The Reve’s Puzzle

J.S. ROHL* and T. D. GEDEON

Department of Computer Science, University of Western Australia, Nedlands 6009, Western Australia

The Towers of Hanoi problem, explored in many recent Journal papers, is extended to consider a related problem, The
Reve’s Puzzle. It is shown that The Reve’s Puzzle is a generalisation of the Towers of Hanoi problem and a number of

questions concerning the elegance of the algorithms are posed.

Received January 1985

The Towers of Hanoi,* a puzzle now more than 100 years
old, has had a new lease of life in the computer age, with
a particular resurgence in the last couple of years when
a number of papers have been published, in this journal
particularly.

We would like to present a related problem, the Reve’s
Puzzle introduced in 1907 by Dudeney,! who has been
described by Martin Gardner? as England’s Greatest
Puzzlist. The puzzle is described in The Canterbury
Puzzles, whose format is based on Chaucer’s Canterbury
Tales. The description goes as follows.

When the pilgrims were stopping at a wayside tavern, a number
of cheeses of varying sizes caught his alert eye; and calling for
four stools, he told the company that he would show them a
puzzle of his own that would keep them amused during their
rest. He then placed eight cheeses of graduating sizes on one of
the end stools, the smallest cheese being at the top (and no
cheese resting on a smaller one.) ‘This is the riddle’, quoth he,
‘that I did once set before my fellow townsmen at Baldeswell,
that is in Norfolk, and, by Saint Joce, there was no man among
them that could rede it aright. And yet it is withal full easy, for
all that I do desire is that, by the moving of one cheese at a time
from one stool unto another, ye shall remove all the cheeses to
the stool at the other end without ever putting any cheese on
one that is smaller than itself. To him that will perform this feat
in the least number of moves that be possible will I give a
draught of the best that our good host can provide.’

Clearly, this is a generalisation of the Towers of Hanoi
problem, and a number of authors, including the present
ones,® have described it as such. However, in view of
Dudeney’s delightful setting and because he also solved
the problem it seems fitting to use his name for it.

To set the scene we give first of all a version of the
Hanoi procedure tailored to cheeses and stools. It
assumes the types:

ncheeses = 0. . maxcheeses;
stools = 1. . maxstools

where maxcheeses is defined appropriately, and maxstools
is, at this point, 3.

procedure Hanoi (n:ncheeses; sl, s2, s3: stools);

begin

if n = I then

writeln (‘ Move a cheese from stool’, sl : 1, “ to stool’, s2: 1)
else

begin

Hanoi (n—1, sl, 53, s2);

writeln (‘ Move a cheese from stool’,s1: 1, to stool’, s2: 1);
Hanoi (n—1, s3, 52, sI)

end

end; {of procedure ‘ Hanoi’}

* To whom correspondence should be addressed.

Of course Dudeney gave a solution to the problem. It is
expressed below with reference to 10 cheeses (not the 8 of
the question as posed).

we first pile the six smallest cheeses in 17 moves on one stool;
then we pile the next 3 cheeses on another stool in 7 moves; then
remove the largest cheese in 1 move; then replace the 3 in 7
moves; and finally replace the 6in 17: making in all the necessary
49 moves.

In this description, the middle three steps are a clear
description of the solution of the Towers of Hanoi
problem with 3 cheeses. Thus the solution to the Reve’s
problem can be expessed in terms of Hanoi. If the number
of cheeses moves by Hanoi is called F3(n), then we have:

procedure Reve (n:ncheeses; sl, s2, 53, s4: stools);
begin

if n = I then

writeln (* Move a cheese from stool’, s1: 1, “ to stool’, s2: I)
else

begin

Reve (n—F3(n), sl, s4, 53, 52);

Hanoi (F3(n), sl, s2, s3);

Reve(n— F3(n), s4, s2, 53, sl)

end

end; {of procedure ‘ Reve’}

But what is this function F3? Dudeney knew that too! He
gave a table showing that if n were a triangular number:

1 3 6 10...i+D/2...
then F3(n) is the ordinal of the triangular number:
1 2 3 4

He left as an exercise to the reader the case where
n is not a triangular number. In fact it is the ordinal
of the smallest triangular number not less than n. Thus the
function F3 is:

function F3 (n:ncheeses):ncheeses;
begin

F3: = trunc((sqri(1+8*n)—1)/2)
end; {of function ‘ F3}’

Now Reve not only calls Hanoi, it is a generalisation of
it. This can best be seen if we introduce an even simpler
puzzle, where there are only two stools. It is impossible
to move more than 1 cheese, but in the light of what
follows we retain the parameter n.

procedure Simple (n: ncheeses; sl, s2:stools);

begin

writeln (‘ Move a cheese from stool’, sl : 1, ‘ to stool’, s2: 1)
end; {of procedure ‘ Simple’}

THE COMPUTER JOURNAL, VOL. 29, NO. 2, 1986 187

¥20Z I4dy 01 uo 1senb Aq 095091//81/2/62/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

J.S.ROHL AND T.D. GEDEON

If we introduce a function F2, then we can write Hanoi in
terms of Simple.

procedure Hanoi (n:ncheeses; sl, s2, s3:stools);
begin

if n = I then

writeln (‘ Move a cheese from stool’, s1: 1, to stool’, s2: 1)
else

begin

Hanoi(n— F2(n), sl, s3, s2);

Simple (F2(n), sl, s2);

Hanoi(n— F2(n), s3, s2, sI)

end

end; {of procedure ‘ Hanoi’}

F2(n) is, of course, 1.

The similarity between Hanoi and Reve is now manifest
and we can easily write a procedure which includes them
both, and Simple as well. We need an extra parameter,
m of type nstools = 2. .maxstools, which specifies the
number of stools; the stools are represented by an array;
and the functions F2 and F3 are merged into a function
F, which takes a further parameter giving the number of
stools.

procedure Reve (m:nstools; n:ncheeses; s:stools);

begin

if n = 1 then

writeln (‘ Move a cheese from stool’, s[1]:1, ‘to stool’,
s[2]: 1)

else

begin

swap(s(2], s[m]);

Reve(m, n— F(m— 1, n), s);

swap (s[2], slm]);

Reve(m— 1, Fim— 1, n), s);

swap(s{1)], sim]);

Reve(m, n— F(m— 1, n), s);

swap(s[1], sm})

end

end; {of procedure ‘ Reve’}

Note that this procedure has two recursive aspects. At any
call, one or both of the parameters m and » is reduced,

REFERENCES

1. H. E. Dudeney, The Canterbury Puzzles, Thomas Nelson &
Son, London (1907) (4th Edition of 1919 reprinted, and
published by Dover in 1958).

2. Martin Gardner, More Mathematical Puzzles and Diversions,
Penguin, London (1966).

3. J.S.Rohl & T.D. Gedeon, Four-Tower Hanoi and
beyond, Proceedings of 6th Australian Computer Science
Conference, Sydney (1983).

188 THE COMPUTER JOURNAL, VOL. 29, NO. 2, 1986

the recursion stopping when n = 1. (When m becomes 2,
n always becomes 1.) Teachers may find this a useful
alternative example to Ackermann’s function in this
respect.

This new procedure works for a larger number of
stools, as well. All we need is to increase the number of
stools and determine the appropriate function F. Once
again, Dudeney had the answer. He noted that for five
stools the pertinent numbers were the pyramidal
numbers:

1,4, 10,20, ..., GG+1)i+2)/6

rather than the triangular numbers.
Enter Pascal’s Triangle:

1

11

1 2 1

1 3 3 1

1 4 6 4 1

1 510 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

To find F(m, n), move down the mth column to the largest
number not greater than ». If this is the kth element of
the column, then F(m,n) is the kth element of the column
to its left.

The problem has been considered in the recreational
mathematics literature,® where the main interest has been
in finding the minimum number of moves required. Our
algorithm is optimal in that it generates the minimum
number of moves. In computer science we are interested
in generating those moves. A number of questions arise:

@ We have not given the function F. Is there an elegant
algorithm which avoids recalculating some values of
F(m,n)?

@ Our algorithm requires elements of the array to be
swapped. Is there an elegant form of the algorithm
that avoids this?

@ Does there exist an elegant algorithm in which one of
the recursive aspects is replaced by iteration?

@ Ditto for both recursive aspects.

4. W. W. Rouse Ball, Mathematical Recreations and Essays,
Macmillan, London (1892).

5. B. M. Stewart, Problem 3918 and a Solution, American
Mathematical Monthly 46, 363 (1939) and 48, 216-219
(1941).

¥20Z I4dy 01 uo 1senb Aq 095091//81/2/62/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

