Translating Pascal for Execution on a Prolog-based System

M. H. WILLTAMS* aND G. CHEN

Department of Computer Science, Heriot-Watt University, 79 Grassmarket, Edinburgh EH1 2HJ

One of the objectives of the Japanese Fifth Generation Computer Project is to develop computer systems whose kernel
languages are based on logic programming rather than on the conventional imperative languages which have been in
general use until now. This has led to conjecture about the problem of the large base of existing software which is
implemented in imperative languages. To this end a study has been conducted into the possibility of translating programs
written in Pascal-S into Prolog. Because of the radically different control and data structures in these two languages, the
translation process is not straightforward. The problems associated with this process are discussed and its performance

assessed.

Received October 1984

1. INTRODUCTION

In recent years Prolog,!- 2 a programming language based
on symbolic logic, has been used to develop programs in
a variety of application areas (e.g. natural language
processing,® expert systems,? database query languages,’
CAD modellers,® etc.). In the process logic programming
languages have been found to have many advantages over
conventional imperative languages.

The Japanese have recognised the potential of logic
programming and have selected it as one of the
foundation stones on which to establish their Fifth
Generation Computer Project.” One of their aims is to
develop several different computer systems whose
underlying kernel languages will be variants of logic
programming.

Since the announcement of the details of the Japanese
plan, research on logic programming and its applications
has intensified. At the same time concern has been voiced
over the problem of the large base of existing software
which is implemented in imperative languages, and what
might happen to it if computer systems with these
radically different architectures were to replace existing
systems.

In order to assess the seriousness of this problem a
study has been conducted to investigate the possibility of
implementing conventional languages on a Prolog
machine. For this purpose Pascal was chosen as
representative of the class of imperative programming
languages. Besides its virtues in the area of well-structured
program constructs and rich data structures, Pascal has
the advantage of a reasonably precise formal specification,
8-10 which is generally accepted and adhered to.

The radically different semantics (involving both data
structures and program constructs) between Pascal and
Prolog gives rise to several major problems in the
translation process. These include the translation of goto
statements, the evaluation of expressions, the execution
of assignments, the translation of procedure or function
bodies and the translation of control statements.

As a first step in preparing a Pascal program for
execution on a Prolog machine, all goto statements can
be removed from it by mapping it into an equivalent
Pascal program without geto statements. The process for
accomplishing this is described in Ref. 11.

To simplify the problem it was decided to concentrate

* To whom correspondence should be addressed.

246 THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986

on a subset of Pascal, called Pascal-S.!2 This does not 5
include variant fields within record types, pointer types S §
or packed variables. Set and file types will be discussed 8 ]
briefly but their implementation is not dealt with in full.

The next section discusses the main features of the two 5
languages and the general principles of translation 3
between them. Subsequent sections concentrate on =
different aspects of the problem.

2. GENERAL PRINCIPLES

In order to understand the problems of translation from
a conventional imperative language like Pascal to a
declarative language like Prolog, consider briefly the
main features of the two languages and the differences
between them.

2.1. Pascal

In an imperative programming language such as Pascal,
the fundamental mode of operation is based on changing
the state of variables through assignments or other
similar language constructs. These variables are used to
imitate the storage of the underlying machine. This basic
dependence upon variables and the association of values
with variables is characteristic of a von Neumann
architecture.!?

The execution of a Pascal program which realises some
algorithm may be regarded as a sequence of state
transformations in which the state of the store or the
current point of control or both may change. This is
reflected in the three main constructs of the language
namely,

(a) declarations which define the attributes of storage
locations,

(b) assignmentstatementswhicheffect transformations
from one state to another by updating storage locations,
and

(c) control statements which determine the point of
control at any instant and hence the order of state
transformations.

¥20Z I4dy 01 uo 1senb Aq 8966.G/972/S/62/2101e/|ulwoo/wod dno-olwspeoe//:sdy

s

2.2. Prolog

By contrast Prolog is a high-level programming language
based on a subset of first-order predicate calculus
formulae known as Horn clauses. A well-formed



TRANSLATING PASCAL FOR EXECUTION ON A PROLOG-BASED SYSTEM

first-order predicate calculus formula in clausal form has
the form

P,vP,v..VP,vIQ,vIQ,V...vQ,
or PVP,V.. VP, < Q,AQ,... AQ,,
or P,vP,v..P, if QAQ,A...AQ,

A Horn clause is a restricted case in which 0 < n < 1
and has one of the following three forms:

P,«Q,AQA...AQp
P,
“QAQA...AQp

where the symbol ‘ «’ is read as ‘if” or ‘is implied by’.
The first clause is an implication or rule, the second is an
assertion or fact and the third a query.

These three forms of Horn clauses form the basic
constructs in Prolog. The first form is that of a Prolog rule
in which the predicate on the left-hand side is defined to
be the conjunction of goals on the right-hand side (the
rule body), e.g.

parent(X, Y):- father(X, Y).

which may be read as ‘X is a parent of Y if X is a father
of Y’. The second form reflects a Prolog fact; an
example of this might be

father(john, mary).

which may be read as ‘john is the father of mary’. The
third form reflects a question to be answered. For
example

?7- father(john, X).
which may be read as ‘of whom is john the father?’.

The basic data structures used in Prolog are numeric
and string constants, variables and compound terms. The
concept of a variable in Prolog is totally different from
that in Pascal. A variable in Prolog stands for a single
object; it will be undefined before it is instantiated (its
value is determined), but after it has been instantiated its
value may not be altered except when backtracking
returns to the point where the variable was instantiated
and undoes this instantiation.

2.3. Translating from Pascal to Prolog

Following the state transformation approach a block in
Pascal can be regarded as an action which transforms
some initial state S, into some final state S,. Each
statement ST; (1 <i < n) of the block will transform
state S;_, into state S;, so that the execution of the block
as a whole may be represented by the sequence

{SoIST{S,}ST,.. {S,_1}STL{S,}

in which ST; is the ith statement of the block and S;_, is
the pre-state vector of ST; and S, its post-state vector.
Alternatively this may be written as

ST,(So» S1), STy(S,, Sy), -, STu(Sn—y> Sy)
where each ST; represents a function which maps state
S;_, into state S;.

If each statement ST; is thought of as being represented
by a Prolog rule, a block consisting of statements ST,
ST,, ..., ST, may be translated as

block(S,, S,,) « st,(S,, S)), sty(S;, Sy), ---, 5t4(Sn—y, Sp)

where the subgoals st,, st,, ..., st, are the names of
predicates defining the effects of statements ST, ST,, ...,
ST,. These are similar to procedure calls in conventional
languages.*

Control statements are treated in a similar manner
except that some control component is required to test
the condition part of the control statement and transfer
control accordingly. For example, a while statement

while ¢ = 1 do begin ST,; ST,; ...; ST, end
will be translated as the goal

...statement;(S;_,, S;)...
in the sequence of statements in which it appears and will
result in a definition of the form

statement;(S,, Sp;,) « C = 1, st,(S,, S,), st,(S;, S,),
vees Sta(Sp_1s Sp)s
statement;(S,, S, ,,).

statement;(S, S).

Simple statements such as assignment statements,
input—output statements and procedure calls do not
necessarily require separate rules to define them; they
may be incorporated directly in the parent rule.

In practice, it is not necessary to pass the complete state
as a parameter from statement to statement; usually a
subset of the state, a substate vector, will suffice. This will
be discussed in detail in later sections.

3. DECLARATIONS AND STATEMENTS

In order to translate a goto-less Pascal program into
Prolog, the program must first be parsed and converted
into a suitable internal form.

In the approach adopted the declaration part and the
statement part are treated separately. The translation for
each part makes use of the ability in Prolog to define a
wide range of operators, and to specify for each its
precedence and associativity. If all Pascal reserved words
are defined as operators, a section of a Pascal program
may be treated as a Prolog term and parsed accordingly.
The resulting program will have the form of a Prolog
term. For example, a while statement of form while C do
X may be represented as

while(C, X),
a sequence of statements as

;(Sl’ SZ)

where S, is the first statement of the sequence and S, the
remainder of the sequence, and so on.

One set of rules is used to analyse the declarations in
a program and will parse each of the definitions for
constants, types, variables, etc. Information such as the
type and scope of each variable is stored for use in parsing
the statement part. The second set of rules is used to parse
the statements in the body of a block. The statements are
parsed in top-down fashion with information being
retrieved and stored as required.

As intimated in the previous section, when a control
statement is translated into Prolog, it is not always
necessary to pass the complete state vector as a parameter

THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986 247

¥20Z I4dy 01 uo 1senb Aq 8966/G/972/S/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq



M. H. WILLIAMS AND G. CHEN

to it. In order to determine for each statement ST; the
smallest subset of the state vector which will suffice, two
sets of variables, M, and A, are defined.

The set M; consists of those legally accessible variables
in the scope of statement ST; whose values may be
modified when ST, is executed, e.g. destinations of
assignment statements, parameters for input statements
and actual parameters associated with formal variable
parameters whose values are modified in procedures or
functions called within ST;,.

The set A, consists of those legally accessible variables
in the scope of statement ST; whose values may be
accessed in any expressions in ST;, excluding any
variables whose values are set within ST, before being
used. For example, in the following repeat statement
(STy)

repeat v: =a; w: = w+1; x: = v+w;...until c;

the set A; will contain the variable w but not the variable
\2

During the parse a syntax tree is constructed for each
body of a block. Each leaf node of this tree represents a
simple statement (assignment statement, input-output
statement or procedure call); each branch node corre-
sponds to a compound or structured statement in the
block. Each branch node has associated with it the two
variable sets A and M.

By the end of the parse the source program will be
decomposed into a constant table, a variable definition
table (which maps each variable to its type), a procedure
table (in which each procedure or function name is
associated with a parameter list and a syntax tree) and
the syntax tree for the main body of the program.

4. VARIABLES AND ASSIGNMENTS

The basic structure of the Prolog output code produced
by the translation process is described in Section 2. The
body of each Pascal block will be translated into a Prolog
rule which calls the subgoals corresponding to the
statements in this block. All Pascal variables required in
this block must be accessible in this rule, and the proper
subsets of the variables will be passed to and updated by
the subgoals corresponding to each statement in the
block. Thus the compound and structured statements will
call the statements in their bodies until a simple statement
such as an assignment, procedure call or input—output
statement is encountered.

The simple variables in a source program can be
handled by being passed as parameters between rules.
Each time a variable is updated by an assignment in
Pascal, a new variable will be created to substitute for the
old one in Prolog. To accomplish this the compiler keeps
a record of each Pascal variable name paired with its
corresponding Prolog token (a Prolog variable) at any
point in the compilation process. The current token for
a Pascal variable will be changed whenever the latter is
updated by an assignment or input statement or
substituted by an actual parameter in a procedure or
function call. For example,

a:=b+c; b:=b+1;
...a...b...;

248 THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986

will be translated as
Ais B+C, BlisB+1,
...A...Bl...

where ‘is’ is a built-in predicate in Prolog which sets the
first argument equal to the result of the expression in the
second argument.

The structured type array is more difficult to represent
since Prolog does not support arrays as such. In the
approach adopted a predicate access is used to select an
element from an array and return this element in a Prolog
variable, while a predicate update is used to update a
single specified element in an array.

Initially Prolog lists were used to represent arrays. The
predicates access and update operated on lists, finding the
appropriate element and performing the operation
required. However, this proved to be very inefficient.
Each access to (or update of) an array required time
proportional to the number of elements in the array to
perform.

As an alternative to simple lists, height-balanced binary
trees were tried (see Section 7). These reduced the access
time for an array of n elements from o(n) to o(log,n)
which produced a considerable improvement in the
execution time of the resulting programs.

It is natural to represent a variable of type record as
a Prolog term of arity n corresponding to n fields. Such
a representation can be nested if the fields of a record type
are in turn structured data types such as arrays or other
records. A variable of type set can be handled as a list
if special operations are defined for performing the test
of membership of a set, union, intersection and so on.
These can be provided as built-in functions to be used in
the Prolog program. The file type can also be handled in
Prolog without difficulty.

Simple statements such as assignments, input-output
statements and procedure calls will not be defined as
separate rules, instead they will be translated directly in
the context of their parent rules. In translating an
expression the code for calling the functions in the
expression and the code for evaluating the elements of
structured variables will be generated first, the results
being stored in temporary variables. Then the predicate
is is used to evaluate the expression and to instantiate a
variable with this value. This variable may be a new
version of a simple variable, or the value with which a tree
is updated or simply an intermediate variable used, for
instance, in testing a condition. When a new version of
a variable is created, the compiler will update the present
token corresponding to the variable and this token will
be used in the following context until the variable is again
updated.

5. HANDLING PASCAL PARAMETERS

The approach used to treat variables discussed in the
previous section applies equally to variables in the main
body of the program as it does to local variables or formal
value parameters within a procedure or function.
However, the treatment of formal variable parameters
and global variables referred to within a procedure or
function body poses rather different problems.

¥20Z I4dy 01 uo 1senb Aq 8966/G/972/S/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq



TRANSLATING PASCAL FOR EXECUTION ON A PROLOG-BASED SYSTEM

The major problem is caused by the fact that two
distinct variable names may refer to the same location in
a Pascal program, i.e. variable aliasing. This may arise in
Pascal-S when the same variable is used as actual
parameter for two different formal variable parameters,

e.g.
var i:integer;
procedure ex1(var x,y:integer);
begin
en;i;
ex1(i,i);

or when a variable used as an actual parameter in a
procedure call is also referred to directly as a global
variable within the procedure or function body, e.g.

var i:integer;
procedure ex2(var x:integer);

begin
ii=i+1;
X:=X+1i;
end;
ex2(i);

The problem may be further complicated by several
levels of indirection, e.g.

var i:integer;
procedure ex3a(var x:integer);
procedure ex3b(var y:integer);
procedure ex3c(var u, v:integer);

begin (* body of ex3c *)
end;
begin (* body of ex3b *)
ex3c(y,i);
end;
begin (* body of ex3a *)
ex3b(x);
end;
begin (* main program *)
ex3a(i);
en;l'..

or may be disguised as in the case of a subscripted
variable, e.g.

procedure ex4(var X, y:integer);
begin

X:

yi=...;

end;

ex4(afi].afi]);

In the approach described in the previous section each
Pascal variable x is translated as a sequence of Prolog
variables {X,, X, ..., X} in the compilation process.
However, when variable aliasing may arise, it is necessary
to split the translation into two mappings, one from the
domain of variables to that of locations and the other
from locations to values.

For each procedure or function P whose set of formal
parameters contains at least one variable parameter, a set
S can be defined which consists of all variable parameters
from the formal parameter set and any global variables
referred to in the procedure or function body. If the set
S contains more than one member then:

(a) When a call to P is compiled, code is generated for
each element x in S defining a map @ :Int — Value from
a location N in the Prolog database to the present value
of x (@(N, X)), and a reference to N will be the initial
value of x when P is activated. This is followed by the call
to P and finally code to collect the value of x from the
data base and destroy this map.

(b) In compiling the body of P whenever a reference
to an element x in S is encountered, a reference is made
to the data base (@(N)) using special predicates ac_fp and
up_fp defined as:

ac_fp(@(N), V) « @(N, V).
up_fp(@(N), V) « retract(@(N,_)), assert(@(N, V)).

For the sake of efficiency, this process can be improved
in two ways:

(a) if no call to P can give rise to variable aliasing, the
elements of S can be treated in the same way as variables
dealt with in the previous section;

(b) if calls to P can give rise to variable aliasing, it may
still be possible to define for each procedure call of P a
subset of S which is relevant.

To handle the latter case where some calls to P may
cause variable aliasing, the predicates ac_fp and up_fp are
redefined as follows:

ac_fp(@(N), V) « @(N, V).

ac_fp(V, V).

up_fp(@(N), V, @(N))« retract(@(N, _)), assert
(@(N, V)).

up_fp(,, V, V).

In each case the first rule involves a double mapping while
the second uses a single map.

When a call to P is compiled, if an element x in S is
an alias for at least one other element of S, the map for
x and its initial value will be defined and inserted before
the call, and code generated to collect the value of x and
destroy this map after the call. If x is not an alias for at
least one other element of S, the present value of x will
be passed to P directly.

The process of detecting variable aliasing can be
described briefly as follows.

(a) For each call to a procedure or function an entry
is created which records the formal variable parameters
and the corresponding actual parameters used in the call.
In addition, for each procedure or function definition an
entry is set up to record each global variable used in the
body of the definition.

(b) Once the whole program has been scanned and all
calls analysed, the closure is constructed, yielding the
chain of possible actual parameters corresponding to
each formal variable parameter.

THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986 249

¥20Z I4dy 01 uo 1senb Aq 8966/G/972/S/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq



M. H. WILLIAMS AND G. CHEN

(c) For each procedure or function P the chains
corresponding to the formal variable parameters of P are
searched for any elements which occur in more than one
chain, or for any global variables which are used in the
body of P. If any such element is found, variable aliasing
may occur.

(d) If two array elements with variable subscripts a]i],
a[j], are used as actual parameters, it is, in general, far
more difficult to determine at compile time whether
aliasing occurs (i.e..i =j) or not. In this instance it is
simply assumed that aliasing may take place.

6. CONTROL STATEMENTS

Before the Prolog code for each compound or control
statement is generated, two state vectors, IN and OUT,
are constructed for the statement. The variable sets A,
and M; are used for this purpose as follows.

(1) For the main body of the program the two vectors
will both be empty and the corresponding Prolog rule
generated is:

program « st,(IN,, OUT)), st,(IN,, OUT,)
. sty(IN,,, OUT,)

where n is the number of control statements in the main
body which are not nested within other control
statements.

(2) For each procedure or function body, the variables
in IN will be those in the formal parameter list together
with any global variables accessed in the body. The
variables in OUT will be those formal variable
parameters and global variables modified in the body. In
the case of a function, the function name will also belong
to OUT. The Prolog code generated is similar to that for
the main body except that two parameter vectors are used
in this case.

(3) For each if or case statement the variables in set
OUT are those in M; whose values are used in subsequent
statements at the same level (ST, ,, ..., ST,), i.e.

{x|xeM; A xe(Aj;; VA, U...UA))},

together with any variables which will be used in its
parent’s successor statements (belonging to its parent’s
OUT set) but which will not be modified by its own
successor statements, i.e.

{x|xeM; A xe(OUT(parent(ST;))\(Mj;, U... UM))}

where OUT/(parent(ST;)), the OUT set of ST,’s parent
statement, has already been constructed. Thus the OUT
set for conditional statement ST, will be:

OUT =M;n (A, U ...
Mj, V... UMy))

The set IN is defined as:

IN =A;UOUT
i.e. all variables used in ST;(in set A;) together with any
variables in OUT which return values if the variables are
not updated.

The Prolog rule generated for an if statement is:

st;(IN, OUT) « condition, ...goals for then clause...
st;(IN, OUT)+« ...goals for else clause...

If the condition is satisfied and found to be true then the
goals for the then clause will be executed. Otherwise the
second rule will be attempted and the goals for the else

U A, U(OUT(parent(ST;))\

250 THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986

clause executed. If the else clause is absent, the following
rules will be generated:

st;(IN, OUT) « condition, ..
st;(IN, IN) «

In this case if the condition fails, the post-state vector
will be the same as the pre-state vector.

The code generated for a case statement ST; is similar,
namely,

st;(Label,, IN, OUT) « ..
st;(Label,, IN, OUT) « ..

.code for then clause...

.code for option 1...
.code for option 2...

st,(Label,, IN, OUT) « ..
sti(L, o, )« ..

(4) For an iterative statement (for, while or repeat) the
sets IN and OUT will be defined in the same way as those
for conditional statements.

The code generated for a for statement will be:

st;(IN, OUT) « ...bound condition,
...goals for loop body...,
...modify bound condition...,
st;(IN’, OUT).

.code for option n...
.eITOT OCCurs...

d

st;(IN, IN) «

which states that to execute a for sthtement it is necessary®
to satisfy the bound condition first. If it holds, the goals3
for the body will be called one by one, the boundo
condition will be modified and the goal itself will be called
to perform further iterations. If the condition fails, theg
current state will be returned to the post-state vector of
this rule by the second rule.

The format of the code generated for a while or a repeat
statement will be similar to that for a for statement.

peoe//:sdny Woly pepeojumo

woo,

Example

z/c/6g/a101e/|ufl

A simple example is given to demonstrate the translation > N
process. The procedure ‘mean’ reads a group of integers By
terminated by a zero and finds the maximum, minimum g
and average values The main body simply calls$ 3
procedure ‘mean’ and prints the results.

program exam(input, output);
var a,b,c:integer;
procedure mean(var min,max,ave:integer);
var a, t, n:integer;
begin
read(a); max: = a; min: =a; n: =0; t: =0;
while a > 0 do
begin
if a > max
then max: = a
else if a < min
then min: = a;
n:=n+1;t: =t+4a; read(a)
end;
ave: =tdivn
end;
begin
mean(a,b,c);
writeln(a); writeln(b); writeln(c)
end.

202 Iudy 01 uo 1senb Aq

In the topmost level of procedure ‘mean’ there are six
simple statements and one structured statement (the while
statement). In the while body there are three simple



TRANSLATING PASCAL FOR EXECUTION ON A PROLOG-BASED SYSTEM

statements and one structured statement, an if statement
(called if1), within which another if statement (called if2)
is nested. For the while statement, A = {a, max, min, t,
n}, M = {max, min, t, n}. Because the variables max, min,
t, n will all be used after the while statement, OUT = M,
and IN = (A UOUT) = A. For ifl, A = {a, max, min},
M = {max, min}. Since variables max and min occur in
the OUT set of the parent rule (OUT for while),
OUT = M and IN = A. The same applies to if2, where
A = {a, min}, M = {min}, OUT = M, IN = A. Thus the
Prolog program will be:

exam:- mean (, _, _, A, B, C),
write(A), nl, write (B), nl,
write(C), nl.

mean(_, _, _, Min, Max, Ave):- read(A),
while(A, A, A, 0, 0, Max, Min, T, N),
Ave is T/N.
while (A, Max, Min, T, N, Max1, Minl, T1, N1):-
A > 0, if1(A, Max, Min, Max0, Min0),
NO is N+1, TO is T+ A, read(Al),
while(A1, Max0, Min0, T0, NO, Max1, Minl, TI,
N1).
while(_, Max, Min, T, N, Max, Min, T, N).
ifl(A, Max, Min, A, Min):- A > Max.
ifl(A, Max, Min, Max, Minl):- if2(A, Min, Minl).
if2(A, Min, A):- A < Min.
if2(_, Min, Min).

7. DISCUSSION

The chief differences between Pascal and Prolog from the
point of view of translation are the following.

(@) Iterative control structures. Whereas most algo-
rithms in conventional languages employ iterative con-
structs, these have to be achieved by recursive constructs
in Prolog.

(b) Procedure calls. In general Prolog programs make
much heavier use of procedure calls than do Pascal
programs. Furthermore, each procedure call in Prolog
requires more time than a Pascal procedure call, partly
because of the pattern matching which is performed in
seecking a matching rule and partly because of the
additional control stack management which is required
for backtracking.

(c) Data representations. In view of the fundamental
differences between variables and parameters in Pascal
and those in Prolog, each Pascal variable or parameter
may be translated as a pair of entries, (name,loc) and
(loc,value), in the Prolog database. However, this is very
inefficient. A more efficient solution which uses Prolog
variables and parameters requires a much greater degree
of processing at compile time.

(d) Data structures. A fundamental structured data
type available in virtually all conventional programming
languages is the array. However, arrays are not provided
in Prolog and their effect must be achieved by other
means. Initially lists were used, but these proved to be too
inefficient. Several different alternative approaches
involving Prolog terms were tried but problems were
encountered due to limitations on the size of such a term
and methods of updating it. The best solution tried was
a binary tree representation. This requires o(log,n) time

Table 1. Ratio of the execution time of the Prolog code
generated by this system to that of the original Pascal program
running under the EM1 interpreter (CODE/PASC), and of the
Prolog code generated by this system to that of an equivalent
Prolog program written by hand (CODE/PROL) for a
number of sample programs.

Example Uses

no. arrays CODE/PASC CODE/PROL
1 Yes 10-25 11-19

2 Yes 10-23 6-10

3 Yes 8-18 3-5.5

4 No 0.9-1.6 1.5-1.9

5 No 1.4-2.4 1.3

6 No 1.3 1.4

to access, which proved more acceptable, although even
with this representation the execution time is large for
programs which make heavy use of large arrays. Several
simple examples have been tested on the C-Prolog system
to assess this bottleneck problem. Of six examples tested,
three use an array as the main data structure. The sizes
of the arrays range from 5 to 400 elements. The time
efficiency of compiled code compared with the Unix
Pascal interpreter EM1 and with Prolog written by hand
is shown in Table 1. CODE/PASC is the ratio of the
execution time of code generated to that of the original
program running under Pascal EM1, CODE/PROL is
that of execution time of generated code to that of an
equivalent Prolog program written by hand. Each of the
test programs was executed with a number of different
sets of data, and the range of ratios presented in the table
reflects the range of ratios observed. The results show
clearly the bottleneck which arises due to array variables.
Although this is not the only source of inefficiency (e.g.
heavy recursion is also inefficient), it did appear to be the
most important single factor.

The method discussed above has been applied to the
translation from Pascal-S into Prolog. In Pascal-S, the
data structures are the basic data types integer, real, char
and boolean and the structured data types array and
record (without variants). Omitted are the set and file
structures (apart from the standard textfiles input and
output), the pointer type and packing options. For the
dynamic data type, one solution might be to use a tree
to hold all the objects and to pass it as a parameter to
the rules.

The ‘real’ data type was omitted from this particular
study since real numbers are not available in some Prolog
implementations. However, this does not affect the basic
method and algorithm.

Another simplification which Pascal-S makes is the
omission of procedure parameters. Although these may
be handled by the predicate ‘=..’ (‘univ’), their use
complicates the analysis of variables and parameters
outlined in the paper and may necessitate the use of the
simpler and less efficient approach mentioned in (c)
above.

Acknowledgement

The authors would like to thank Stuart Anderson for
helpful discussions and suggestions and Greg Michaelson
for reading and providing comments on this paper. Mr
G. Chen is currently supported by a scholarship from the
British Council.

THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986 251

¥20Z I4dy 01 uo 1senb Aq 8966/G/972/S/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq



M. H. WILLIAMS AND G. CHEN

REFERENCES

1.

2.

7.

252 THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986

W. F. Clocksin and C S. Mellish, Programming in Prolog.
Springer-Verlag, Heidelberg (1981).

P. Roussel, Prolog: Manual de Référence et d’Utilisa-
tion, Groupe d’Intelligence artificielle, Université d’Aix-
Marseille, Luminy (1975).

. F.C.N. Pereira and D. H. D. Warren, Definite clause

grammars for language analysis — a survey of the formalism
and a comparison with argumented transition networks.
Artificial Intelligence 13 (3), pp. 231-278 (May 1980).

. K. L. Clark and F. G. McCabe, Prolog: A Language for

Implementing Expert Systems. Department of Computing,
Imperial College, London (November 1980).

. J. C. Neves, S. O. Anderson and M. H. Williams, A Prolog

implementation of Query-by-Example. Proceedings of the
7th International Computing Symposium, edited H.J.
Schneider, pp. 318-332. B. G. Teubner, Stuttgart (1983).

. J. Camacho Gonzalez, M. H. Williams and I. E. Aitchison,

Evaluation of the effectiveness of Prolog for a CAD
application. IEEE Computer Graphics and Applications 4
(3), 67-75 (March 1984).

T. Moto-Oka, Challenge for knowledge information pro-

10.

11.

12.

13.

14.

cessing systems. In Fifth Generation Computer Systems, pp.
3-89. North-Holland, Amsterdam (1982).

. N. Wirth, The programming language Pascal. Acta

Informatica 1 (1) 35-63, (1971).

. Specification for Computer Programming Language Pascal.

British Standards Institute, BS 6192:1982 (1982).

K. Jensen and N. Wirth, Pascal User’s Manual and Report.
Springer-Verlag, New York (1975).

M. H. Williams and G. Chen, Restructuring Pascal pro-
grams containing GOTO statements, The Computer
Journal, 28 (2) 134-137 (1985)

N. Wirth, Pascal-S: a subset and its implementation. In
PASCAL: the Language and its Implementation. Wiley-
Interscience, New York (1981).

J. Backus, Can programming be liberated from the von
Neumann style? A functional style and its algebra of
programs. Communications of the ACM 21 (8) 613-641
(August 1978).

H. Gallaire, A study of Prolog. In Computer Program
Synthesis Methodologies,
G. Guiho, pp. 173-212. Reidel, Dordrecht (1983).

edited A.W. Bierman and.

¥20Z I4dy 01 uo 1senb Aq 8966/G/972/S/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq



