Enumerating, Ranking and Unranking Binary Trees
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We introduce weight sequences, which are sequences of positive integers characterising binary trees, in order to generate
lexicographically binary trees as a list. Algorithms are developed to determine the position of a given weight sequence,
and to generate the weight sequence of a given position. We also use weight sequences in order to study a transformation
on binary trees. Furthermore, we make a link with term rewriting systems.
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1. INTRODUCTION

The set B of (ordered, oriented) binary trees is recursively

defined by theequation: B= 0+ B B ,where Ois
an internal node and O is an external node. The size | T|
of a tree T is the number of internal nodes. The weight
T of a tree T'is the number of external nodes: T = | T|+1.

The product of T and T” is the tree which we denote

by 7T 71 ,theroot of which admits T as left subtree
and T as right subtree. The external nodes of a tree T
are numbered by a preorder traversal of T (visit the root,
then traverse its subtrees from left to right). If B,, is the
set of binary trees with »n internal nodes then

1

n+1
Catalan numbers.

This paper introduces a method of representing a
binary tree of n internal nodes as a sequence of n integers,
such that a bijection is induced between B, and the set
of these n-integer sequences. More precisely, given a
binary tree T, each external node is the rightmost external
node of some subtrees of 7. Let w; be the weight of the
largest subtree which has external node i in the rightmost
position. Then the sequence (w;, w,, ..., w,,) characterises
T. Such a sequence is called a weight sequence.

These sequences make it possible to generate all binary
trees lexicographically with a most efficient algorithm,
because they use a global information concerning their
external nodes. Since Knott’s paper® was published,
several papers have appeared dealing with the ordering
and ranking of binary trees. Typically, the ordering
involves showing the existence of a bijection between
binary trees and integer sequences or permutations. ‘ Tree
permutations’ are used by Knott,® ‘ feasible sequences’ by
Ruskey and Hu,!? ‘ballot sequences’ by Rotem and
Varol,'! and ‘z-sequences’ by Zaks.!* Relations to
existing algorithms are discussed. In Section 3 the ranking
and unranking procedures are provided.

In Section 4 we study a transformation on B which is
naturally linked with associativity and which always
moves the internal nodes of a tree in the same direction.
This transformation, called ‘single left rotation’ by
Knuth,® is used to restore balance when a new node has
been inserted into a balanced tree. In Culik and Wood?
it is used to provide a metric on binary trees. In Lalonde
and Des Riviéres,!® it is called ‘left-subordinate trans-
formation’ and used to transform a standardised
tree representation of an arithmetic expression lacking
operator precedence information into a tree containing it.

b, =card B, = (2:): these are the well-known

It can be applied after the parsing phase. It is also called
‘A-transformation’ in Bonnin and Pallo? in their own
investigations of n-ary trees. Weight sequences provide
a combinatorial characterization of this transformation,
which induces a lattice structure on B,,. As regards term
rewriting systems (Section 5), weight sequences are more
suitable to handle this transformation on arithmetic
expressions in infix notation.

2. THE WEIGHT SEQUENCES
Definition

Given a binary tree T, the weight sequence of T is the
integer sequence (W (1), wp(2), ..., wp(| T|)), where wp(i)
is the weight of the largest subtree of 7, the last external
node of which is the external node i of T.

IfT=

thenw, =(1,2,1,1, 5,1, 1, 3).

If the external node i is the first external node of a
subtree of T:w, (i) = 1.

If the external node i is the last external node of a
subtree of T:wy(i) > 2. For all i:1 < wy(i) < i.
Lemma 1
We can compute the weight sequence of the product

TII —_ T
Tand T:

wpe = wr(1), .., wp(ITD), T, wp (1), .., wp{(IT'))

T' by using the weight sequences of the trees

Theorem 1

An integer sequence (w,, w,, ..., w,) is the weight se-
quence of a binary tree with » internal nodes iff for all i
—foralli'eli—w;+1,i]:i—w, < i’ —w,.
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Proof

By induction on n by using Lemma 1.

The weight sequence of a binary tree can be obtained
by an inorder traversal (traverse the left subtree, visit the
root, traverse the right subtree) after labelling each
internal node with the weight of its left subtree.

IfT=

then wp = (1,1,2,4,1,1,2,8,1,1,1,2)

The following algorithm enables us, starting from a
weight sequence, to compute the next one in the
lexicographic order. In order to obtain all the n-weight
sequences, we need only begin with (1,1, ..., 1).

Algorithm TREE GENERATION

Begin with (wy, w,, ..., w,)=(1,1, ..., 1)
While i = max {k|w, < k} exists do:
Jei—wg wye—i—j+w;
For m=i+1 to ndo w,, < 1 enddo.
enddo. ‘
List of the weight sequences of the 42 binary trees with
five internal nodes in lexicographic order:

11111 11211 12111
11112 11212 12112
11113 11214 12113
11114 11215 12115
11115 11231 12121
11121 11234 12123
11123 11235 12125
11124 11241 12141
11125 11245 12145
11131 11311 12311
11134 11312 12312
11135 11315 12315
11141 11341 12341
11145 11345 12345

In order to generate this list, the algorithm had to use 64
comparisons of integers, i.e. an average number of
comparisons equal to 64/42 = 1.52.

The work made by the previous algorithm is
proportional to the number of comparisons made with a
view to finding i = max{k |w, < k}. Let t,.; denote the
number of n-weight sequences that require j comparisons
in the generating algorithm, i.e. the number of n-weight
sequences wsuchthatw = (wy, ..., w,_j,;,, n—j+2, ..., n)
and w,_;,, < n—j+1. Therefore t, ; is also the number
of (n—j+1) weight sequences which do not end in
n—j+1. The number of (n—j+1) weight sequences
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ending in n—j+1 being equal to b,_;, we deduce that
In,j = by_j41—b,_;. The total number of comparisons in
order to generate the n-weight sequences is

no n n
X jtn;= Z jbnj—bny)= I by
j=1 j=1 k=1

The average number of comparisons per sequence is equal
to

n
bi 2 by, which tends to 4/3 = 1.33 as n increases.
nk=1

This algorithm is the most efficient one to generate
lexicographically all the n-node binary trees by making
use of n-integer sequences such that 1 < s; < n for all .
Indeed, the average number of comparisons per n-feasible
sequences’? and per n—z sequences'* tends respectively to
3 and 4/3 as n increases. However, n-z sequences verify
1 <z, <2nforalli

3. RANKING AND UNRANKING

Definition

The height A(1 < h < n) of an n-weight sequence w is the
integer & = max {i|w; = 1}. Let g, , denote the number
of n-weight sequences of height A.

Lemma 2
To obtain the trees corresponding to the n-weight
sequences of height A, we just have to substitute&

for the external node h of trees corresponding to the
(n—1) weight sequences of height > A—1.

Corollary
We have
n—1
On1=bp 1,0, n=1,0,,= ) % On_y,; for 2<
j=h—-1
h<n—1.

These recurrence relations allow us to build the table:
2 3 4 5 6 7 8

1
1
1 1
2 2 1

5 5 3 1

14 14 9 4 1

42 42 28 14 5 1

132 132 90 48 20 6 1
429 429 297 165 75 27 7 1
Explicitly, we have

O = (/21 h)

0NN PA WN -

2n—h
n—h
Let rank (w, w,, ..., w,) denote the position of the

n-weight sequence (w,, w,, ..., w,)) in the lexicographic
ordering of all these n-weight sequences.

) forh > 2.

Theorem

Given an n-weight sequence w, we have the relation:

n
X o, ;j+rank(w, ..., W, ),
j=h+1

rank (w,, ..., w,) =

where £ is the height of w
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w is the (n—1) weight sequence obtained from w by the
following:

for 1<j<h—1: wy=w;=1
. . Wj=wj+1"'l lf j"‘W]"‘lSh
for h<j<n—I: {Wj =w;,, otherwise.

The previous theorem enables us to compute the rank of
a weight sequence as follows:

if T=

thenw, =(1,2,3,1, 1, 6)
6
rank (1,2,3,1,1,6)= ¥ 0, ;+rank (1,2,1,1,5)
j=2

5
rank (1,2,1,1,5) = X o, ;+rank (1,1, 1, 1, 4)
j=2
4
rank (1,1,1,1,4)= ¥ o, ;+rank (1, 1, 3)
j=a
3
rank (1,1,3) = ¥ 0, ;+rank (1, 2)
j=3
2

rank (1,2) = ¥ o, ;+rank (1)
j=2

Thus rank '
(1,2,3,1,1,6) = (42+28+ 14+ 5+ 1)+ (14+9+
44+1D)+1+14+14+1=122.

The following algorithm enables us to compute the
n-weight sequence of rank r (1 <r < b,):

Algorithm UNRANKING

Form=n—1to 1 step—1
do:find the integer k., such that
n n
Y Opt1<r< X opyy;
j=lom+1 j=Fm

n

rer— E am+1,j
j=km+1
enddo.
w1
For m=1 to n—1

do: ifk,, =m+1
thenw,, ,, « 1
else for j = m to k,, step —1
doifj—w;+1<k,
then w;, < w;+1
else w;,, «w;
endif
enddo
endif
Wi, < 1
enddo.

This algorithm makes it possible to generate random
n-node binary trees by using a random integer re[l, b,,).

4. THE LATTICE OF BINARY TREES
Definition

For two trees T; and T, of n nodes, T, — T, if between
external nodes i and j

(]
A A occurs in 7; and
i A

i

occurs in T,, where T, T’, T” are subtrees of T, and T,.
*

i

Let — denote the reflexive transitive closure of —.

For the trees of five external nodes, we get the diagram
shown as Figure 1.

Theorem 2

Given two binary trees T and 7" of n nodes, T X T” iff
wp(i) < wp(i) for all ie[1, n].

Proof

We prove easily by induction on n that the condition is
necessary. Conversely, let us assume that w, < wy (i.e.
wp(i) < wp(i) for all i) and T # T. Let i be the smallest
integer such that w(i) < wp.(i). Therefore w,(i) < i. Let
J=i—=wp(@)+1 =2 and k =j—wp(j—1). There is then
in T a subtree T, accepting k as first external node and
J—laslast external node, as well as a subtree T, accepting
Jj as first external node and i as last external node. T
includes the subtree /C%\.p =1, which, through

T, ,
%
£

application of the single left rotation — becomes the

subtree of the tree T*.
T,

A
T,

Let / be the largest integer such that j = /—wp(/)+ 1.
The weight sequence of T' is the same as the
weight sequence of T except in [ because
wp(l)=1—j+1 <wgp 1(l) =1—k+1. By definition of
iwp(j—1)=wp(j—1)=j—k. Thus wzp(i) < wp(i)
implies wp(i) 2i—k+1. By the hypothesis:
wp(l) =1—j+1 < wgp(l) thus wp(l) = 1—i+1. Since
ie[l—wp()+1, 1], by applying theorem 1:
I—wp(l) <i—wp()) <k—1. Then I—k+1= wp()
<Kwp(l) and wp < wp. We have built a  tree
T" such that wyp < wp < wp and T — T By repeating
this process, we shall find a finite sequence of trees
T* such that wp S wp S wpe < ...<wpn = wp and
T>T'-T*>..->T'=T. By transitivity: T* T".
Q.E.D.

Corollary

X is a partial ordering of B.
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1124

Figure 1

Proof

IfTXT and T" X T, then wyp < wp and wp < wy by
theorem 2, thus w, = wyg.. Therefore T= T and X is
antisymmetric. Q.E.D.

Corollary

(B,, %) is a lattice.

Proof

Let us prove that any pair of n-node binary trees T and
T’ has an infimum TAT . If 7" % T and T” % T’, then
wp(i) < inf (Wp(i), wyp (7)) for all i. We just have to show
that w; = inf (wp(i), w,(i)) is a weight sequence, i.e.
verifies conditions of Theorem 1. It is obvious that
l<w,<ilfi'eli—w;+1,i]theni—wp () < 7 —wp (i)
and i—wp(i) <7 —wgp(i’) from which we deduce
i—w; <7 —w,;. Therefore wy , p(i) = inf (wp(i), wp(i))
for all i.

Now let us define recursively the dual tree T of a tree

Tby O=0 and7 T"=7" ¥

1234

Since T X T"iff T X T, any pair of n-node binary trees
T and T’ has a supremum TV T° = T A T'. Remark that
Wy pAi) # sup (Wp(i), wp(i)) generally. Q.E.D.

5. APPLICATIONS TO TERM REWRITING
SYSTEMS

The weight sequence of an arithmetic expression E in
infix notation is obtained by scanning E from left to right
and by associating to each operator the number of
variable symbols of its left operand.

Let E= ((x+»)+C+(+ )+ ((u+@®+x)+1), an
expression whose corresponding tree is the one given in
Section 2. Then wz=(1,2,1,1, 5,1, 1, 3).

When associativity occurs in term rewriting systems,
we orient the associativity axiom:x.(y.z)— (x.y).z.
Given two arithmetic expressions £ and E’ of same
length, having the same and unique operator, and whose
variables appear in the same order from left to right,
Theorem 2 allows us to see immediately if E X E’ (¥ is
the rewriting relation), i.e. if one can go from E to E’ by
moving parentheses in the same direction. Furthermore,
the proof of theorem 2 allows us to construct a path going
from E to E’ by the following algorithm.
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Algorithm PATH CONSTRUCTION

while i = min{k|wg(k) < wg(k)} exists
doj—i—wg()+1k «j—wg(j—1)
l=max{m>2i|j=m—wg(m)+1}
we(l) «1—k+1
enddo.
This path has a minimal length which is bounded above
by | E|.

Example

Let E=(x+(Q+((z+s)+(+w+@+9)))) and
E =((((x+»)+(z+s)+)+u)+(v+9q))
wg=(1,1,1,2,1,1,1) and wgp=(1,2,1,4,5,6,1).
Consequently E X E’.

We construct below a minimal path joining E and E’:
E=x+(y+((z+9)+(+u+w+9)))

se=(LLLALLY 5 iy poy jo2
Sgr = (1’ 29 l’ 4’ 53 6, l)
v
E'=((x+y)+((z+5)+(+@+(+9))
spr=(1,2,1,2,1,1,1) ,
sp=(,21,4,561 ‘=4 =3k
\
E? = (((x+y)+(z+9))+(+u+@v+9))
SE2 = (17 2’ 1945 1’ 1, 1)
i=5 j=5 k=1 I=5

Sgpr = (1’ 2’ 1’ 4’ 59 6: 1)
\
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