Buddy Systems with Selective Splitting

N. M. PITMAN* F. W. BURTONTY anD E. W. HADDON*}
* School of Computing Studies and Accountancy, University of East Anglia, Norwich NR4 7TJ
t Department of Electrical and Computer Engineering, University of Colorado at Denver, Denver, Colorado 80202, U.S.A.
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1. INTRODUCTION

In various computer applications there exists a need for
dynamic storage allocation. Some sufficiently large
contiguous memory pool is devoted to the transient
storage of variable sized blocks of data. When the storage
allocator receives a request to store a particular block it
must find, and allocate, a block of unused store
sufficiently large to accommodate the block of data.
Subsequently, the block of data is no longer needed and
the storage block can be returned to an available space
list. It is generally impractical to relocate the blocks of
live data to maintain a contiguous block of available
space, and attention is thus focused on managing the
fragmented available space.

Allocation by ‘best-fit’ involves a lengthy search whilst
“first-fit’ is more wasteful of space.! The buddy system,
introduced by Knowlton,2 1965, provides a more
satisfactory solution to the problem. The binary buddy
system of Knowlton has a memory pool of size 2 (which
may be any suitable measure of bytes, words, etc.). A
request for storage of a block of size R requires the
allocation of a block of size 2¥ where 2¥-1 < R < 2%
(where R includes any necessary housekeeping data). The
available space list is examined for a block of size 2%. If
such a block is found it is allocated, otherwise the
available space list is scanned, sequentially, for a larger
block of size 2¥+%, i > 0, which will be split into two equal
parts, of sizes 2¥+i~1, called buddies. One of these buddies
will be broken down, if necessary, until a block of size 2¥
is produced. All other unused buddies will be placed on
the available space list. One buddy is then allocated and
the other is placed on the available space list. When a
block is released it is recombined with its buddy if that
block is free — it may subsequently have been allocated or
split further. The recombination process continues as far
as possible and the block so formed is placed on the
available space list.

A buddy system must be timewise-efficient in allocation
of space and similarly in returning used blocks to the free
space list, which requires rapid recognition of respective
buddies. It must also be efficient in its utilization of the
total memory pool, and fragmentation is the difficulty in
this respect. A buddy system has a predetermined set of
block sizes which can be allocated. The binary buddy
system can allocate blocks of sizes 1, 2, 4, 8, 16, ... which
means that if a request is received to store a block of size
11 the system must allocate a block of size 16 and then,
for the lifetime of the block of size 11, space of size 5 is
unused and unavailable in the allocated block of size 16.

1 To whom correspondence should be addressed.
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Figure 1. Typical usage of a memory pool of size 64 and a tree
representation of the buddy structure.
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This is termed internal fragmentation. At any time the
storage allocator has lists of the available space for each
allocatable block size, but it is possible that a request is
received for storage of a block which is larger than any
currently allocatable block, for example there may be
several available blocks of size 16 but no larger block
available. A request to store a block of size 20 would then
fail even though there is, in total, ample free space.
External fragmentation describes this scattering of
available space in blocks throughout the memory pool
which cannot be combined because they are not
respective buddies. (Note that a dynamic allocation
scheme based on relocation could allocate blocks of the
requested size and would eliminate both internal and
external fragmentation.) A buddy system can therefore be
judged also on its spacewise efficiency in respect of the two
types of fragmentation. Internal fragmentation can be
monitored continuously and defined as the proportion of
allocated space which is holding data. External fragmen-
tation is only relevant when a request cannot be satisfied,
and this can be defined in terms of the proportion of the
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total memory pool which is unallocated when a request
fails. Figure 1 illustrates internal and external fragment-
ation on a memory pool of size 64. As shown, requested
data blocks of sizes 11, 3, 6 and 5 are stored in allocated
blocks of sizes 16, 4, 8 and 8. Now a request to store a
block of size 10 will fail — the adjacent free blocks of sizes
8 and 4 cannot be used because they are not brother
buddies as is shown by the tree structure diagram. We
have at this stage

storage requested = 114+3+6+5 =25

storage allocated = 16+4+8+8 =36

storage unallocated = 8+4+8+8 =28

internal fragmentation = (36 —25)/36 = 0.31
external fragmentation = 28/64 =0.44
Since Knowlton introduced the original binary buddy
system several variations on the technique have been
presented. Hirschberg designed a Fibonacci buddy
system in which allocatable block sizes are Fibonacci
numbers.® Shen and Peterson introduced a weighted
buddy system whose block sizes are 2* and 3.2%.% Peterson
and Norman discussed a generalised buddy system in
terms of general recurrence relationships between the
block sizes.®* The performance of any buddy system
depends upon the distribution of requested block sizes
and the frequency of requests for each size. Results of
comparative studies of the binary, Fibonacci, weighted
and F-2 (Fibonacci type) systems have been reported by
Peterson and Norman, and by Russell.® Norman,? and
Burton,? discussed the tailoring of the buddy system for
applications in which the request distribution might be
known, a priori, or the storage device (disk) might impose
some physical restrictions.

In each of the buddy systems previously proposed, an
available block of a particular size could only be split into
two buddies in one way. We propose a technique of
selective splitting of blocks in which, for example, a block
of size 16 might be split into buddies of size 8 and 8 or
into buddies of size 10 and 6. The latter choice would give
less internal fragmentation if allocating for a request of
size 5 and also leave a larger block for subsequent
allocation. Simulation studies by Peterson and Norman
suggest that, for previous buddy systems, as internal
fragmentationdecreases, external fragmentationincreases
and the amount of unusable memory from both sources
(total fragmentation) remains fairly constant. We present
results of our simulation studies on the same request
distributions® > 7 which suggest that selective splitting
can make a significant improvement.

2. OUTLINE OF A BUDDY SYSTEM

Generally, a buddy system is based upon a sequence of
numbers S,,S,,....,S, (allocatable block sizes) with
S, <8, < ... <S8, which satisfy a set of recurrence

relations ' )
Si = Si—siy +Si—gy» &) = fli) >0, )]

where f(i), g(i) are meaningful integral functions. Table
1 gives values for the systems mentioned in Section 1.
More complex systems can be constructed.

Control of the memory space is achieved through an
available-space list of n elements, accessed through the
size index i for each allocatable block size. Each element
of this list contains two pointers to the front and rear of
a doubly linked list chaining the storage addresses of all

Table 1. f(i) and g(i) functions for simple buddy systems

Buddy system ) g(@)

Binary 1 1

Fibonacci 1 2

F-2 1 3

Weighted 1 4,ieven,i> 6
3,iodd,i> 5
2,i=4
1,i=3

free blocks of size S;.2 General algorithms for the
allocation of storage and the return of a block to the
available-space list are presented below.

Allocation of storage

Al. A request is received for a block in which to store R
units, where R includes the space required for
housekeeping data.

A2. The list of block sizes is scanned to obtain the target
block size S, where S, > R.

A3. If a block of size S, is available it is removed from
the available space list and allocated. Otherwise
proceed to step A4.

Ad4. The available space list is scanned from size index ¢
for an available candidate block S, which would split
into buddies of sizes S, —f(c) and S, — g(c) with at least
one buddy being not smaller than S,.

AS. A split of the current candidate block is considered.
If one buddy would be of size S, then the split is made,
that buddy is allocated and the other buddy is placed
on the appropriate free block chain. Otherwise
continue to step A6.

A6. If a split of the current candidate block would give
buddies which are both smaller than S, then the current
candidate block is allocated. Otherwise the split is
made, with the smaller buddy being retained as a new
candidate block S, and the other buddy being placed
on a free block chain. Repeat from step AS5.

Returning a freed block

R1. A block F, is to be returned to the available space
list.

R2. The block F,, the buddy of F,, is located.

R3. If F, has been split further into sub-buddies, or F, has
been allocated, then F, is returned to the appropriate
free block chain. Otherwise F, and F, are recombined
to form a new free block F, and step R2 is repeated.

Note that the merging process in step R3 is the inverse

of a splitting operation performed in A4 or AS: two

adjacent free blocks in the memory pool can only be
combined if each is the brother buddy of the other.
The recombination of buddies in any system requires
the preservation in a block, whether allocated or
available, of some housekeeping information. This
includes a SIZE field, containing the size index, a one-bit

TAG field to indicate the block’s status (allocated or

available) and the location of the buddy block. Although

a block at a buddy address may be available for allocation

it may be unavailable for recombination because it is now

only a sub-buddy if the original buddy - see Fig. 2. The
original block A is split into buddy blocks B and C, and
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Figure 2. Stages in the life history of a block of the memory pool.

C is allocated. Subsequently, B is allocated and then C
is freed, but A cannot be re-formed since B is not free.
Now let C be split into buddy blocks D and E, and E be
allocated. If B now becomes free the address of its buddy
accesses D, which is free, but recombination cannot take
place since D is not the brother buddy of B. The technique
introduced by Cranston and Thomas,!! and extended by
Burton,® which involves the use of a buddy bit, a memory
bit and two-bit I-field, is used to enable the recombination
of blocks in the work described in this paper.

3. BUDDY SYSTEMS WITH SELECTIVE
SPLITTING

The studies of Peterson and Norman suggest that the
weighted buddy system gives a reduction in internal
fragmentation when compared to other systems, largely
due to the fact that it provides nearly twice as many
available block sizes as in a standard buddy system. The
greater number of block sizes allows a better fit of
requested blocks, but conversely smaller and less usable
buddies may be created in splitting blocks, thereby giving
higher external fragmentation.

The technique of selective splitting which we propose
similarly offers a greater number of available block sizes.
The splitting rule (1) of the usual buddy systems is now
replaced by the alternative recurrence relations

S; = Si_say+Si—guy &) = f0) >0, @
and Si = Sikwy T Si—xp» 1) = k(@) > 0.

If f(i) #k(i) and g(i) # I(i) there is a choice of two
splittings of the block of size S;, but we need not have an
alternative splitting for every S;. In the examples of
Tables 2-5 the absence of an alternative splitting is shown
by null entries for k(i) and /(i), but within the form (2)
we could define f(i) = k(i) and g(i) = /(i) when there is
only one split for that value of i.

Peterson and Norman, and also Russell, show that the

Table 2. Block sizes and splitting for disk storage (Burton)

S;

i (block size)  f{i) g(i)
1 1 — -
2 2 1 1

3 4 1 1

4 6 1 2

5 10 1 2

6 20 1 1

Table 3. Two selective splitting schemes for disk storage

i Si S0 g() k(i) 1)
(a)
1 1 — — — —
2 2 1 1 — —
3 4 1 1 — —
4 6 1 2 — —
5 8 1 3 2 2
6 10 1 4 2 3
7 20 1 1 1 1
©®)
1 1 - — — —
2 2 1 1 — —
3 3 1 2 — —
4 4 1 3 2 2
5 6 1 3 2 2
6 8 1 4 2 2
7 10 1 5 2 3
8 20 1 1 1 1

Table 4. A selective splitting scheme based on Fibonacci

i Si S0 8() k(i) )
1 1 — — — —
2 2 1 1 — —
3 3 1 2 — —
4 4 1 3 2 2
5 5 1 4 2 3
6 6 1 5 2 4
7 8 1 5 2 4
8 10 1 6 2 4
9 13 1 6 2 4

10 16 1 7 2 4

11 21 1 6 2 4

12 26 1 7 2 4

13 34 1 6 2 4

14 42 1 7 2 4

15 55 1 6 2 4 *

* Note the emergence of a cycle with period 2.

performance of conventional buddy systems varies
according to the distribution of requested block sizes. If
a buddy system is being designed for a particular
environment in which there is a priori knowledge of the
likely request distribution, it is possible to tailor the
buddy system to improve the performance.”® The main
simulation studies reported in this paper are for selective
splitting alternatives on the weighted buddy system and
do not introduce any new block sizes. The design of a
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Table 5. A selective splitting scheme including blocks of size 3"

i Si fG) 8() k(i) 1)
1 1 — — — —
2 2 1 1 - —
3 3 1 2 — —
4 4 1 3 2 2
5 6 1 3 2 2
6 7 1 5 2 3
7 9 1 5 2 4
8 12 1 5 3 3
9 18 1 4 2 2

10 21 1 7 2 3

11 27 1 6 2 4

12 36 1 5 3 3

13 54 1 4 2 21,

14 63 1 7 2 3

15 81 1 6 2 4

* Note the emergence of a cycle with period 4.

selective splitting system is not, however, limited in its
block sizes, and we give examples to illustrate this point.

Burton considered the problem of a buddy system for
disk storage allocation where there are 10 tracks per
cylinder, and for efficiency a logical block would only be
allowed to overlap a cylinder boundary if it were too large
to fit into a single cylinder. The buddy system must have
blocks of size 1 and 10 (1024 and 10240 words in Burton)
and further, any block of size greater than 10 must be
composed only of blocks of size 10 or greater. The
solution given by Burton is shown in Table 2. We show
two selective splitting schemes in Table 3a and Table 35,
both of which include all the splits of the original scheme
of Table 2. They also provide the addition of new block
sizes (S; = 8 in Table 3a and S, = 3 and S; = 8 in Table
3b), which should reduce internal fragmentation. In all
cases a block of size 20 can only be split into two blocks
of size 10.

