Use of Mean Distance Between Overflow Records to Compute
Average Search Lengths in Hash Files with Open Addressing

J. BRADLEY

Computer Science Department, University of Calgary, 250 University Drive, N.W. Calgary, Alberta, Canada T2N IN4

Average search lengths for hash files with open addressing have been computed using the well-known Poisson
distribution for the number of addresses assigned x records, and a new expression for the mean distance between
overflow records overflowing from a common home address. The method involves computing first the number of disk
accesses required to randomly retrieve the y records overflowing from any home address, using a knowledge of the mean
distance between overflow records on the disk. The Poisson distribution is then used to obtain the total disk accesses
required to retrieve all records in the file, from which the average search length, as total accesses divided by total
records, may be deduced. The average search length values obtained agree closely with experimental results. Because it
also dispenses with the complex mathematics of existing methods, this new method can be recommended for use in
practical design situations. A by-product is that values for the mean distances between overflow records for different

loading factors and address capacities are also predicted.

Received February 1985

1. INTRODUCTION

The method of open addressing with hash files, also
known as progressive overflow or consecutive spill, was
first investigated experimentally by Peterson® in the
1950s. In a now classic series of experiments, Peterson
showed that the average search length decreases with
address capacity and increases with loading factor. The
average search length is defined as average number of disk
accesses required to retrieve a random record from the
file.::4 ¢ The loading factor is defined as the fraction of
the total disk space occupied by the records, and address
capacity is defined as the number of records an address
can hold, where it is an address value that is calculated
by the hashing routine.l-4: ¢

Peterson’s work assumed that the hashing routine
distributed the records over the address space in a random
fashion, that is, each address has an equal probability of
being generated when a record key is hashed. It has since
been realised!- *%45 that a random distribution is the
worst case that should be accepted. It is a distribution that
is better than random that is desirable, that is, a
distribution where the records are more evenly distributed
over the addresses. Nevertheless, in practice such a more
even distribution has proven very difficult to attain,-2.3
whereas it is relatively easy to generate a random or close
to random distribution. In consequence, Peterson’s early
results are still very relevant in practical hash file design.

Following publication of Peterson’s results, attempts
were made to deduce the average search lengths
theoretically using the Poisson distribution, which gives
the number of addresses F(x) that have been assigned x
records, when the assignment is random. When r records
are assigned to R addresses, the Poisson distribution
expression may be shown to be:!

F(x) = R(r/R)* (1/x!) exp (—r/R) M

provided the number of addresses is large, which it
normally is with large hash files. It turned out that the
deduction of the average search length from the Poisson
distribution involved remarkably difficult (or interesting)
mathematics, and the problem was first solved by the
mathematician Tainiter in the early 1960s.”

Tainiter’s results agreed well with those of Peterson.® ?

Later Lum and co-workers* ® undertook a comprehensive
study of hash file performance, and their experimental
results essentially confirmed Peterson’s earlier results.
Thus it may be concluded that Tainiter’s mathematical
analysis is essentially correct, and there the matter has
apparently rested for the past decade or more.

Nevertheless, from the point of view of the designer of
hash files, the current situation is not satisfactory. Some
useful tools are missing with regard to open addressing.
Experiments to determine average search lengths for large
files are expensive and difficult, so that experimental data
are limited. For example, there appear to be experimental
results for only address capacities of 1, 2, 5, 10, 20 and
50. And because of their difficulty, use of methods based
on Tainiter’s original analysis is out of the question for
most designers. To appreciate the depth of the
mathematics involved, readers should reference Tainiter’s
paper.” What would be useful is a fairly simple method
that could be used to generate average search lengths
accurate to within a few per cent. Such a method is
described in this paper, and is based on the concept of
the mean distance between overflow records.

2. DERIVATION OF AVERAGE SEARCH
LENGTH

We define (G —1) as the mean distance or gap separating
overflow records in a hash file with open addressing. If
this quantity is known, then it is an easy matter to deduce
an approximation for the average search length, given the
distribution F(x).

Suppose that y records overflow from a given home
address. Assuming that the overflow records are
distributed as in Fig. 1, that is, that they are (G—1)
addresses apart on average, then the number of disk
accesses required to retrieve all y records in random order
must be:

G(1+2+43+...+y)

or Gy(y+1)/2.

If b is the address capacity, the number of home
addresses with y overflow records is F(y+b), where F(x)
is the Poisson distribution given by expression (1), since

THE COMPUTER JOURNAL, VOL. 29, NO. 2, 1986 167

¥20z I4dy 01 uo 1senb Aq 615091/.91/2/62/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

J.BRADLEY

[}
— G —f

IN0®O00RO00E000ED

Fig. 1. Showing G with respect to a record in its home address
(HA) and records overflowing from that home address in
addresses O,, O, and O,. The diagram is idealized. Since
G = 4, it takes 4 accesses to retrieve the first overflow record
randomly, 2 * 4 for the second, and 3 * 4 for the third, and so
on.

any records in excess of b will overflow. Hence the number
of disk accesses required to randomly retrieve all overflow
records assigned to addresses that each give rise to y
overflow records is:

Fb+y)*Gy(y+1)/2.)]

In addition, there will be addresses for which only one
record overflows (y =1), addresses for which two
records overflow (y = 2), and so on. Hence the number
of disk accesses required to retrieve randomly all the
overflow records in the file must be the summation of
expression (2) for each y value, or:

G y>_3_1 Fb+y)*y(y+1)/2. 3)

Let us refer to this quantity as GV. (Thus V approximates
the average number of disk accesses required to retrieve
all overflow records if the value of G is unity, that is, if
G—1 and the gap between overflow records is zero.)

If H is the number of home address records, the number
of disk accesses required to retrieve them in random order
must be H, since a record in its home address can be
retrieved in a single access. Hence the total number of disk
accesses to retrieve randomly all the records in the file
must be:

H+GV. @)

The value of H can be obtained from the Poisson
distribution as the total number of records in the file (r),
less the number of overflow records, that is:

H=r—%X Fb+y). (5)
y=1

Since the average search length by definition is the total
accesses required to obtain all the records randomly,
divided by the total records, the average search length (s)
must be given by:

s=(H+GV)/r. (6)

Both Vand H may be computed using expressions (3) and
(5), and the Poisson expression (1). The crucial step is the
derivation of an expression for G.

When the file is loaded, a simple measure of G must
be the number of addresses in the file, per empty space
for a record, that is:

R/(bR—7). @)

Here (bR —r) is the number of records that could still be
placed in the file, at the point where the file has been fully
loaded. To see the justification for expression (7), suppose
that 5 =2, R=1000, and r = 1750, so that the file is
87.5% full-and 12.5% empty. There are 250 empty
record slots in the file and these are distributed over 1000

addresses. Hence the average number of addresses per
empty slot must be 1000/250 or 4 addresses. The number
of addresses, on average, separating each empty slot must
therefore be 4—1, or 3. Hence the value 4 is a measure
of G, as is also given by expression (7).

There are many reasons why expression (7) would not
be exactly equal to the mean distance between records
overflowing from any given home address. The most
important is the inevitable overlapping of groups of
overflow records from other home addresses close by.
Thus we would expect that the value for G given by
expression (7) would be too small.

Consequently, the best we could expect is that G would
be given by:

G = kR/(bR—r) 8)

where k is a factor, greater than unity, than that should
depend in a complex manner on R, r and b. The precise
theoretical determination of k could be expected to
involve theory as complex as that developed originally by
Tainiter.” However, it turns out that for all practical
purposes k is a constant equal to 1.5. This has been
determined from a study of all available experimental
data it is a finding of certain practical utility, since it
greatly simplifies calculations of average search lengths
with open addressing.

Using the k value of 1.5 in expression (8) to determine
G, we can then use expression (6) to compute the average
search length.

Using expressions (3), (5), (6) and (8), we can also give
a final composite expression for the average search
length:

s = [(r—y>:“.1 Fb+y)+(kR/(bR~r)) L Fb+y)

*y(y+1)/2]/r

where F(x) is the Poisson distribution, & is 1.5, R is the
total addresses, 7 is the total records, and b is the address
capacity.

3. RESULTS

The results of using this method to predict average search
lengths versus loading factors for different address
capacities are shown in Fig. 2. (Note that the loading
factor expressed as a percentage is 100r/Rb.) The curves
for bequalto 1, 2, 5, 10 and 50 agree to within a few per
cent with the data determined experimentally by
Peterson,® and later by Lum.’ There does not appear to be
any experimental data for the curve for b = 3.

4. NUMERICAL METHODS

For the benefit of those who would like to use the above
theory to compute the average search length for a specific
case, assuming a random distribution, we give an
example.

Suppose that we have a file with 80000 records stored
in 50000 addresses, each with an address capacity of two
records per address. Because of the proportionality
inherent in the Poisson distribution expression (1), the
average search length will be the same as in the case of
1600 records stored in 1000 addresses with address
capacity of 2. It is always more convenient to work with

168 THE COMPUTER JOURNAL, VOL. 29, NO. 2, 1986

¥20z I4dy 01 uo 1senb Aq 615091/.91/2/62/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

COMPUTING AVERAGE SEARCH LEVELS IN HASH FILES WITH OPEN ADDRESSING

5.0

4.0 b=10

/

s
1]
s
S
-
3
(2]
g
g
<
b=50
0
© 40 60 80 100

Loading factor (%)

Fig. 2. Showing how the computed value for average search length
varies with the loading factor and the value for b (the address

capacity).

1000 addresses.! Using r= 1600 and R = 1000 in
expression (1), the records of the file will be distributed
according to:

F(0) = 202, F(1) = 323, F(2) = 258, F(3) = 138
F(4) =55, F(5) = 17, F(6) = 5, F(T) = 2.

Applying expression (3), the number of disk accesses to
retrieve randomly all the overflow records must be:

138G *14+55*G*3+17*xG*x6+5xG*10+2*xG* 15
or 485@G.

