Knowledge Representation with Attribute Grammars

G. PAPAKONSTANTINOU

National Technical University of Athens, Electrical Engineering Department, Computer Science Division, Athens 15773, Greece

J. KONTOS

Computers Department, N.R.C. ‘ Democritos’, Aghia Paraskevi, Athens, Greece

The use of attribute grammars for knowledge representation is examined in the present paper. It is shown how data
knowledge and knowledge-base knowledge can be represented using syntactic and semantic notation. Control knowledge
is represented by the parsing mechanism of the interpreter used. It is proposed that attribute grammar evaluators may

prove to be useful knowledge engineering tools.
Received July 1984

1. INTRODUCTION

Attribute grammars were devised by Knuth as a tool for
formal language specification.! Noonan? has proposed
that attribute grammars can be used for the formal
specification of string processing problems. The use of
attribute grammars as a programming language is
studied in Hehner and Silverberg.? Attribute grammars
have been extended in Watt and Madsen* in order to
facilitate the formal specification of programming
languages. The successful application of an attribute
grammar interpreter that was reported in Papa-
konstantinou,® to the programming of the solution
of problems as diverse as waveform analysis,® plan
recognition,™? interpreter description,” filtering® and
sentence or pattern generation!® !! has prompted us to
investigate the feasibility of using attribute grammars for
knowledge representation. The results of our study are
reported in the present paper, in which we show how
knowledge representation can be accomplished using
attribute grammars and how inferences can be drawn
from such knowledge using an attribute grammar
interpreter. It is thus proposed that attribute grammars
for which efficient evaluators do exist may be a useful
knowledge engineering tool.

Knowledge representation is the main activity distin-
guishing ‘expert systems’ from other application
computer systems.!? Ordinary computer systems organize
knowledge on two levels, i.e. data and program.
Most expert computer systems, however, organise
knowledge on three levels, i.e. data, knowledge base and
control.

At the data level declarative factual knowledge is
represented. For the representation at this level the tools
used include first-order predicate logic formulas, semantic
networks and frames. At the knowledge-base level
inferential knowledge is represented which is necessary
for the deduction of new facts not included in the data
level. The main tools used at this level are logic
programming (e.g. Prolog) and production systems (e.g.
OPS). These two classes of tools represent the two main
trends, namely the declarative and procedural approach
to knowledge representation. Control knowledge is
normally not available to the knowledge programmer but
is offered ready made by the toolmaker. This last kind of
knowledge defines the inference mechanism which is
responsible for the interpretation of the other bodies of
knowledge.

In this paper we show how an attribute grammar can

be used to represent knowledge at both the data and the
knowledge-base levels. The control knowledge is em-
bedded in the attribute grammar interpreter.

2. ATTRIBUTE GRAMMAR NOTATION
USED

In the following we shall use the notation of attribute
grammars augmented with a global attribute FLAG
which takes the values true and false.®* When FLAG takes
the value false during the semantics evaluation of a BNF
rule, the parser considers that matching is not successful.
Hence parsing can be directed by the semantics. The class
of attribute grammars to be considered are those which
can be evaluated in a single pass from left to right.
Bochman!® has given a condition for an attribute
grammar which assures that the semantics can be
evaluated in a single scan from left to right.

The general idea of using an attribute grammar as a
knowledge engineering tool is to use only one terminal
symbol, the nil symbol. Thus the grammar is such that
it recognises only empty strings of characters. During the
recognition of an input string (actually the empty string)
the semantics can be such that at the time they are
evaluated they perform the inferences required. Moreover,
relations correspond to non-terminalsand their arguments
to associated corresponding attributes.

3. DATAKNOWLEDGE REPRESENTATION
Data knowledge can be represented in an attribute
grammar by a rule that has a left-hand part only such as:
(likes)::=nil
if x({likes))# John then FLAG: =false; (1)
if y({likes)) # Mary then FLAG:=false;

for the fact ‘John likes Mary’. The first line of this rule
is the syntactic part of the rule and the other lines of the
rule constitute the part that controls semantically the
syntax analysis. The attributes x and y are inherited in
this case, and their values which are defined by other rules
are tested for conformity with the fact ‘ John likes Mary’.

