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A crucial aspect of every computer project is the notations used to describe its evolving software. Computer-based
systems have become so large and so complex that software tools are needed to process these notations. Some
requirements for such tools are presented and an environment for their rapid synthesis is described. The environment is
based on the use of a table-driven LL(I) parser that processes the notation. The notation itself is expressed as a form of

attribute grammar.
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1. INTRODUCTION-NOTATIONS AND
THE SOFTWARE LIFE-CYCLE

There is now a consensus that producing large, complex
pieces of software is an engineering process. One
consequence of this is the model of software production
known as the software life-cycle. It consists of a series of
phases: requirements analysis, specification, design,
implementation, operation and maintenance. Splitting
the production of software into a series of phases with
well-defined end-products leads to control of complexity,
enhanced project visibility and the establishment of
models for resource planning and allocation.

Each phase of the software life-cycle requires a
notation to describe the characteristics of the software
which are important for that phase. It may be a graphical
notation, a mathematical notation, natural language
or a constrained subset thereof, or a programming
language.

Typical examples of such notations are: natural
language for requirements analysis, graphic notations
such as structure charts used in system design' and data
flow diagrams used for functional specification,? special-
purpose mathematical notations such as Z* for use in
functional specification and program-like notations such
as schematic logic used in system design.*

We have now reached the position in many software
projects where the size and complexity of such notations
is such that human processing is inadequate. The most
recent expression of this was the report of the British
Government’s Alvey Committee,> and its subsequent
software engineering strategy.® They identified a need for:
‘...more tools to assist with software specification,
design, testing, rectification and development’,® and
envisaged the development of integrated programming
support environments which contain: ‘...a compatible
set of specification, design, programming, building and
testing tools, supporting a development methodology
that covers the entire life-cycle’.®

There have been very few automated tools for the
processing of life-cycle notations, apart of course from
tools such as compilers and interpreters used in
implementation. Those that have existed, for example:

PSL/PSA? for specification, SREM?® for requirements.

analysis and specification and PDL? for detailed design,
are themselves the result of a large software development
effort. They suffer from the major disadvantage that the
software developer who decides to use them has often to
make a major investment decision in replacing the
life-cycle notation that he currently uses. This paper
describes the Toolbuild environment, which rapidly
produces software tools for the processing of a wide

variety of software notations which can be expressed
using LL(1) grammars. The environment does not suffer
from the disadvantage outlined above. A developer who
wishes to synthesise software tools for his own notations
can use Toolbuild in a relatively painless way without
expending a large amount of resource.

2. THE REQUIREMENTS FOR SOFTWARE
TOOLS FOR PROCESSING LIFE-CYCLE
NOTATIONS

There are number of general requirements for software
tools which are to process life-cycle notations. They are
as follows.

Software tools are needed to check fragments of the processed
notation for syntactic correctness. This, of course, assumes that
a formal definition of the notation already exists.

Software tools are needed to display the structure of
fragments of the processed notation. If the notation is a linear
one such as a program design language then this implies some
degree of formatting. If the notation is a graphical one then it
implies some degree of pictorial layout.

Software tools are needed which are able to perform some
degree of semantic processing. For example, a software tool for
processing a program design language should check that all
declared program units are used and that all used program units
are declared.

Since software maintenance can occupy as much as 60%, of
project cost,!® a software tool is required to provide adequate
retrieval and query facilities for staff engaged in this activity.

A major requirement of any software tool is that it should
be compatible with existing and future software tools. For
example, the output from a specification tool should be able to
be processed as an input by a design tool. One of the major
developments of the 1980s will be the construction of program
support environments.!! These represent a merging of
development methodologies and tools in order to support all the
activities of the software life-cycle. It is mandatory that any tool
used in such environments should be compatible with other
tools used.

The software tool produced must be able to store facts which
are in a form suitable for processing by advanced knowledge-
based systems. A recent expression of this desire occurred with
the British Government’s Alvey initiative.® This envisaged the
production of third-generation integrated program-support
environments, whose central feature would be a set of
compatible software tools which used notational data and
project data stored in a central knowledge base.

Software tools should be easily transportable from computer
to computer.