If we consider the Fibonacci system and extend the
number of block sizes by including blocks which are twice
the size of the existing Fibonacci blocks we can produce
the selective splitting system shown in Table 4. The
original Fibonacci system is included in this scheme,
which could be varied further by choosing to split some
of the even-sized blocks into two equal blocks.

If, when designing a buddy system, it were known that
a significant number of request blocks would be of sizes

Figure 3. Alternative splits yielding a block of 27 from an 6riginal
block of 81 in the scheme of Table 5.

given by powers of 3, the scheme given.in. Table 5 would
meet the requirement. We notice that a block of size 27
can be obtained in many ways as shown in Fig. 3.
Similarly there are many ways to obtain a block of
size 9.

For another example, consider a situation in which it
were known that request blocks of size 6 would be fairly
common. The binary buddy system has block sizes 1, 2,
4, 8, 16, ..., but if we provided the additional splits of
16—512+4,12—-8+4 or 12—6+6 and 8 »6+2 we could
expect a reduction in internal fragmentation.

Since the performance of a buddy system varies with
the request distribution and, moreover, varies according
to the sequence of requests within a particular
distribution, there is no ‘best’ buddy system. The
examples above illustrate how selective splitting could
tailor a system towards the requests when we have someo
limited information regarding the expected requests. If<
more specific knowledge of the request distribution isg
available we could hope to approach an optimal buddym
system by designing it heuristically.

For example, consider the distribution of memoryg
requests on an IBM 360 CP-67 system. The relatxve,.
frequencies of request blocks are shown in Table 6 1nw
order of decreasing frequency. (Note that there is nom
request for blocks of any other size.) We observe thata
approximately 85% of requests are for blocks of sizes g_
4,5,29,8 or 1 and it is obviously essential that the buddyo
system can offer blocks of these sizes. We consider waysS
in which the desired small blocks of sizes 1,4 and 5 could 8
be produced from larger blocks which also feature in=
Table 6. We see the possible splits
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of which we may select two. (d) appears less attractive
since a block of 6 will hardly ever be required, and
although a block of 8 occurs in (c) we can also obtain
blocks of 8 and 1 from the block of 9 which occurs in (b).
We therefore choose (@) and (b) as useful splits of a block
of size 10, and with the alternative for a block of 9 we
have so far ‘
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Table 6. Actual request distributions

Univ. of Maryland (UM)

Brigham Young Univ. (BYU) IBM CP-67 System (CP67)

Cumulative Cumulative Probability
distribution distribution density

Block size function Block size function Block size function
2 0.000 3 0.000 4 0.248
8 0.360 16 0.064 5 0.219
10 0.440 32 0.168 29 0.156
15 0.540 48 0.276 8 0.112
25 0.840 64 0.400 1 0.111
30 0.940 80 0.458 10 0.041
35 0.965 96 0.627 3 0.037
40 0.975 112 0.826 9 0.020
50 0.985 128 0.949 18 0.019
70 0.993 144 0.953 17 0.009
100 0.996 160 0.957 7 0.006
200 1.000 176 0.961 31 0.004
192 0.964 6 0.003
208 0.970 23 0.003
224 0.983 50 0.003
256 0.994 2 0.002
272 0.996 11 0.002
304 0.998 12 0.002
352 0.999 21 0.002
511 1.000 27 0.001

Continuous distribution,
average request size
15.99 80.26

Continuous distribution,
average request size

Discrete distribution,
average request size
9.34

A block of size 3 appears useful and will allow a split of
8 into 5+ 3.'We could then allow a block of size 4 to split
into 34+ 1. A block of size 29 will give a split into 19+ 10,
with the 19 giving 10+9. We can also provide a block of
'size 8 by the alternative split 29 = 21 +8.

Since blocks ‘of sizes 21 and 50 occur in the request
distribution, it is tempting to include 50 = 21+29.
However, neither 21 nor 50 is a frequently requested size,
and the consequence of this splitting would be the
generation of a large number of unwanted blocks of size
21. We therefore introduce a block of size 58, which will
hold the few requested blocks of size 50, and which will
always split into two blocks of size 29. Tests showed that
the -effect of this decision was a reduction in external
fragmentation from 0.27 to 0.09. Finally, we include the
unique’ splitting 21 = 1249 and the alternatives
12 =943 and 12 = 8+4. We now have the scheme

S M) g k() G

1 — — — —
3 — — — —
4 1 2 -— —
5 1 3 — —
8 1 3 2 2
9 1 5 2 3
10 1 6 3 3
12 2 6 3 5
19 2 3 — —
21 2 4 — —
29 1 6 2 4
58 1 1 — —

If we adopt the usual measure of expected internal
fragmentation as

m m
z Pi (Si_i)/z pil,
=1 =1

where p; is the relative frequency of a request block of size
i and S; is the allocated block size, the expected internal
fragmentation is 0.016, i.e. only between 1 and 2%, of
allocated space is not holding data. This compares with
values between 10 and 18%; for internal fragmentation
using the binary, Fibonacci, F—2 and weighted buddy
systems. (See results in Table 8 which confirm the
expected internal fragmentation performance.) External
fragmentation can only be determined by simulation
experiments, but we would not expect a high value
because the most frequently requested block sizes can be
obtained in several ways from larger blocks.

4. THE WEIGHTED BUDDY SYSTEM
WITH SELECTIVE SPLITTING

Our simulation testing of a selective splitting scheme used
the weighted buddy system as a test case. The details of
the selective splitting are given in Table 7, in which the
S () and g(i) entries represent the original splitting rules
and k(i) and /(i) give our alternative splits. We note again
that for a given range we have exactly the same set of
allocatable block sizes as in the original weighted buddy
system. We would therefore expect to obtain the same
values for internal fragmentation as were reported in
other investigations when using the same request
distributions.
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Table 7. A selective splitting scheme for the weighted buddy
system

i S; S &) k(i) 1)
1 1 — — — —
2 2 1 1 — —
3 3 1 2 — —
4 4 1 3 2 2
5 6 1 3 2 2
6 8 1 4 2 2
7 12 1 3 2 2
8 16 1 4 2 2
9 24 1 3 2 2

10 32 1 4 2 2

11 48 1 3 2 2

12 64 1 4 2 2

13 96 1 3 2 2

14 128 1 4 2 2

15 192 1 3 2 2

16 256 1 4 2 2

Theoretical results have been presented by Russell for
expected internal fragmentation with simple buddy
systems (binary, Fibonacci and F—2). The weighted
buddy system is more complex because g(i) is not
constant. Analysis of external fragmentation is less
tractable, and in buddy systems with a unique split of any
block the level of external fragmentation is a direct
consequence of the buddy system and the request stream.
Only in buddy systems with selective splitting can the level
of external fragmentation be influenced by run-time
decisions. Selective splitting may improve the external
fragmentation if an acceptable technique can be found for
choosing one or other of the alternative splits.

Consider a situation in which we have a request block
of size R = 5 and the smallest available candidate block
is of size S, = 16. The target block size for allocation is
S; = 6. In the original weighted buddy system the block
S, would be split as shown in Fig. 44, producing two free
blocks of size 4 and one free block of size 2. Our selective
splitting includes this split and allows an alternative split
of the candidate block of size 16 into two blocks of size
8, one of which would obviously be split to give a block
of size 6 as in Fig. 4b. We thus create one free block of
size 8 and one free block of size 2. A third possibility is
to split the candidate block into blocks of 12 and 4 and
then subdivide the 12 into two blocks of 6 as in Fig. 4c.
This gives one free block of size 6 and one of size 4. We
wish to choose one of the three options to advantage. We
can advance two arguments against the original weighted
buddy split, option 1. First, it entails three splits, whereas
options 2 and 3 only make two. The fewer the number
of splits, the faster is the execution of the system.
Likewise, more splits generally give smaller free blocks,
which are less likely to be allocated unless the request
distribution is strongly biased towards small blocks. The
choice between options 2 and 3 is harder since both have
two splits. Option 2 has a larger free block, size 8, which
is more versatile since it can be used as it is or split into
two blocks of 6 and 2 or split into two blocks of 4. The
choice may influence the level of external fragmentation,
but it is obvious that the optimal choice is a complex
function of the current state and the total future sequence
of requests. A refined system could base the decision upon

(@)

6 2 6 6

peojumoQq

Figure 4. Splittings for weighted buddy system with R =5,%
S; = 6, S, = 16. (a) Option 1 — the only splitting in the original '
weighted buddy system. (b) Selective splitting — Option 2. (c) 3
Selective splitting — Option 3.

the number of free blocks which already exist of the sizes
which would be created by the alternative splits.
Knowledge of the frequency distribution of requests &
(which could be accumulated during the run of the buddy <
system) could assist in deciding which free blocks were 3
most likely to be useful. However, the greater the number 2
of factors which are considered in making a decision, the S
slower will be the execution time of the allocation.

We conducted a limited investigation of strategies for
choosing a particular split, using identical request
sequences generated randomly from the test distributions
using various seeds to initiate the sequences, but without
consideration of the current state of free block lists or
cumulative distributions of requests. These tests showed
that the strategy of minimising the number of splits was
preferable. Different methods of choosing between equal
minimum split situations were tried, but overall the
marginally most successful method was to choose the split €
which minimised the difference between the largest and
smallest free buddies which would be created. Thus in the
above example option 3 would be chosen. The argument
in favour of option 2, based on the versatility of the block
of size 8, could well be valid locally, but the given strategy
appeared best globally.
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5. THE SIMULATION STUDY

A simulation study for memory management must
assess efficiency both in terms of memory utilisation and
overall running time. The memory utilisation requires
statistics to be gathered for internal and external
fragmentation whilst run time is inversely proportional to
the number of splits, or combinations, since these will be
the same in the equilibrium state.

Previous studies have not been entirely consistent in
their simulation procedures though results have been
comparable. We based our design on Peterson and
Norman, who had given comprehensive results for simple
buddy systems. Although we were concerned with the
effect of selective splitting, our testing program was
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Table 8. Simulation results

Internal External Total Average Average
Buddy system fragmentation fragmentation fragmentation no. of splits  no. of searches
University of Maryland request distribution
Binary 0.28 0.05 0.32 0.32 1.32
Fibonacci 0.20 0.09 0.27 0.41 1.56
Weighted 0.14 0.23 0.34 0.83 1.94
Weighted SS 0.14 0.10 0.23 0.52 1.84
Brigham Young University request distribution
Binary 0.22 0.08 0.28 0.39 1.39
Fibonacci 0.22 0.14 0.33 0.57 1.80
Weighted 0.13 0.30 0.39 1.02 2.20
Weighted SS 0.13 0.15 0.26 0.60 1.99
CP-67 request distribution
Binary 0.18 0.06 0.23 0.24 1.24
Fibonacci 0.13 0.12 0.23 0.44 1.60
Weighted 0.10 0.20 0.28 0.58 1.68
Weighted SS 0.10 0.08 0.17 0.32 1.54
Norman 0.03 0.15 0.18 0.37 1.63
PBH 0.02 0.09 0.11 0.38 1.73

constructed so that we could also simulate the simple
buddy systems and thereby validate our work against
earlier results.

External fragmentation is only meaningful when there
is no available block to satisfy a request and the system
is said to have overflowed. We therefore measure the level
of external fragmentation at every occurrence of overflow
and measure this aspect of the buddy system by the
average of these values. In order to assess the overall
utilisation of memory the internal fragmentation statistic
is also gathered at overflow, although there is always a
meaningful value associated with internal fragmentation.
The measures of fragmentation must be functions of the
buddy system and the request distribution, but indepen-
dent of the size of the memory pool and memory
residence times. We define internal fragmentation as the
ratio

total memory allocated — total memory requested
total memory allocated

and external fragmentation as the ratio

unallocated memory at overflow
total memory size

Each of these is a normalised measure but with respect
to different bases. If we define total fragmentation to be
the proportion of the total memory size which is not
actively holding data we have

total fragmentation = (1 —external)*internal 4 external.

These ratios are then independent of memory size.

