Computer Tree — the Power of Parallel Computations
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Computer Tree (CT) is the non-standard computer structure which consists of a large number of processing elements,

which are connected so that they form a binary tree.

We have proved that every problem belonging to the polynomial-time hierarchy can be solved on CT in polynomial
time. A 0 (n®) algorithm for the maximal clique decision problem was presented, as an example of the real power of

parallel computations on CT.
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1. INTRODUCTION

There exists a wide class of problems which can be
characterised by exponential time complexity 0(22(™),
when any problem belonging to it is solved on a
deterministic sequential machine. Its proper subclass is
the class NP,* which includes problems solved in
polynomial time on non-deterministic Turing machines.
The most important (and until now unsolved) question
is, whether any problem solved on a non-deterministic
Turing machine in polynomial time can be solved in
polynomial time on a sequential deterministic one.

The implication of a problem being NP-complete® is
that there is no fully polynomial time approximation
scheme which solves the problem in a time bounded by
a polynomial in the input length and the reciprocal of the
prescribed degree of accuracy. Many problems in areas
like deterministic scheduling, graph theory, routeing,
data base, mathematical programming, automata and
language theory, image processing, microprogram opti-
misation, etc. have been proved to be NP-complete.® The
set of NP-complete problems therefore spans a wide
spectrum of application areas.

Since the method of the time complexity reduction of
many difficult problems on sequential machines is
unknown, it is widely accepted that a further speed-up in
the execution time of algorithms on computers can only
be achieved by making available parallel computers, that
can exploit the parallelism inherent in many algorithms.
A huge number of different parallel computer architect-
ures have been proposed and implemented. Four groups
of architectures for executing parallel algorithms have
been considered in the past: general-purpose vector and
array processors,!%13:1 crossbar systems,'®:4 cluster-
oriented structures!® and systolic structures for special
purposes.1: 17

We use the non-standard computer structure which
consists of a large number of computers, which are
connected so that they form a binary tree. The idea for
the concept of computer trees® ? was derived from the
observation that the execution of recursive procedures on
present-day computers of the von Neumann type has to
be effected in an unnatural way. Instead of delegating
different procedure calls to different processors the flow
of procedure calls is artificially put into sequence. The
parallelism inherent in many recursively formulated
algorithms is thus destroyed. The concept of computer
trees (CT) aims at exploiting this parallelism to reduce the
computation time of a wide class of algorithms.

* To whom correspondence should be addressed.

Section 2 briefly describes the architecture of CT, its
mode of operation and a suitable programming language
(for a detailed description the reader is referred to Ref. 2).
In Section 3 it is proved that any problem beonging to
the polynomial-time hierarchy (introduced by Meyer and
Stockmeyer'?) can be solved on CT in polynomial time.
In Section 4 the algorithm for the maxclique decision
problem is given, for showing how the time complexity
of problems (more complex than those belonging to the
class NP) can be reduced using CT.

2. COMPUTER TREE

The hardware structure called computer tree has been

introduced by Buchberger (see Fig. 1).2:3

Every node of the tree denotes a microcomputer with
its own CPU and its own storage. Every computer of the
tree has access to its own storage and the storage of its
left and right son. Accessing the left and right son, a
certain type of address modification has to take place. A
computer module in the tree, by means of variables of
types X, X’ and X” has access to its own storage, the
storage of the left and right son, respectively.

Unlike other authors,? 2 we do not assume that part
of the storage in every node is ‘private’, i.e. cannot be
accessed by the father of the node.

Every computer of the tree has, to exchange the
synchronising information, three sensor bits S, TL and
TR. They may be set and reset only by its father, its left
son and its right son, respectively. Sensor S is used to
control the starting point of computation, and is set and
reset by assigning the new value to VL or VR variable in
the program of the father node. Sensors TL and TR are
used for deciding whether a computation has terminated
and may be set or reset using the U variable in the son
program.

Test modules have been realized.>:? In view of the
development of VLSI technology the availability of
10000 and more modules in one tree is realistic.

The basic principle of the present approach is
language-independent. We use, for the computer tree to
be programmed, a PASCAL-like language called PL/CT?®
with additional sensor instructions:
when {(condition) wait; (with semantics /ab :if {condition)

then goto lab;)

U:=1; U:=0; (set the TL or TR sensor of father,
depending on whether the module is the left or right
son of its father)

VL.=1;VL:=0;

VR: =1; VR: = 0; (set and reset the sensor S in the left
and right son, respectively)
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Figure 1. The architecture of a Computer Tree

The data input instruction read(var) initializes this
same location name var in all the tree. The special
mechanism was used to preset the memory and sensors
to zero throughout the tree before the program loading
process. We assume the latter, that the same program is at
first loaded into all processors, and then the ‘root’
processor is started by external setting of sensor S.

3. COMPUTING POWER OF CT

CT is designed to solve in polynomial time difficult
problems, i.e. problems with exponential time complexity.
The polynomial time algorithms for problems belonging
to the class NP-com, which may be used in the same way
for solving the complementary problems from the class
co-NP2 12 are known.

Buchberger? has presented the O(n) algorithm for the
tautology problem (TAU), formulated as follows:

Having the logical expression given, check if it yields truth value
1 for all possible assignments of the truth values 1 and 0 to
variables.

It is obvious that TAUe co-NP.® In fact this same
algorithm on CT can be used to solve the problem TAUe
NP-com. Let P, denote the class of all problems solved
in polynomial time using CT. The known algorithms for
CT?* 12 suggest that (NP U co-NP) < Puq, i.e. that Poyp
includes problems more complex than those from NP and
co-NP classes.

In 1972 the infinite polynomial-time hierarchy of the
classes of language was introduced by Meyer and
Stockmeyer.1® Language classes 47, Z%, 7} have been

k=0:42=32 =72 =P
k>0:42,, = P&
TP, = NPZ%
MRy = CO-LPy,
where
PY={L:3L’eY and La;L"}
NPY ={L:3L’€Y and LoyyL"}

ar is the polynomial deterministic reducibility relation
defined using the oracle-deterministic Turing machine.
The relation LapL’ is fulfilled iff the recognising process

Figure 2. The map of NP and co-NP classes, after assumption
that P # NP and NP # co-NP

of L is performed in polynomial time, and the Turing
machine recognising L uses at least once, as the
‘subprogram’, the Turing machine which recognises the
language L’. We assume that the recognising process of
L’ is performed in exactly one step from the viewpoint
of the machine which recognises L. oy is the polynomial
nondeterministic reducibility relation and is defined
similarly to oy using the oracle-nondeterministic Turing
machine.
o0
Let PH=)Zp
j=0
be the class of all languages in polynomial-time hierarchy.
The important problem is in the verification of the
following proposition.

Proposition
If Le PH, then Le P, i.e. for every problem belonging

to the polynomial-time hierarchy there exists a poly-
nomial time algorithm when solved on CT.

Proof

Since the proof method is well known (see Ref. 6) we only
give a sketch of the proof. Let LeXf, k > 0, and let p,
g be polynomials such that every computation CT on an
input of length » has length p(n) (or g(n)).

() k=1

It is obvious that TAU € NP-com® and TAU € Pcy. Then
Le NP-com = L e P because

LeNP-com< LaTAU & TAUaL,
where « is the polynomial reducibility as defined in Ref.
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Figure 3. The computation strategy on CT. (a) The worst-case
path of computing L € 2 (after assumption that L’ is computed
in one step) — L’ is executed in black nodes. () First call of L’
on CT - the computational wave for L’ is generated, which
distributes from level 3 downward until the level g(n)+2 is
reached (worst case) and then contracts again upwards. (c)
Second call of L’-worstcase level is bounded by
p(m)+q(n)—1.

6. Let LeXP = NP. Then exist L’e NP-com and La L’
This implies

LeXp=LeP..
@) k>1
Let
LeXl ={L,;3L e€Xf_, & LyooL’}.

We assume that L’ is computed in exactly one step from
the viewoint of the program which computes L. Then the
time complexity of L is p(n). The last follows from (i),
because L can be treated as a problem belonging to NP.
The ‘subprogram’ which computes L’ can be called no
more than p(n) times. Let every computation of L’ have
length bounded by ¢(n) when solved on CT. Then the time
complexity of L when solved on CT is p(n)-q(n). An
example of computation strategy for solving L on CT is
shown on Fig. 3.

We have proved that every problem LeZXP can be
solved on CT in polynomial time if problems belonging
to X_, can be computed in polynomial time on CT.

(iii)
From (i) and (ii) it follows, by induction over k, that
LeX)=LeP., k>0.

For every LePH there exist m such that LeX?, and
L¢ZX2 _,, and finally the following holds:

LePH=> Le Py,

4. AN EXAMPLE - THE 0(»®) MAXCLIQUE
ALGORITHM ON CT

For illustrating the computation strategy and the real
power of parallel computing on CT we select the

maxclique decision problem (CMS). CMS is defined in
the following terms:

Let G(V, E) be an undirected graph, with vertex set V, edge set
E, and |V] = n. Have the maximal clique of G exactly k vertexes?

Legget® has shown that CMS¢ (NP U co-NP). The
algorithm presented as Fig. 4 has 0(n3) time bound and
uses 0(n) levels of processors. In the first search
(SEARCH = 0) the algorithm checks whether there exist
in the graph G the clique with k vertexes. In line 86 the
following check is made. If the next-level processor
number is less than or equal to the number of possible
k-vertex subgraphs of G, then values 2-PROCNUMB
and 2:PROCNUMB+1 are sent respectively to the left
and right son, as their own processor numbers. Both
sons are started by setting the VL and VR variables to
value 1.

In line 99 the procedure COMB is called to set the
vector VERTXCOMB to values of the PROCNUMB-th
combination (in lexicographical order) of k-vertex sub-
graph of G. In this way in every processor with number
less than or equal to MAXNODE the unique subgraph
of G is processed, and in addition all possible subgraphs
of G with k-vertexes are processed. The loop beginning
at line 50 in procedure COMB is executed exactly k times
and the loop beginning at line 54 no more than n—k
times. Therefore the time complexity of COMB is 0(n?).

In line 100, by calling the procedure CLIQUE a check
is made on whether or not all vertexes of selected
subgraph are connected by the edge. If they are, the value
of MAXCLAQ is set to 1. If not, in line 108 the processor
waits for the ending of computations by its left and right
son, and sets the result MAXCLQ as the logical sum of
the results of its sons. The assignment instruction in line
32 is executed exactly k2 times. Thus the time complexity
of procedure CLIQUE is 0(n2) too.

Atline 116 every processor in the tree, except the ‘root’
processor, informs its father about ending computations
by assigning the value 1 to sensor variable U. Then it is
waiting for the reset of its own S sensor by its father (line
120).

When the first search is completed and the k-vertex
clique is found (line 131) the ‘root’ processor performs
the second search (SEARCH = 1) for checking the
non-existence of the k + 1-vertex clique, otherwise 1t stops
with result MAXCLQ = 0.

In each search the computational wave is generated in
the tree by the ‘root’ processor. At first the wave
distributes downward until the needed level is reached,
and then contracts upward. The search number is in fact
bounded by 2 and the needed level of the tree is less than
or equal to n—1. At any tree level the computation time
is bounded by 0(n?), therefore the time complexity of the
present algorithm is 0(#2). This algorithm was successfully
run using the instruction level computer tree simulator.?

5. CONCLUSIONS

A concept for a multi-microprocessor system was
presented by which the time complexity of a wide class
of algorithms could be converted into hardware
complexity. We have proved that every problem
belonging to the Meyer and Stockmeyer polynomial-time
hierarchy can be solved on CT in polynomial time. We
believe that the Schorr thesis!* that ‘the physical time
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1 0020 (* *)
2 0020 (* MAXCLIQUE DECISION PROBLEM ON THE COMPUTER TREE *)
3 0020 (* *)
4 0020
5 0020 VAR N, (* CARDINALITY OF THE GRAPH VERTEX SET *)
6 0023 K, (* CARDINALITY OF THE CLIQUE VERTEX SET *)
7 0023 MAXNODE, (* NUMBER OF THE K-VERTEX SUBGRAPHS OF GRAPH *)
8 0023 PROCNUMB (* PROCESSOR NUMBER IN THE TREE *)
9 0023 SEARCH, (* SEARCH NUMBER *)

10 0023 MAXCLQ, (* RESULT VARIABLE: 1 - IFF GRAPH CONTAINS *)

11 0023 (* MAXIMAL CLIQUE WITH K VERTEXES *)

12 0023 GRAPH][1..64,1..64], (* GRAPH ADJACENCY MATRIX *)
13 0023 VERTXCOMBJl..64], (* VERTEX COMBINATIONS VECTOR *)

14 0023 QL,LJ; (* AUXILIARY VARIABLES *)

15 23

16 %23(*#t#‘*ttt#*#****tttt* -w'v'x*t#**t#;#t#**#*#********v Aok kok ok *****t#**t*#t*#**##t**t**)

17 0023

18 0023 PROCEDURE CLIQUE (K; VAR MAXCLQ, GRAPH, VERTXCOMB);

19 0023

20 0023 (* PROCEDURE CHECKS WHETHER THE K-VERTEX *)

21 0023 (* SUBGRAPH OF GRAPH IS A CLIQUE OR NOT *)

22 0023

23 0023 VARILJ;

24 0026

25 0026 BEGIN (* CLIQUE *)

26 0035 I.=0;

27 0051 REPEAT

28 0051 I.=1+1;

29 0100 =1

30 0120 REPEAT

31 0120 J:=J+1;

32 0147 MAXCLQ: = GRAPH[VERTXCOMB][I], VERTXCOMB [J]]

33 0274 UNTIL NOT MAXCLQOR (K =1J)

34 0355  UNTIL NOT MAXCLQOR (K—1=1I)

35 0436 END (* CLIQUE *)

36 0452

37 0452( kkkkk *%k * #t##tlkt*#**#**#*###*****#**#*#)
38 0452

39 0452 PROCEDURE COMB (N, K, MAXNODE, PROCNUMB; VAR VERTXCOMB);

40 0452

41 0452 (* THE PROCEDURE SETS THE VECTOR VERTXCOMB TO *)
42 0452 (* THE VALUE OF THE PROCNUMB-TH COMBINATION *)
43 0452 (* (IN LEXICOGRAPHICAL ORDER) OF LENGTH K *)
4 0452

45 0452 VARP,R;

46 0455

47 0455 BEGIN (* COMB *)

48 0464 P:=0;

49 0500 R:=1;

50 0514 REPEAT

51 0514 MAXNODE: = MAXNODE*K/N;

52 0562 N:=N-1;

53 0611 K:=K-1;

54 0640 WHILE PROCNUMB > MAXNODE DO
55 0674 BEGIN

56 0674 PROCNUMB: = PROCNUMB-MAXNODE;
57 0727 MAXNODE: = MAXNODE*(N-K)/N;
58 1010 N:=N-1;

59 1037 P:=P+1

60 1053 END;

61 1071 VERTXCOMBI[R]: = R+P;

62 1152 R:=R+1

63 1166 UNTIL R >K

64 1211 END (* COMB *);

65 1240

66 1240( LEld HRR AR AR AR P )
67 1240

68 1240

69 1240 BEGIN (* MAIN PROGRAM *)

70 1247 WHILE NOT Q DO

71 1270 BEGIN
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1270 WHEN NOT S WAIT;
1306 IF PROCNUMB =0

1322 THEN
1330 BEGIN

1336 PROCNUMSB: = 1;

1352 READ (N, K, MAXNODE);
1413 READ (1, J);

1441 WHILE 1<) 0 DO

1474 BEGIN

1474 GRAPH[L J]: = I;

1567 READ (1, J);

1615 END;

1620 END;

1620 L: = PROCNUMB+PROCNUMB;
1653 IF L < = MAXNODE

1663 THEN

1704 BEGIN

1712 IF L < MAXNODE

1722 THEN

1740 PROCNUMB”: =L+1
1762 ELSE

1775 PROCNUMB": =L;
2020 PROCNUMB’: =L;
2040 VL:=1;

2052 VR: =

2056 END;

2064

2064 CALL COMB (N, K, MAXNODE, PROCNUMB, VERTXCOMB);
2101 CALL CLIQUE (K, MAXCLQ, GRAPH, VERTXCOMB);

2116

2116 IF L < =MAXNODE

2126 THEN

2147 BEGIN

2155 IF NOT MAXCLQ

2155 THEN

2170 BEGIN

2176 WHEN NOT (TL AND TR) WAIT;
2224 IF MAXCLQ OR MAXCLQ”
2234 THEN

2247 MAXCLQ: =

2261 END;

2271 VL:=0;

2303 VR: =0;

2315 END;

2315 IF PROCNUMB( ) 1

2331 THEN

2342 BEGIN

2350 U:=1;

2362 WHEN S WAIT;

2375 U:=0

2401 END

2407 ELSE

2407 IF SEARCH

2412 THEN

2422 BEGIN

2430 MAXCLQ: = 1 -MAXCLQ;
2457 Q:=0

2463 END

2473 ELSE

2473 IF MAXCLQ

2476 THEN

2506 BEGIN

2514 SEARCH: = 1;

2530 MAXNODE: = MAXNODE* (N—-K)/(K +1);
2620 K:=K+1;

2647 END

2647 ELSE

2647 Q:=1;

2666 END; (* WHILE *)
2671 WRITE (MAXCLQ)
2704 END.(* MAIN PROGRAM *)

Figure 4. CMS program on CT (listing).
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complexity required to solve any problem is not reduced

by

more than a polynomial factor by using parallel
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