3. THE TOOLBUILD ENVIRONMENT

In response to the requirements outlined in the previous
section, a prototype environment for the rapid production
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Figure 1. A possible semantic net for the Pascal procedure sumup.

of notational software tools has been constructed. It is
programmed in Pascal and runs under the TOPS 20
operating system for the DEC 20 range of computers. The
main idea behind the environment is that of the
processing and storage of life-cycle notations as binary
relations configured as semantic nets. In order to
illustrate the facilities of the environment, the paper will
use as example notations either the programming
language Pascal or a program design language for which
notational tools have already been produced using
Toolbuild.

3.1 Semantic nets

A semantic net is a graph structure which has been used
extensively in artificial intelligence applications. For
example, semantic nets have been used in natural-language
processing,'? as a representation of facts in an expert
system for mineral exploitation'®* and as a model of
memory.4

A semantic net is a binary directed graph whose nodes
represent objects and whose edges represent relations
between the objects. A fragment of semantic net which
describes the Pascal procedure sumup below is shown in
Fig. 1.

101 procedure sumup(var total: integer ;summedarray:

arrofmax);
102 var index:1. . maxindex;
103 begin
104 total:=0;
105 for index:=1 to maxindex do total:

=summedarray[index]+ total
107 end;

The numbers on the left in the program fragment are
assumed to be line numbers on a program listing. In Fig.
1 nodes in the semantic net are shown as small circles
while relations are shown as labelled arcs. For example,

Fig. 1 shows that the node index is a local variable in the
procedure sumup, and that it is declared on line 102, and
has a type /. . maxindex and occurs on lines 105 and 106.

It has already been shown that semantic nets are a
convenient  mechanism for ensuring  system
compatibility,’® for controlling source code versions of a
software system'® and for the maintenance of program
and design notations.!” Moreover, a software tool, based
on semantic nets, has recently been constructed which
processes a program design language used in detailed
design and which provided facilities for maintenance
personnel.’® Semantic nets are useful within the context
of notations for life-cycle activities for two reasons. First,
they are a convenient unifying mechanism for expressing
the binary relations that are inherent in a fragment of any
life-cycle notation which can be expressed in an LL(1)
form. The notation may range from a simple one such as
a job control language to a more complex one such as a
programming language or specification language. Sec-
ondly, semantic nets are also useful in that they are a
direct representation of the relations inherent in a
fragment of life-cycle notation. This means that the
processing of these relations as a semantic net is much
more simple than the processing of the fragment of
notation from which the net has been derived. For
example, a semantic net, stored as a hashed table, and
which holds instances of relations that describe calling
sequences in a programming language fragment, is easier
to process than the source of that fragment. This, of
course, assumes that a relatively painless way of con-
verting from the source representation to the semantic
net is available.

The main constraint in using semantic nets arises from
the fact that they are an extremely simple general
representation of the relations inherent in a fragment of
software notation. This simplicity may lead to processing
and storage inefficiencies. For example, a semantic net
implemented as a hashed table which contains instances
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Figure 2. The architecture of the Toolbuild environment.

of a 1 to n relation such as procedure calls would be more
inefficient than a circular list with backward, forward and
parent pointers. However, little work has yet been
performed on the information needs of the software
developer and the structure of software engineering
databases to provide evidence that a semantic net
representation is too simple. A further constraint is that
the notation processed, be it specification language or
programming language, has either to be in an LL(1) form
or can be translated into that form.

The work described in Ref. 18 was limited, in that a
special-purpose tool was designed for one life-cycle
notation. This paper reports a major extension and
generalisation of that work. It has involved the
production of an environment where tools can be
produced relatively quickly for a number of notations
which can be expressed using an LL(1) grammar.

3.2 The architecture of the Toolbuild environment

The Toolbuild environment is shown in Fig. 2. It consists
of a number of components. Two are concerned with
constructing a collection of binary relation instances
which represent a semantic net that describes a particular
fragment of life-cycle notation; the remaining three are
interfaces to the semantic net.

The first component is a syntax-directed parser/for-
matter. This processes the source text of the notation and
the syntax of the notation which has been overloaded
with formatting instruction.!® The syntax is expressed in

a version of BNF known as EBNF.2° The purpose of the
parser/formatter is to check fragments of life-cycle
notation for syntactic correctness and to display a
formatted listing of the text which accords with the
formatting instructions in the overloaded (formatted)
syntax. The parser/formatter is based on a modified
version of a software tool originally intended for use with
programming languages.’® The extract shown below
describes one simple rule for the syntax of the program
design language in the form processable by the
parser/formatter. It shows the overloaded EBNF
description of a design library.

librarydesign =
‘library’ _libraryid {newline} R 1 librarydescription R R
‘end_library’ _ libraryid {newline}

The symbols R, I and _ are the formatting instructions
to the syntax-directed translator. Expansion of the
non-terminal librarydesign sets the left margin; R
performs a return to the current margin which has been
set; I indents with respect to the current margin and _
inserts a space into the listing. As well as producing a
formatted listing the parser/formatter also produces a
symbol stream. This symbol stream consists of a sequence
of elements which represent the occurrence of syntactic
entities in the output text. Each element consists of the
syntactic entity name, its value and its location (page
number, line number) on the listing produced by the
parser/formatter. For example, the occurrence of the
syntactic entity identifier which has the value actuator and

THE COMPUTER JOURNAL, VOL. 29, NO. 2, 1986 153

¥20Z I4dy 01 uo 1senb Aq L0S09Y/LSL/Z/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq



D. INCE AND M. WOODMAN

which occurs on line 12 of page 3 of the listing would be
represented in the symbol stream as:

identifier ‘actuator’ 3 12

This symbol stream is then processed by a binary
relation generator, which produces a semantic net that
holds relations which describe the processed text of the
life-cycle notation. The semantic net is stored very simply
as sets of tables of triples.

The binary relation generator, in order to produce the
semantic net, requires information about which relations
need to be generated and in what contexts. This is
provided by a binary relation table which relates syntactic
entities occurring in the symbol stream to instances of
relations in the generated semantic net. The binary
relation table consists of a series of entries. Each entry
holds the name of the syntactic entity, together with the
processing that is to occur when an instance of that entity
occurs in the symbol stream. An example of part of a
binary relation table entry is shown below.

if invardecs then
begin
issue(symbolname, is_declared_on’ line,3)
issue(symbolname,‘ is_a’,‘ variable’,1);
top(symbolstack,context);
issue(symbolname,’ is_var_declared_in’ ,context,1);
insert(symboltable,symbolname)
end

It describes the part of the binary relation table entry for
objects of syntactic class ident (identifier). It shows that
when an object of syntactic class ident is encountered in
a variable declaration an instance of the relation is
declared on is generated. The left-hand object in the
relation instance will be the current symbol in the symbol
stream and the right-hand object will be the current line
number in the symbol stream. The fourth parameter (3)
associates the generation of the relation instance to a level
number. When a binary relation instance is generated
from a fragment of life-cycle notation the user is able to
influence this generation at run time. This is achieved by
having ten levels of generation (1..10). By switching
levels on and off the user can influence which instances
are generated. Thus, if level 3 is switched off an instance
of the relation is_declared_on will not be generated.

The fourth line generates an instance of the relation is
a which shows that the value of ident is a variable. After
this the top value on a symbol stack is retrieved and is
placed in the variable context. This variable holds either
a procedure, function or program name. The fifth line
issues an instance of the relation is var_declared_in which
describes the fact that the processed identifier is declared
in context. Finally, the symbol is inserted into a symbol
table for later processing by other entries in the binary
relation table.

The parser/formatter and binary relation generator are
a form of compiler generator which accepts the syntax of
a software notation expressed as an LL(1) attribute
grammar.2-22 However, the major difference between
Toolbuild and typical compiler generators such as those
described in Refs 23 and 24 is that program code, abstract
code or semantic trees are not generated. What is
generated is a semantic net which describes the
relationships between syntactic objects in the processed
notations.

The remaining components of the Toolbuild environ-
ment are concerned with the provision of interfaces
between the generated semantic net and potential users.
Interfaces exist for the programming languages: Solo,
Pascal and Prolog. Solo is a programming language
developed at the Open University.? It is an interactive
procedural language for the manipulation of semantic
nets. It provides the range of facilities that would
normally be expected in a procedural language. Facilities
exist for: input/output; repetitive control; conditional
control; the definition and invocation of procedures; the
retrieval, deletion and modification of semantic nets; and
pattern matching on semantic nets. The main use of Solo
is in forming queries on the semantic net. It is envisaged
that it will be most useful for staff engaged in software
maintenance. An example of its use is shown below. It
shows a Solo procedure PRCALLVAR which queries a
semantic net holding objects and relations for the text of
a software system expressed in the program design
language. This procedure has two parameters /X/ and
/Y/; it displays those procedures which are called by
procedure /X/ and in which variable /Y/ is declared. A
relation is described in Solo as:

left object — relation —) right object

This notation will be used throughout this paper.

TO PRCALLVAR /X/ /Y/
FOR EACH CASE OF /X/ — CALLS — ?A
CHECK /Y/ — IS_.VAR DECLARED_IN — *A
IF PRESENT: PRINT *A; CONTINUE
IF ABSENT: CONTINUE
DONE

PRCALLVAR iterates over each instance of the relation
calls in which /X/ participates. Each time that an
instance is found the right-hand side is placed in the
variable A. For each value of A so found Solo then checks
that it occurs in the right-hand side of a relation instance
of is var declared in with the left-hand side being the
parameter /Y /. If an instance is found the procedure is
displayed. The asterisk in front of the variable A in the
Solo fragment represents the value of A which has been
pattern matched in the relation
/X/— CALLS —) ?A

This is a simple example in the use of Solo. In general any
query which can be expressed in first-order predicate
calculus can be expressed procedurally in Solo. Although
the Solo notation looks a little cumbersome it has
achieved a great deal of success in teaching programming
and artificial intelligence concepts to a wide variety of
novice students.2® The syntax of Solo is described in an
appendix to this paper.

The Pascal interface consists of a set of procedures
which perform pattern matching and retrieval of objects
and relations held in the semantic net. An example of its
use is shown below. It shows the Pascal procedure
checkdecused, which processes the semantic net that
represents a fragment of the program design language
and prints out the name of those procedures which are
declared but never called.

procedure checkdecused(programme:string);
var

procs, lines: answers

procname, linenumber : string;
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begin
getobjects(programname,’ has_proc’ ,procs,maindatabase);
nextfrom(proc,procname);
while procname { Yendofanswers do
begin
getobjects(procname,’‘is_called_on’ lines,maindatabase);
nextfrom(lines,linenumber);
if linenumber =endofanswers then
begin
write(‘ procedure’);
writestring(procname);
writeln(‘ is declared but not called’)
end;
nextfrom(procs,procname)
end
end;

Checkdecused uses the type answers, the constant
endofanswers and the procedures getobjects and nextfrom.
These are all part of the Pascal interface. Answers is a
sequence of strings which consist of all the objects that
participate in a relation on a right-hand side, given a
left-hand side and the name of a relation. Nextfrom
extracts from an object of type answers each string that
occurs in it. Getobjects has four parameters: the first is
a string on the left-hand side of a relation, the second is
a string which is a relation name, the third is of type
answers and the fourth is a data structure holding the
semantic net made up of binary relations. When called
getobjects places in the third parameter those strings
which occur in instances of relations whose left-hand side
is the first parameter, whose relation name is the second
parameter and which occur in the data structure given as
the fourth parameter. The constant endofanswers delimits
the end of the strings that make up the sequence held in
an object of type answers.

Checkdecused achieves its effect by extracting the name
of all the procedures in the program programname and
placing the sequence of procedure names in procs. The
relation has proc which defines the division of the
program into procedures is used as the second parameter
in the first call of getobjects.

Each procedure is then extracted using nextfrom and
a second call on getobjects places a sequence of line
numbers on which the procedure is called in /ines. The first
element of this sequence is then extracted. If it is the
constant endofanswers then there were no calls. The
procedure has been declared in progname but not called,
and its name is printed out.

It is envisaged that the Pascal interface would be
employed in activities such as report writing or static
analysis by users who wish to perform the type of
sophisticated processing that would be difficult or
awkward in Solo. A full description of the interface is an
appendix to this paper.

The PROLOG interface consists of a Pascal program
which converts a semantic net into a series of PROLOG
clauses that represent the semantic net and which can be
easily inserted into PROLOG programs. It is envisaged
that users who wish to perform knowledge processing or
wish to query the semantic net in a non-procedural way
would use this interface.

4. APPLICATIONS OF THE TOOLBUILD
ENVIRONMENT

There are six major applications of the Toolbuild
environment. The first is as a basis for the rapid
generation of automated tools which perform syntax
checking and formatting of a wide variety of life-cycle
notations.

The second application is as a basis for the rapid
generation of automated software maintenance tools.
Van Horn?® has accurately described the lack of software
tools for this phase of the software life-cycle:

Information retrieval technology has not yet been rigorously
applied to the problem of obtaining information about the
structure, code and documentation of an existing software
system. Yet the quality of software evolution depends critically
on how well the evolver understands the system that he is
evolving. We are not doing everything we could to facilitate that
understanding

We hope that the Toolbuild environment is a first step
towards the provision of portable maintenance tools
which are able to process complex queries about a
software system expressed in a variety of life-cycle
notations.