A practical difficulty arises when attempting to
measure external fragmentation because it only occurs at
overflow. The frequency of occurrence of overflow, for a
specific application, is obviously a function of the size of
the memory pool. If speed of execution were the
dominant factor and memory were freely available, an
excessively large memory pool would make delays due to
overflow extremely unlikely, at the expense of poor
utilisation of the memory space. Conversely, a small

memory pool will give frequent overflow. In order to
generate overflow and produce external fragmentation
values which would be independent of memory residence
times and comparable across different buddy systems and
request distributions, we used the same approach as Shen
and Peterson, Peterson and Norman. This method uses
a simulation timer and associates with a block allocated
at time T a residence lifetime L drawn from a uniform
distribution from 1 to 10. The allocated block is due to
be released at time T+ L, but overflow is forced by not
releasing blocks at the due times. When overflow occurs
external and internal fragmentation is measured and
blocks released, with incrementation of the simulation
timer, until the block which caused overflow can be
accommodated. Requests and allocations are then made
until overflow again occurs. Whilst this is a contrived
situation it does give the necessary independence of
memory size and memory residence times. Previous work,
like this study, has found it to give consistent results
which agree with observations of real systems. Simulation
runs typically simulated a memory pool of size 1024 and
covered 2000 request allocations. These parameters were
varied in the course of the study, but with insignificant
effect upon the results.

In addition to measuring fragmentation we also
recorded the number of splits and recombinations of
blocks and the number of searches (i.e. the number of free
block lists examined to find a suitable free block). These
two statistics give some measure of the run-time
overheads of a buddy system and enable a comparison
of different systems in terms of throughput.

6. RESULTS AND CONCLUSIONS

We tested our technique using published data for three
actual request distributions. These are distribution for
buffer requests for the UNIVAC 1108 Exec8 system at
the University of Maryland (UM), the distribution of
partition size requests on the IBM 360/65 OS MVT
system at Brigham Young University (BYU) and the
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distribution of memory requests on an IBM CP-67
system (CP67). For the UM and BYU distributions a
cumulative distribution function is given and the
probability density function is assumed to be linear
between tabulated points. The CP67 distribution is
described by a probability density function and there is
no request for blocks of sizes other than those shown. The
three distributions are given in Table 6.

In Table 8 we show the results of using selective
splitting on the weighted buddy system as described in
Section 4 and Table 7. We include results from our
simulation for the binary, Fibonacci and simple weighted
systems, and remark that the results obtained for these
three systems are in accord with the results of Peterson
and Norman. In all cases, as expected, the internal
fragmentation for the weighted system with selective
splitting is the same as for the simple weighted system.
The main objective of this work was to investigate the
effect of selective splitting on external fragmentation, and
these tables show that, for the weighted system, a
significant reduction can be achieved in this respect with
less than half the wastage arising from the simple
weighted system. In comparison with the Fibonacci
system we have no significant difference in external
fragmentation, but the better performance of weighted-
with-selective splitting for internal fragmentation is
noticeable. For these three distributions the binary
system has a low external fragmentation, but is not
competitive in respect of internal fragmentation. When
we consider total fragmentation the lowest results are
shown by weighted-with-selective splitting for all three
distributions, if we exclude our tailored system (PBH) for
the CP67 distribution. We conclude that this new
approach can be applied with advantage in terms of
memory utilisation.

The figures for the average number of splits and the
average number of searches give some indication of the
execution time for those methods to process a sequence
of requests. We recall that our weighted system with
selective splitting only has the same block sizes as in the
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weighted system, and for all three distributions we
observe a marked decrease in the average number of
splits, and hence recombinations, with the selective
splitting which can only be attributed to the effect of the
options. The average number of searches also compares
favourably. There is no marked difference in splits and
searches between Fibonacci and weighted-with-selective
splitting. The binary system has the lowest figures in all
cases. When comparing these values for splits it should
be remembered that selective splitting has more work to
perform in selecting the split to make and in the
housekeeping to record the necessary information
regarding buddies. This extra work per split is unlikely
to exceed the savings achieved by fewer splits in
comparison with the simple weighted system.

In Table 8 for the CP67 request distribution we include
the results for Norman’s tailored buddy system? and for
our heuristically designed system (PBH) developed in
Section 3. We note that for PBH the internal
fragmentation (0.017) is close to our expected value of
0.016 and a little better than Norman achieves. Further
justification of the merit of selective splitting is seen in the
external fragmentation for PBH of 0.09, markedly better
than the 0.15 of Norman.

We noted in Section 1 the observation of Peterson and
Norman that, in previous buddy systems, as internal £
fragmentationdecreasedexternal fragmentationincreased 3

and total fragmentation remained steady. Table 8 shows ¢

that the buddy systems with selective splitting can reduce
internal fragmentation without a significant increase in
external fragmentation and hence give improved total
fragmentation. The PBH scheme for the CP67 distribution
is particularly good.
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