Using expression (8), G can be computed as
1.5* 1000 (2000 —1600) or 3.75. Using this value in
expression (3), the number of accesses required to retrieve
all the overflow records in random order is 485 * 3.75 or
1881.75.

Applying expression (5) to determine the number of
home address records, the number of overflow records is:

138%14+55*2+17*34+5%44+2%5 or 329.

Hence the number of home address records is
(1600 —329) or 1,271 records. Thus the number of disk
accesses to retrieve all the home address records in
random order is also 1,271.

The number of disk accesses to retrieve randomly all
the records (home address plus overflow records) is
therefore (1881.75+1,271) or 3156.75 accesses, as in
expression (4). Finally, applying expression (6), the
average search length is 3156.75/1600 or 1.97 disk
accesses per record retrieved.

20

18

16

G 14

12 /

10

I

0
40 60 8
Loading factor (%)

Fig. 3. Showing how computed values for G vary with loading
factor and the value for 5. The mean distance between overflow
records is G—1.

5&
N

100

The loading factor is 100r/Rb or 100 * 1,600/1000 * 2
or 80% . Thus, referring to Fig. 2, we have the point [80,
1.97] On the curve for b=2. The value of the
corresponding average search length measured by
Peterson was 1.92.% Other values obtained by this method
are equally close to those measured by Peterson. This
would indicate that the method has more than enough
accuracy for use in practical design situations.

5. THE MEAN DISTANCE BETWEEN
OVERFLOW RECORDS

Central to the method of computing average search
lengths as described above is the concept of the mean
distance (G—1) between records overflowing from a
home address, as given by expression (8). This quantity
could be measured experimentally, although as far as the
author is aware no experimental data has ever been
published. Measurements would involve determining the
distance, in addresses, between each pair of consecutive
overflow records with a common home address.
Expression (8) can be rewritten as:

G =k/b(1—r/bR).
Since r/bR is the loading factor expressed as a fraction,
expression (8) is equivalent to:
G =k/b(1-L) ®

where L is the loading factor.
This relationship can be expressed graphically, as
illustrated in Fig. 3. As we would expect, G, and thus the

THE COMPUTER JOURNAL, VOL. 29, NO. 2, 1986 169

¥20z I4dy 01 uo 1senb Aq 615091/.91/2/62/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

J.BRADLEY

mean distance between overflow records (G — 1), decreases
with increasing address capacity, and increases with
increasing loading factor. As the loading factor tends
towards 1009, , the value for G tends to infinity. Clearly,
at 100% loading factor, although the value for G will be
very large, it cannot be infinite. It must be less than R,
since overflow records are within the file. Thus the formula
cannot be entirely accurate for loading factors close to
1009, . Thisis not a disadvantage, however, since hash files
are rarely, if ever, designed for 1009 loading. It would
be interesting to see how experimental values for G
compare with those predicted by expression (9) in Fig. 3.

6. SUMMARY

We can conclude that there is a relatively simple but
accurate method for computing average search lengths
for fully randomised hash files employing open addressing
for dealing with records overflowing from home
addresses. The method uses the Poisson distribution to

REFERENCES

1. J. Bradley, File and Database Techniques. Holt, Rinehart &
Winston, New York (1982).

2. J. Bradley, Computer File Techniques. Holt, Rinehart &
Winston (In the press) (1986).

3. W. Bucholtz, File organization and addressing, IBM
Systems Journal, no. 2, pp. 86-111 (1963).

4. J. Hanson, Design of Computer Data Files. Computer
Science Press, Rockville, Maryland (1982).

determine the numbers of records overflowing from
addresses, and the mean distance between overflow
records as a measure of how the overflow records are
spaced.

The mean distance between overflow records (G—1) is
determined from an expression for G that involves an
empirical quantity that unexpectedly turns out to be a
constant. The method gives results that are very close to
those obtained experimentally by earlier investigators.
The method is simple compared with the classic but
unusually complex analysis used originally by Tainiter to
predict average search lengths. However, despite its
accuracy and ease of use it should be remembered that
the method is essentially empirical. In addition to the
empirical expression (8) for G, if analysed closely, it will
be seen that expression (2) is also empirical in nature,
especially for values of G of unity or less. A by-product
of the method is the prediction of mean distances between
overflow records. These could be measured, although
experimental results are not currently available.

5. V. Y. Lum et al., Key-to-address transform techniques: a
fundamental performance study on large formatted files.
Comm. ACM. 14 (2), 228-239 (1971).

6. W. W. Peterson, Addressing for random access storage.
IBM Journal of Research and Development 1 (2), 130-146

1957).

7. g\/[Tz)liniter, Addressing for random-access storage with

multiple bucket capacities. J. ACM 10, 307-315 (1963).

170 THE COMPUTER JOURNAL, VOL. 29, NO. 2, 1986

¥20z I4dy 01 uo 1senb Aq 615091/.91/2/62/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