A third application is as a basis for the rapid generation
of tools for the automatic enforcement of standards. A
description of a software system in a specific life-cycle
notation should be readable, comprehensible and not
over-complex. Normally, in a development environment
the software developer will insist on notational standards
which encourage these properties. Typical examples of
such standards are:

Vertically align repeat. . .until clauses.

In a subroutine or procedure declaration the input
parameters should be written first followed by the output
parameters and then any input/output parameters.

Subroutines or procedures should not contain control
constructs which are nested to a depth greater than four.

The ratio of commented code to executable code should be
between 20 and 259, .

In a design the fan-out from a program unit should be no
higher than six.

In a design the names of modules should be unique and follow
a specific convention. For example, each name should consist
of the system name followed by a string.

Although notational standards are still a controversial
topic, the point made in this paper is that whatever
standards are chosen there is a very high probability that
the Toolbuild environment will be able to enforce them.
This enforcement can be done in two ways. First, the
formatted syntax processed by the parser/formatter can
enforce layout- and syntax-related standards. The first
two standards shown above would come into this
category.

A second category of standards can be enforced by the
Pascal or Prolog interfaces. By careful choice of relations
produced by the binary relation generator, standards

such as the last three above can be enforced. For example,.

the standard which relates the ratio of commented lines
to executable lines can be enforced by generating
relations of the form:

SYSTEM — occurs_line — line_number
END_SYSTEM — occurs_line — line_number
comment — starts _on_line — line_number
comment — ends_on_line — line_number
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and by using either the Pascal interface or Prolog
interface to calculate the ratio present.

At present there are very few reliable experiments
which indicate which particular standard is beneficial. A
software manager who devises standards often does so
iteratively using common sense and experience. The
Toolbuild environment easily allows this form of
development. Whenever a standard is introduced,
removed or modified in a life-cycle notation either the
syntax of the notation is modified or the binary relation
generation rules changed and new Pascal or Prolog code
written to enforce the standard. This can involve much
less work than modifying a special-purpose one-off
standards-enforcement tool.

A fourth application of the Toolbuild environment is
as a basis for the rapid generation of static analysis tools
for the detection of errors and anomalies. They detect
anomalies such as uninitialised variables, incorrect
common block alignment and incorrect parameter
alignment. Such tools have in the past been mainly used
in FORTRAN environments??- 2¢ but there is no reason
why they cannot be constructed for other life-cycle
notations. Such static analysers can take man-years to
construct, or rely on non-portable software such as
general-purpose database management systems.

A fifth application is in the rapid generation of tools
for metric calculation. If software engineering is to
become a mature engineering discipline its practitioners
are going to have to be able to judge the quality of a piece
of software as it progresses through its life-cycle. One way
of doing this is by examining the text of software
specification and design notations and evaluating
structural metrics.

There is a serious shortage of research work concerned
with deriving quality metrics from design and specification
notations. One view is that with design in particular, we
now know enough about what constitutes a good design
in structural terms to be able to establish metrics; that the
only bar to their derivation is a lack of automated tools
for the processing of design notations.?®

Toolbuild is capable of producing software tools which
are able to extract structural properties such as module
fan-in and fan-out and complexity of shared data. From
these properties design metrics can be calculated.
Moreover, the ease with which such tools can be
produced is compatible with the way in which structural
metrics research will be initially carried out. Toolbuild
will enable the metrics researcher to modify, delete and
include new relations and objects in the generated
semantic net and relate behavioural properties of the
software such as reported bugs to these relations and
objects. The researcher would gradually refine the
structural properties monitored until an adequate
correlation was achieved.

A final, more tentative application of the Toolbuild
environment is in the domain of knowledge processing.
A semantic net which has been derived from a fragment
of life-cycle notation represents facts about the software
that the notation describes. For these facts inferences can
be made. Semantic nets have been used in a number of
expert systems, see for example Ref. 13, which have been
successful in a number of limited domains. Little research
has yet been performed in the use of knowledge-based
systems in software projects. Indeed, it is still an open
question as to whether the same degree of success can be

achieved for semantic net-based systems in a slightly
richer domain as software development. However, the
Toolbuild environment will at least provide an experi-
mental testbed for resolving some of the number of
unanswered research questions that remain.

5. USING THE TOOLBUILD
ENVIRONMENT

In order to develop a set of tools for a specific life-cycle
notation the software developer has to carry out a
number of activities. First, the syntax of the notation has
to be defined in EBNF. Secondly, this syntax has to be
transformed to a formatted syntax!® which determines the
layout of fragments of the notation. Whatever other tools
the developer requires, he has already carried out the
actions needed to produce a processor for syntax
checking and formatting.

The next step is to define which binary relations are to
be generated from fragments of the notation, and
construct the binary relation table. The choice of relation
depends on the tools that are required over and above the
already constructed syntax checker and formatter. For
example, if the developer wishes to use Solo, Pascal or
Prolog to extract maintenance information he must
choose relations which reflect the structural properties
which maintenance personnel wish to query. For
example, relations which indicate calling sequences,
hierarchy structure and variable usage would be defined.
If the developer wishes to construct a standards enforcer
then he would choose relations which reflected the
structural, syntactic and layout properties that are to be
enforced.

If the developer only requires formatting, syntax
checking and query processing for maintenance personnel
no further work need be done. Maintenance staff can use
the Pascal, Solo or Prolog interfaces to query the
generated semantic net.

However, if the developer wishes to develop further
tools such as static analysers or standards enforcers then
programs will need to be written which use one of the
Toolbuild interfaces to examine the generated semantic
net. The processed data for these tools is in such a simple
form, i.e. a set of binary relations, that the process of
writing these programs, while not trivial, is not a
particularly difficult or time-consuming task.

6 DISCUSSION AND CONCLUSIONS

In gauging the effectiveness of the Toolbuild environment
it is first necessary to re-examine the six requirements
presented in the second section of this paper. First, the
Toolbuild environment is able to check for syntactic
correctness. The parser/formatter processes fragments of
life-cycle notation which are defined in EBNF. However,
the syntax must be expressed as an LL(1) grammar.
Secondly, the Toolbuild environment is capable of
formatting fragments of life-cycle notations. Moreover,
this formatting is under the control of the project
manager. By including formatting instructions which
overload the syntax of the life-cycle notation preferred
layouts can be imposed. A weakness of the Toolbuild
environment is that it is at present only capable of
processing linear notations. It cannot syntax-check or
format graphic notations. However, this is not a
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particularly serious drawback. Toolbuild is capable of
being used as a sophisticated back-end processor to
simple graphics software which constructs and displays
graphic notations. Indeed, in an earlier project we have
used semantic nets to represent data flow diagrams used
in system specification. By processing a linear ‘compiled’
version of the graphics produced by the graphics
software, Toolbuild is capable of responding to many of
the requirements outlined in this paper.

Thirdly, the Toolbuild environment is also capable of
satisfying the requirements for semantic processing. By
constructing programs using the Pascal or Prolog
interfaces a large amount of semantic processing can be
performed. This ranges from simple semantic processing
such as checking that a called program unit has been
declared, up to the generation of sophisticated structural
metric values.

Fourthly, the Toolbuild environment is capable of
satisfying the maintenance requirements. Indeed, it
represents one of its strengths. Maintenance staff are able
to interrogate text of a life-cycle notation; procedurally
using Pascal or Solo, or non-procedurally using Prolog.
Moreover, the use of Solo allows queries to be
constructed and processed interactively in the same way
that a sophisticated DBMS query language would be
used. The derivation of maintenance information should
not be confined to the use of the three interfaces which
have been constructed. The simple method of storage
chosen for the semantic net should mean that provision
of interfaces to languages such as LISP and to relational
database management systems should not be difficult.
The experience with the Prolog interface supports this, as
it only took five man-days to construct.

The requirement for compatibility with other software
tools is satisfied in the respect that a developer using the
Toolbuild environment for a series of consecutive
life-cycle notations would use the same facilities and
storage method for the semantic nets which represent
fragments of these notations.

The requirement for storage of notations in a form
suitable for processing by knowledge-based systems is
satisfied to some degree by the Toolbuild environment.
Semantic nets have been used with some success in a
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APPENDIX

This appendix describes the syntax of both Solo and the
Pascal interface using the British Standards Syntactic
Metalanguage®? augmented with EBNF.2° The notation,
briefly, is as follows:

, used as an explicit concatenation symbol

; used as a production rule terminator

(* *) used to include comments — used here for semantics
? 7 used to enclose special sequences

‘ used to delimit terminal symbols

* used to indicate repetition

— used for syntactic exception

Solo is a novice programming language suitable for
artificial intelligence applications. A Solo database
consists of semantic nets constructed by a user together
with procedures for the manipulation of these nets. The
procedures will also have been written by a user. A more
informal description of Solo is contained in Ref. 25. The
syntax of the language is shown below:

solo session = {solo command} finish command ;

finish command = (quit | bye) , command terminator ;

command terminator =* ; > | ? UK 7-bit character

carriage return ? ;

solo command = (top level command | edit command),

command terminator ;

top level command = common command | top only

command ;

edit command = common command |

command ;

top only command = edit | help | simple check |

simple test | to;

edit only command = complex check | complex test |

for | while | until;

common command = comment | describe | disable |
dir | dump | enable | forget | input | kill |
let | list | note | plot | print | save | write
.| user proc call;

edit only
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bye = ‘BYE’
(* Is used to save the current Solo database on the
user disc and terminate the current SOLO session *);
quit = ‘QUIT’
(* terminates the current Solo session and leaves the
database as it was when the session was started *);
simple check = ‘CHECK’, “’, pattern ;
complex check = simple check , command terminator ,
if present , command terminator , if absent ;
if present = ‘If Present:’ , edit command - conds, *;’,
control command ;
if absent = ‘If absent:’ , edit command —conds , ; ,
control command ;
pattern = node , link , node | node, link , wildcard |
wildcard , link , node
(* if pattern starts with a wildcard it can’t end with
one and vice versa *);
link = “—’, relation , ‘="’ ;
simple test = ‘TEST’,“’,node, *’,“=",*’, node
(* inspects the nodes to see if they are the same *);
complex test = simple test , command terminator , if yes,
command terminator , if no ;
if yes = ‘If Yes:’ , edit command - conds , ¢ , control
command ;
if no = ‘If No:’ , edit command — conds , ‘;’ , control
command ;
(*If the TEST is within a user procedure, then it is
followed by two sub-lines which indicate what action
Solo is to take depending on the success/failure of
the TEST, i.e.,
If Yes: (procedure); control statement
If No: (procedure); control statement *)
control command = continue | exit | next case ;
exit = ‘EXIT’
(* used by either CHECK or TEST to terminate
execution of the current user procedure *);
continue = ‘CONTINUE’
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(* used by either Check or TEST to tell Solo to
continue execution of the current user procedure at
the next statement *);
next case = ‘NEXTCASE’
(* is a control statement used by either CHECK or
TEST to tell Solo to return to the higher level FOR
procedure in which CHECK or TEST is included*) ;
conds = check | test | for | while | until;
describe = ‘DESCRIBE’, ¢’ , node
(* gives the description of a node in a semantic net*);
dir = ‘DIR’
(* gives the full list within the current Solo database
of
(i) The set of Solo procedures.
(ii) The set of user defined procedures.
(iii) The set of nodes for which descriptions exist *);
disable = ‘DISABLE’, ¢’ , switch
(* will turn OFF one of the switches which define the
user’s working environment *) ;
enable = ‘ENABLE’ , ¢’ , switch
(* will turn ON one of the switches which define the
user’s working environment*) ;
switch = inverse | protection | printout | printer |
outfile | trace ;
trace = ‘TRACESTATS’ (* traces all procedures *) |
‘TRACEPROCS’ (* traces user procedures *) |
‘TRACEPLOT’ (* traces output to plotting
subsystems*) ;
inverse = ‘INVERSE’ (* allows pattern matching on first
node *) ;
protection = ‘PROTECTION’ (* prevents novice access
to procedures *) ;
printer = ‘PRINTER’ (* to all terminal output goes to
printer *) ;
printout = ‘PRINTOUT’ (* all uses of NOTE and
FORGET result in verification *) ;
outfile = ‘OUTFILE’ (* all terminal output is also
copied to file *) ;
dump = ‘DUMP’
(* will list the complete set of user procedures and
the entire semantic net to the terminal and the
printer or output file if the appropriate switches are
enabled *) ;
edit = “‘EDIT’, *’, user procedure
(* activates the screen editor *) ;
edit session = { up | down | insert | replace}, done;
up = ? function key or control code for cursor up ?
(* moves you to previous line *);
down = ? function key or control code for cursor down?
(*moves user to next line if not on last line *) ;
insert = ? function key or control code for insert ?, edit
command
(*inserts a new line before current line *)
replace = ? function key or control code for replace ?,
(edit command | if present | if absent | if yes |
ifno | do)
(*replaces current line and any sub-lines *) ;
done = ? function key or control code for done ?
(*finishes edit session and returns to Solo top level*) ;
forget = ‘FORGET’, ‘’, pattern
(* will remove the specified relation(s) from the
semantic net*);
help = ‘HELP’, ‘ ’ procedure name
(* Help may be obtained on any Solo procedure by
typing:

HELP »SOLO procedure) *) ;
input = ‘INPUT’, ¢’ , variable {variable}
(* Will halt the activated procedure and ask the user
to supply a value for the variable *);
kill = ‘KILL’, ¢’ , user procedure
(* Will remove the user procedure from the SOLO
database *) ;
let =“LET’, ¢’ , variable = node
(* will assign a value to a variable *) ;
list = “‘LIST’, *’, user procedure
(* will display the specified user procedure *) ;
note = ‘NOTE’ , ‘’ , node , link , node
(* stores a new relation in a semantic net *);
print = ‘PRINT’ , print list
(* evaluates print list and prints on new line *) ;
write = ‘WRITE’ , print list
(* evaluates print list and prints on current line *);
plot = ‘PLOT’, print list
(* evaluates print list and sends to graphics
sub-system *) ;
print list = { ¢, (quoted string | simple node)} ;
quoted string = “*** | { character } , * "’ ;
parameter = ‘/’, id character , ‘/’;
node = simple node , {* “ ‘S’ , ¢’ , node};
simple node = identifier | parameter | variable ;
variable = ‘*’ | [id character] ;
user procedure = identifier ;
identifier = id character , 11 * [id character]
(*names may be up to 12 characters, etc. *)
(* Assumedefinitionsof capitals, printablecharacters,
etc.*)
character = printable character ;
id character = capital | <.” | > | ‘(¢ | ’);
save = ‘SAVE’
(* Will make a copy of the current SOLO database
on the user disc *);
for = ‘FOR EACH CASE OF’, ¢’ , pattern , command
terminator , do ;
do =‘Do:’, ¢’, edit command ;
to=‘TO’, *’, user procedure , [ ‘’ , parameter];
while = ‘WHILE’ , ¢’ | pattern , command terminator,
do;
until = ‘UNTIL’, ¢’ , pattern , command terminator ,
do;
user proc call = user procedure , {* ’, node} ;
The interface to Pascal is similarly described. It consists
of a series of procedures for pattern matching and the
sequential retrieval of relations which match a particular
pattern. The syntax shown below assumes the standard
definition of Pascal declarations and Pascal statements.
The procedures assume that a relation is given as the triple

subject verb object
pascalinterface = ‘procedure’ ‘userprocedure’ user-
procbody;
- userprocbody =

declarations ‘begin’ {pascalstatements | interface-
calls} ‘end’ *;’ ;
declarations = {pascaldeclarations | interfacetyperefs} ;
interfacetyperefs =
‘dictionary’(* Data structure holding semantic net*) |
‘string’(* Large packed array of characters *)
‘answers’(* List of results obtained by pattern
matching procedure*);
interfacecalls =
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‘initialisedictionary’ ‘(* dictionaryid °)’

(* Sets up net data structure *)

‘(* binrelationfile °, ‘dictionaryid )’

(* reads file of triples into the semantic net *) |

‘inserttriple’ ‘(‘ subjectstring ’, verbstring °,
‘ objectstring ’,‘dictionaryid )’ (* Inserts a single
triple *) |

‘readstring” ‘(* stringid ’)’ (* Read string from

terminal *) |

‘writestring’ ‘(‘ stringid ’)’ (* Write string to

terminal *) | ‘nexttfrom’ ‘(* listofresultsid ’,

¢ resultstringid )’

(* returns the next result from the list of strings *)

| “buildnet’
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| “getsubjects’‘ (‘ subjecttobematched’, ‘ givenverb’,
¢ givenobject , ¢, dictionaryid °)’

(* constructs list of answers satisfying relations with
verb and object *) |
‘getverbs’ ‘(‘givensubject °, ¢ verbtobematched °,
¢ givenobject ’, ¢ dictionaryid °)’
(* constructs lists of answers satisfying relations with
subject and object *) |
‘getobjects’ ‘(° givensubject ’, ¢ givenverb °,
¢ objecttobematched ’, ¢ dictionaryid *)’
(* constructs list of answers satisfying relations with
subject and verb *);
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