain how bits can be employed to
encode characters and groups of characters in the form
of bytes and words, groups of characters enabling signs
to be represented. A study of signs!® is important if an
understanding of data, and hence of information and
language and meaning, is to follow. From this analysis
it is possible to build a hierarchy of complexity, adding
knowledge, which can only be expressed in terms of
language and meaning, namely:

Knowledge

Information, language

Data

Files, records

Signs, signals

Computer representation, characters, words, bytes
Electronics (and now fibre optics?).

Following on from a statement made earlier in this
section, at each level each of the following must be
addressed:

Input and output
Storage
Processing
Transmission.

For these activities to occur in a controlled and reliable
manner then
Control, i.e. management
Reliability and security

have also to be considered at each level. That is, at each
level the discipline includes a study of what data/inform-
ation is, and how it is handled.

Boundaries obviously occur with "Philosophy and
Sociology at the more complex levels, with Electronic
Engineering at the more fundamental levels, and with, for
example, Linguistics, Accounting and Statistics at other
levels. It is suggested that this hierarchy describes the

¥202 Iudy 60 U0 1s8nb Ag | L G9€/€8/1/62/2101e/|ulWwoo/woo dno-ojwsepeoe//:sdpy wolj papeojumoq

A TEACHING PHILOSOPHY FOR COMPUTER SCIENCE

central core (see Fig. 1) of Computer Science and its many
subdisciplines, and can be used to show how all these
different areas of the discipline interface and integrate.
And, in addition to satisfying the need for a unifying
theme or philosophy, this approach provides the basis
upon which to develop the more volatile elements to be
studied, because it is largely independent of the
state-of-the-art technology with an accepted body of
theory that can be taught. :

4. DEVELOPMENT FROM THE CENTRAL
THEME

Such a proposition as outlined above can only be of use
if it leads naturally into all the numerous branches of the
discipline. To test this the comprehensive programme of
the Sth Regulations of the BSc (Honours) in Computer
Science of the Hatfield Polytechnic'? was analysed using
this approach. (Since this work was carried out the 6th
Regulations of the degree have been introduced, starting
September 1983, to replace progressively the 5th
Regulations.) Fig. 2 is a diagrammatic representation of
the scheme taken from the scheme description.

Knowledge

Information
Language

Data

Files, Records

Signs
Signals

Computer
representation

Electronics

Figure 1. The central core of Computer Science.

A first analysis using Checkland’s General Systems
Theory approach and methodology*® resulted in Fig. 3.

It is possible to show how the different elements of
Computer Science with their own paradigms and
algorithms lead from the central core of Data/Informa-
tion/Knowledge. For example, how CSO (Computer
Systems Organisation, a study of the computer and
operating system) is a particular area of study with its
own properties, algorithms and problems, dependent
upon a study and knowledge of electronics and the
manner in which data can be represented and handled.
These properties, algorithms and problems appear only

at these levels of Computer Science and can only be

explained and understood at the lower level of Electronic

Engineering. Equally synthetic languages are shown to

have a similar relationship with a study of language,

information (to be provided by the programs written in
the language) and computer systems.

A more detailed analysis of the scheme of studies, but
this time incorporating areas of study from supporting
disciplines in the Social Sciences and Analytical Methods,
resulted in the development of Fig. 4.

It must also be noted that:

— the size of the bubbles is a reflection of the size of the
words and does not reflect in any way the importance
or ‘size’ of the topic;

— the arrows indicate how the study of one or more topics
can lead to and support the study of another topic at
a higher level of complexity or by application of the
material;

— the positions of the bubbles, apart from a general aim
to place the more fundamental studies at the bottom
and the more complex from which they were developed
at the top of the page, were dictated largely by the needs
of the drawing;

— where a single bubble contains two or more bubbles,
the implied hierarchy also indicates that an additional
degree of cohesion and integration between the
sub-subjects is required;

— the analysis needs to be extended with some of the
topics, e.g. Synthetic Languages, being further sub-
divided, but the writer feels that perhaps this is better
left to the specialists in the areas concerned.

5. IMPACT OF THE ANALYSIS

It became apparent during this analysis that the use

of this approach would impose a different structure.

For example:

— support software, to include all aspects of software
designed to aid the computer user, as one or one set
of integrated course modules; traditionally such areas
as graphics, mathematics, information systems and
programming are covered almost independently;

— SAD, to include the analysis and design methodologies
and principles applied to a wide range of problems and
not to technical and commercial systemsindependently;
this traditional separation is still probably the norm;

— synthetic languages; that the subject of programming
languages, their need, design and implementation
should be integrated.

Comparison of Figs 2 and 4 also indicates that the
impact could go beyond this, and how the approach
advocated in this paper can produce a very different
structure for the total programme of studies. Accepting
that Fig. 2 shows individual courses which Fig. 4 does not
and cannot, it not being the representation of a specific
programme of studies, the almost independent streams,
it appears, would be replaced by a more tightly knit and
integrated programme. But this need not prevent the
running of modular programmes, options and streams of
courses specialising in particular areas.

Fig. 4 suggests that optional streams allowing
specialisation in such areas as Computer Systems and
Microprocessors, Systems Engineering and Application
Systems could be developed. Emphasis on one particular
area, at the expense of others, could produce a degree in,
for example, Information Systems.

THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986 85

¥202 Iudy 60 U0 1s8nb Ag | L G9€/€8/1/62/2101e/|ulWwoo/woo dno-ojwsepeoe//:sdpy wolj papeojumoq

L. CAPPER

COMMUNICATION

Transaction
processing

SYSTEMS ANALYSIS
AND DESIGN 1

Systems analysis

Computer-aided

Industrial and Human

environment of computer System 1

and design 2 production control
Management infor-
mation systems

7

. <_/

J
Sy stzn:js a.nal);sns “,2°~4 Analysis and design
and design / of database systems

/
Industrial and Human /

Env. of Comp. Sys. 2

Introductory
computer graphics

Industrial and Human
Env. of Comp. Sys. 3

Numerical techniques 1

i Computer graphics 1 ﬁl‘—\ % Computer graphics 2 l
— ~ Applied technical
l\ Numerical software
techniques 2
Atrtificial
Data intelligence
STRUCTURES

Program language

architecture

Advanced programming —l

7
7
PROGRAMMING AND Computers, automata Theory of language
PROGRAM LANGUAGES and languages e and automata
P 7
Concurrent < Real time
programming applications
Assemblers and assembly | A Compiler
language programs writing
Microcomputers 1 Microcomputers 2 1
COMPUTER SYSTEMS COMPUTER SYSTEMS

Computer
ORGANISATION 1 ORGANISATION 2 structures
Operating Operating
systems 1 systems 2
Data Computer
transmission networks
MATHEMATICS
— Discrete event
MATHEMATICS Statistics 1 simulation
Mathematics Mathematical methods Statistics 2 —]
of operational research 1
- Mathematical methods
Computer methods for Advanced sim- of operational research 2
signals and systems ulation techniques
AUTOMATION AND Computers and
social polic
SECOND INDUSTRIAL PERIOD SOCIETY (SW) policy
AUTOMATION AND
ONE YEAR®
E YEAR'S EXPERIENCE IN EMPLOYMENT SociETY (PT)
ProOJECT
ProJECT
1-module 2-module 3-module
course course course

Titles in upper case denote compulsory courses

Compulsory requisite

— — = = Recommended prerequisite

Figure 2. Hatfield Polytechnic B.Sc in Computer Science, 5th Regulations.

86 THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986

¥202 Iudy 60 U0 1s8nb Ag | L G9€/€8/1/62/2101e/|ulWwoo/woo dno-ojwsepeoe//:sdpy wolj papeojumoq

A TEACHING PHILOSOPHY FOR COMPUTER SCIENCE

Application
systems

Support
software

» Knowledge
Synthetic & @

languages

Data
transmission
P T
Data

representation

Figure 3. A simplified view of the structure of Computer Science.

Application systems

Information
systems

Human activity
systems

Organisational
structure and function
Finance and accounting
Sociological factors

Physiological and
psychological
factors

n,
life cycle
approach

Data
structures

Systems theories

Reductionism and the Other
scientific method formal
methods

Figure 4. The structure of Computer Science.

6. A PHILOSOPHY FOR TEACHING

Computer Science is a technology and as such is
concerned with the building of artefacts. Therefore, in
simple terms, the prime aim of a programme of studies
in Computer Science is to educate and train people to
design and implement computer hardware, software and
problem-orientated computer-based systems. Earlier
parts of this paper have suggested that there is a cohesion

and structure to the material, the subject matter, in the
discipline that will provide an integrating force. But will
such an approach provide a suitable vehicle for potential
designers? These people are not primarily concerned with
learning and understanding and possibly extending the
subject matter, but in using it in a particular type of
environment to solve or, more likely, to alleviate
problems that other people encounter.

Software engineering

Real world .
systems modelling Iteration «— Life cycles
\ BRI SRAST: / ‘

Computer systems

Prototyping

Evolutionary f;

Incremental /j
~

X

Data modelling

t

X Participative—socio technical
™\ Requirements specification

)
A End user ~ \ \
\ Structured

~ Process analysis
Figure 5. The three-part model and a multi-view perspective.

Problem
formulation

Given that all man-made products have to pass
through some form of life cycle, and a systems or logistic
approach is now widely accepted in engineering, then
possibly a similar or software engineering view could
provide a suitable theme for Computer Science
education.

6.1 A software engineering approach

Jones et al.'® described the need to build a three-part

model of software engineering (see Fig. 5), namely:

— the real world into which there is a need to introduce
some computer-based system (and hence which needs
to be modelled),

— the computing system that is developed, and

— the transformation process of developing the latter
from the former.

A number of issues arise from the use of this three-part
model, namely:

— how can an existing object system, a human activity or
socio-technical system, and its existing information
system be understood and specified, and the problem
understood and specified within its context?

— how can the requirements be analysed and specified in
the context in which they will occur?

— how can the transformation be performed, managed
and its correctness assured?

— how can the computer-based system be operated at an
acceptable level of reliability and efficiency?

From these issues and the requirements they create
it is possible to develop a number of separate courses,
but courses that are linked to this central theme
of analysis and design and covering a number
of interrelated topics: i.e.,

— modelling of the real world,

— the technical stages in the transformation and proving
process,

— managing the transformation and proving process,

THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986 87

¥202 Iudy 60 U0 1s8nb Ag | L G9€/€8/1/62/2101e/|ulWwoo/woo dno-ojwsepeoe//:sdpy wolj papeojumoq

L. CAPPER

— ensuring the involvement and support of the potential
users, primary and secondary, of a new system,

— proving and managing the operation of a system, and

— formal methods and other subjects to support
these topics.

But although this approach initially examined a
narrow range of tasks, essentially the programming, it has
here been extended to the upstream stages of information
systems a 1 process control systems analysis and design,
which are essentially part of the same process.

If the philosophical theme described above in section
3 is accepted, then the software engineering approach is
applicable elsewhere, to the development of hardware,
operating systems and languages, for example: they are
essentially at a lower level of complexity of the same
modelling process and are artefacts that have to be
designed to meet requirements and then built to
specification.

Unfortunately, although such an engineering-orienta-
ted philosophy may provide the approach to the teaching
of material concerned with analysis, design and imple-
mentation, there is a very little likelihood that it can be
taught as a single stream of courses, let alone a single
course. Almost certainly a number of parallel streams, 4-6
being the most common patterns, will be employed. In
turn this creates the problem of showing that these
parallel courses are describing essentially different views
of the same subject, not an easy or simple matter as
students do not naturally bridge across courses. But it
does indicate a need for some earlier and preliminary
programme that leads directly into the separate areas and
hence provides a single integrating foundation. The basis
for such a preliminary programme has been described
above in Section 3.

Where the programme of studies is long or, as with an
MSc in Computer Science, is for mature postgraduate
part-time students and is in a comparatively narrow and
more naturally integrated area of study, then this
problem will be much less evident. But, conversely, short
(for example one-year) programmes for recent graduates
will tend to highlight the students’ difficulties because the
programmes are so short and allow limited assimilation
time.

To further reinforce, then, this process of integration,
and to give the students some experience of using their
recently acquired knowledge, it is necessary to allow them
to complete some real individual project: to learn to
design one must design.

6.2 Three-tier structure

Based upon the arguments developed in Section 6.1 it
appears that a three-tier structure is required for a
programme of studies.

Initially there is a need to present the basic material of
the subject, describing at the different levels of complexity
how data, information, language and knowledge are
handled by the hardware and software. But this is only
the essential core of Computer Science (see Fig. 4). For
this material to be fully explored and understood
additional supporting subjects, for example, Mathematics
and Formal Methods, Organisational Structure and
Functions and Social and Psychological Studies will be
required. With a further course, in Systems Theory and
Practice with its philosophy of levels and integrated

88 THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986

elements, the whole foundation programme will provide
a single and integrating platform for the second tier.

The second tier, concentrating upon the development
of the students’ analytical and creative abilities, should
build upon the essential earlier foundation programme
and be primarily concerned with the theme of:

— analysis of requirements within a dynamic and
inter-relating environment;

— design and implementation of artefacts and the
management of this process;

— management of the artefacts when in use.

Based upon and developed from this second-tier
programme students must then carry out a third-tier
project. This project should give them the opportunity to:
— apply the knowledge they have acquired to a practical

problem;

— integrate further the taught material;

— develop their analytical and creative abilities;

— extend by self-study their knowledge in a required
direction;

— communicate their ideas to others;

— develop their confidence.

This project should then complete the educational and

training process aimed at instilling the basic core of the

discipline and developing the analysis and design

capability.

How each institute develops any programme and
presents it will depend upon its own house style and the
individual members of staff. Practical problems do have
to be overcome, and the approach described in this paper
cannot be applied precisely as described. It needs
adapting to the needs and views of individual centres, and
finally produced as a set of individual courses to be
delivered within a limited period of time. It has also to
be assessed. \

7. CONCLUSIONS

The aim of this paper is to describe the author’s own views
of Computer Science (or it may be called Information
Technology) and from that description to present in
broad terms an approach to the development of
programmes of study. A study of a particular area,
namely Data, Information and Knowledge, can provide
a central unifying theme for the earlier core material, an
engineering-based and a problem-orientated design-
driven approach providing a similar purpose for the later
periods of study. Despite some emphasis being placed
upon a 4-year undergraduate sandwich programme, it
does appear suitable for a 3-year programme and a highly
specialised postgraduate master’s conversion scheme, in
particular where the schedule is lengthened by preliminary
courses and there is a need to reorientate and re-educate
the participants. How each institute implements any
programme will obviously depend upon the house style
and the staff’s specialities.

In the final analysis the programme will consist of a
suite of courses taught by individual lecturers, within the
constraints imposed by the time and resources available.

Acknowledgements

The author would like to thank his colleague, Mr
M. Bacon, and the Hatfield Polytechnic for permission to
reproduce Fig. 2, and the other members of Sub-group

¥202 Iudy 60 U0 1s8nb Ag | L G9€/€8/1/62/2101e/|ulWwoo/woo dno-ojwsepeoe//:sdpy wolj papeojumoq

A TEACHING PHILOSOPHY FOR COMPUTER SCIENCE

B of the Information Systems Working Group, as some
of this paper is based upon their discussions. The other
members were: Brian Aspinal (Lancaster Polytechnic),
Lesley Beddie (Napier College), Brian Bridge (North East
London Polytechnic), David Chamberlain (Bristol
Polytechnic), Ed. James (Imperial College), Jim Wood
(Brunel University).

REFERENCES

1. J. F. Jones and M. Loomes, A4 Discussion on academic
Strategies for the Development of Programmes of Study. The
Hatfield Polytechnic (October 1982).

2. Principles and Regulations for the Award of the Council’s
First Degree and Diploma in Higher Education, CNAA
(1979).

3. C. A. R. Hoare, Professionalism. Computer Bulletin p. 2.
(September 1981).

4. A Report of the ACM curriculum committee on computer
education for management (editor R. L. Ashehurst) Com-
munications of the ACM 363 (May 1972) 15 (5).

5. Curriculum recommendation for undergraduate program
in information systems. Communications of the ACM 16 (2),
727 (December 1973).

6. J. F. Nunemaker, J. D. Cougar and G. B. Davis, Informa-
tion systems curriculum, recommendations for the 80’s.
Communications of the ACM 25 (11), 781 (November 1982).

7. J.N. G. Britton (Ed), An International Curriculum for
Information Systems Designers (IFIP Committee TC3),
LB.I.C.C. (1974).

8. Draft report of the revision of the IFIP/ISD Curriculum
(September 1982).

Equally of relevance and importance is the work of the
author’s colleagues, John Jones, Martin Loomes,
Richard Mitchell, Wilf Nichols and Hugh Robinson, on
the development of postgraduate software engineering
programmes, and the author’s gratitude must also be
expressed to them.

9. Report on degrees in data processing (BCS working party,
editor R. Shaw). Computer Journal 18 (4), 382 (November
1975).

10. L. Capper, A Philosophy for Computer Science and
Information Systems (Report of IFIP WG8.2 Meeting of
December 1982).

11. L. Capper, Information Technology and the BCS, Computer
Bulletin, p. 14 (September 1983).

12. L. Capper, ISWG, Report of Sub-group B (March 1982).

13. L. Capper, ISWG, Report of Sub-group B (April 1982).

14. L. Capper, ISWG, Report of Sub-group B (July 1982).

15. P. Checkland, Systems Thinking, Systems Practice.
Chichester, Wiley (1981).

16. R. Stamper, Information in Business and Administrative
Systems. Batsford (1973).

17. Course Description of the 5th Regulations of the BSc and
DipHE in Computer Science. The Hatfield Polytechnic (June
1980).

18. Scheme Description, Postgraduate Diploma in Software
Principles and Practice. The Hatfield Polytechnic (December
1982).

THE COMPUTER JOURNAL, VOL. 29, NO. 1, 1986 89

¥202 Iudy 60 U0 1s8nb Aq | L G9€/€8/1/62/2101e/|ulWwoo/woo dno-ojwsepeoe//:sdpy wolj papeojumoq