The question ‘John likes Jenny?’ can be represented by
a rule of the form:

{question) ::=likes)
x({likes»): = John;
Y((likes)):=Jenny;

THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986 241

CPJ 29

¥20Z I4dy 01 uo 1senb Aq 6566.5/1¥72/S/62/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq



G. PAPAKONSTANTINOU AND J. KONTOS

which will give an answer No according to the semantics
given.

If the fact that we want to represent has the form John
likes Mary’s mother then we can write:

(likes)::=nil
If x({likes))# John then FLAG: =false; 2
If y({likes))# mother(Mary) then FLAG: = false:

’

where mother (z) is a function that given z returns the
name of z’s mother. We note that we could avoid the use
of the function mother by using another syntactic rule
for mother as it can be seen later on.

For a complete representation of a fact we must also
examine the case of using it to answer questions other
than truth or falsity such as who likes Mary?, who likes
John? and who likes who? To face such demands we must
expand the semantics of (1) as follows:

(likes::=nil
If x({likes))=nil then x({likes)):=John;
If y({likes) =nil then y({likes)): = Mary; 3)
If x({likes)) # John then false;

If y((likes)) # Mary then
false;

The question who likes Mary may be represented as:
{question) :: = {likes)
y((likes)):= Mary;
output (x{likes));

Output is a function for printing values of attributes.

The answer will be John, provided that all attributes are
initialised to nil.

In this example the attributes x,y are used both as
inherited and synthesised. It is more practical to use for
each argument #,,t,,...., 1, of a relation R(t,,t,, cesty)
two attributes, one synthesised [af((R)) 1<j<k]
and one inherited [a/((R))].

A fact R(cy, ¢y, ..., cy) is true, where ¢, 1<j<k are
constants can now be represented by the rule

(R)::=nil

for all j, 1<j<k do

if a/(CR>) #c¢; and a]({R)) #nil then FLAG: =false

C))
else, af((RD):=c¢;;

The fact John likes Mary or likes (John, Mary) can now
be represented by the rule

(likes) ::=nil
if a{(likes))+# John and a!({likes)) +# nil
then FLAG:=false
else a({likes)):=John; %)

if aj((likes)) # Mary and al({likes) #nil
then FLAG:=false else

a;((likes)):= Mary;

The question who likes Mary or likes (7, Mary) may be
represented as

242 THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986

{question) :=(likes)

al(likes)):= Mary

output (al({likes)));
and will give the answer John due to the existence of rule
(S)AS is illustrated on the above examples, data
knowledge can easily be represented by simple attribute

grammar rules that in fact contain only semantic
information.

4. KNOWLEDGE-BASE REPRESENTATION

A knowledge-base consists of rules that may produce new
facts that are not contained initially in the data
knowledge. Such a rule may be John greets X if he likes
him or greets (John,X) if likes (John,X) and it may be
represented as:
(greets):.=likes)

if a({greets)) # John and a!({greets)) #nil then
FLAG:=false;

a{((likes)): =John;
al({likes)): = al({greets));
ai((greetsy): = al({greets));
a5 ({greets)): =a$({likes));

The question John greets Mary or greets (John, Mary)
may be represented as:

~
=)
0 0|wep939//:§7mq woly papeojumoq

2
{question) :: ={greets)
aj({greets)):=John;

al({greets)):= Mary;

output (a;({greets)), greets, a$({greets));

will print John greets Mary due to (5) and (6).
This may be better understood with the use of a parse

(question)

20z 1Mdy 01 uo 1senb Aq 6566.G/L12/€/62/8191Me/|ulwoo/woo d

John Mary
) (greets) d a @ a$
rule
‘ U [
(likes) a af S a
rule (5) T T
John Mary

nil
Figure 1. Parse tree of the example John greets Mary.

tree as shown in Figure 1, where the information flow is
also exhibited.

The question to Whom greets John? or greets (John,?)

may be represented as:

{question):={greets)
al({greets)).=John;
output (as({greets)))



KNOWLEDGE REPRESENTATION WITH ATTRIBUTE GRAMMARS

{ question)
John
(greets) af af aj af
rule (6) ‘
(likes) of & o 4
rule (5) John Mary
nil

Figure 2. Parse tree of the example Who greets John?

and will give the answer Mary as it is illustrated in
Figure 2.

In the general case the inference rules can be written
in the form of productions in a Prolog-like notation as:

Ro(to1 togs - - -5 tox,) 18 true if

R\(t11, iy, - - .5 lig,) 18 true and
is true and
Rn(tmis tmos - - -5 tmk,,) i true, where 1, 0<i<m,

1 <j<k; are constants or variables.
This rule may be represented in an attribute grammar
notation with the syntax rule:

(R ::=CRDCR) .. . Rpp). (7

We use k; inherited attributes af, 1</<k; with each
non-terminal R;, 1 <j<m, and k; synthesised attributes
a

The semantic rules for each syntax rule in the grammar
consist of assignments of the following forms or
‘templates’:

)] al({Rp):= ay({R,») where

(@ 1<j<k, 1<g<k,

(b) p is the maximum possible index for which
0<p</<m, such that the argument #;; and ¢,
represent the same variable.

(¢) ifp=0 thenr=1Ielse r=S.

an ai({Ry)):=ay({R,>) where

(@ 1<j<k, 1<g<k,

(b) p is the maximum possible index for which
0<p<m, such that the arguments ¢, and ¢,,
represent the same variable.

(c) if p=0thenr=1Ielse r=S.

(111
if aJ((Ry))#c and

aj’ ({R,> #nil then

FLAG:=false else aj((R,)):=c
where 1<j<k, and ¢, is constant c.
Iv) al({Ryp):=c

where 1 <j<k,, O<p<m and ¢, isa constantc.
The data knowledge as explained in a previous section

can be written in a Prolog-like notation as R(c,, ¢, . . ., ¢)
istrue,wherec,,c,, ... ¢, areconstants. The corresponding
attribute grammar rule is represented as:

(R)::=nil

The semantic rules are written for all ¢;, 1<j<k
according to template III.

The attribute grammar rules, when the Prolog-like
rules are known, can be generated mechanically from the
corresponding templates. This task can also be automated
with a preprocessor. Such a preprocessor can be
incorporated in an ordinary attribute grammar interpreter
to form an Extended Attribute Grammar interpreter
similar to EAG of Ref. 4.

5. AN EXTENDED EXAMPLE

Let us now examine a more extended example.
The facts are:

the parent of Bob is John or parent (John,Bob) @)
the parent of Liz is John or parent (John,Liz) ®)
the parent of Ann is Bob or parent (Bob,Ann) C))

the parent of Pat is Bob or parent (Bob,Pat) (10)

The rules of the knowledge base are:
X is successor of Y if Y is parent of X or succ(X,Y) if
parent (Y,X) (11)

X is successor of Y if Y is parent of Z and X is successor
of Z or

succ (X, Y) if parent (Y,Z) and succ (X,Z) (12)

The questions are:
Who are the children of Bob? or parent (Bob,?) (13)
Who is predecessor of Pat? or succ (Pat,?) (14)

Each of the above sentences can be represented in
attribute grammar notation as:

{parent)::=nil )
if al({parent))+# John and al({parent))+#nil

then FLAG:=false else a7 ({parent)):=John;
if al({parent))+# Bob and al({parent))+nil

then FLAG :=false else aj({parent)):= Bob,

(8), (9), (10), accordingly.

{succ)::={parent)
al({parent)):=al({succ));
al({parent)): =ak({succ));
ay((succy):=az({ parent));
ag({succ)):=af({ parent));
{succ)y::=parent) succ),
aj({ parent)):=aj({succ),);
aj(Ssuccy,):=aj({succ),);
a;((succy,):=a;z( parent));
ay({succ)o):=ai({succy,);
ay((succ),):=ai({ parent));
{question) ::={parent)
al({parent)):= Bob;
output(as({parent)));
{question) ::= {succ)
al({succ)): = Pat;
output (a3 ({succ)));
In Figure 3a,b the two possible parse trees are shown
for question (13) and in Figure 44,b for question (14).

(am

(12)

13)

(14

THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986 243

16-2

¥20Z I4dy 01 uo 1senb Aq 6566.5/1¥72/S/62/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq



244

G. PAPAKONSTANTINOU AND J. KONTOS

{question) Answer: Ann

Bob
rule (13) l
(parent) al  af af af
rule (9) Bob Ann
nil
(a)
(question)
Answer: Pat
rule (13) Bob
(parent) al af af af
rule (10) f T
Bob Pat
nil
(b)
Figure 3. Parse trees of question (13).
(question)
Pat
rule (14)
1 Answer: Bob
(succ) al af af af
rule (11)
(parent) af = af a af
rule (10) Bob Pat
nil
(a)
(question)
rule (14) PI” Answer: John
(succdy  af af af af
rule (12)
(parent) af © af af af (succ), af ay
!
7
rule (7) T t rule (11)
! John Bob
nil
(parent) al * af
rule (10) I
(b) nil Bob

Figure 4. Parse trees of question (14).

THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986

¥20Z I4dy 01 uo 1senb Aq 6566.5/1¥72/S/62/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq



KNOWLEDGE REPRESENTATION WITH ATTRIBUTE GRAMMARS

5. CONTROL KNOWLEDGE
REPRESENTATION

The interpretation of an attribute grammar is accom-
plished by an interpreter consisting of a parser and an
attribute evaluator. The interpreter embodies the control
knowledge necessary for activating the knowledge-base
and deriving new facts from the data knowledge.

The parsing that takes place as already explained is
degenerate, since it uses nil as its input string. The results
are produced via attribute evaluation which is controlled
by a logical metavariable FLAG that is set true or false
in the semantics of the attribute grammar rules.

The attribute grammar interpreter of Ref. 6 was
modified to use a more sophisticated backtracking
mechanism,! in order to be able to obtain all possible
solutions of a problem. This tool will be used for
experimenting with knowledge engineering applications.

REFERENCES

1. D. E. Knuth, Semantics of context-free languages. In
Mathematical Systems Theory, vol. 2, pp. 127-145 (1968).

2. R.E. Noonan, Structured programming and formal
specification, IEEE Trans. Software Eng., vol. SE-1, pp.
421-425 (Dec. 1975).

3. E. C. R. Hehner and B. A. Silverberg, Programming with
grammars: an exercise in methodology-directed language
design, The Computer Journal 26 (3), 277-281 (1983).

4. D.A. Watt and O.L. Madsen, Extended attribute
grammars, The Computer Journal 26 (2), 142-153 (1983).

5. J. Kontos, Syntax-directed processing of texts with action
semantics, Cybernetica 23 (2), 157-175 (1980).

6. G. Papakonstantinou, An interpreter of attribute gram-
mars and its application to waveform analysis, /EEE
Trans. Software Eng., vol. SE-7 (3), pp. 279-283 (1981).

7. J. Kontos, Syntax-directed plan recognition with a
microcomputer, Microprocessing and Microprogramming
9(5), 277-279 (1982).

8. J. Kontos and G. Papakonstantinou, The interpretation
of meta grammars describing syntax-directed interpreters

6. DISCUSSION

The feasibility of using attribute grammars for knowledge
representation was examined in the present paper. There
seems to be no obvious reason for not using attribute
grammars for knowledge representation, and we might
even argue that they may provide certain advantages. The
first advantage that we consider stems from the fact that
the software technology of attribute grammar processing
is fairly mature. There exist many implementations of
interpreters and compilers that can be used for
applications.!> The existence of compilers is extremely
useful because compiled versions of grammars exhibit
considerable efficiency of processing. Another advantage
is the possibility offered to combine naturally declarative
and procedural knowledge in a single tool. It is thus
proposed that attribute grammar evaluators may prove
to be useful knowledge engineering tools.

using an attribute grammar interpreter, IEEE Trans.
Software Eng., vol. SE-8 (4), 435-436, (1982).

9. G. Papakonstantinou and F. Gritzali, Syntactic filtering
of ECG waveforms, Computers and Biomedical Research 14,
158-167 (1981).

10. G. Papakonstantinou, A sentence generator based on an
attribute grammar, Angewandte Informatik 8 (1983).

11. G. Papakonstantinou and E. Skordalakis, Normal ECG
pattern generation using an attribute grammar, Proceedings
of the 6th International Conference on Pattern Recognition.
IEEE Computer Society Press, Munich (1982).

12. D.S. Nau, Expert computer systems, Computer, 16(2),
63-85 (1983).

13. G. V. Bochmann, Semantic evaluation from left to right,
CACM 19, 55-62 (1976).

14. R. W. Floyd, The syntax of programming languages - a
survey, IEEE Trans. Electronic Computers, vol. EC-13 (4),
346-353 (1964).

15. K-J Riihé, Bibliography on attribute grammars, SIG-
PLAN Notices 15 (5), (1980).

THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986 245

¥20Z I4dy 01 uo 1senb Aq 6566.5/1¥72/S/62/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq



