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1. INTRODUCTION

The language Algol-60* first introduced the concept of
scope based on block structuring which has since been
widely recognised as an elegant basis for the visibility
rules of a programming language. The essential idea is
that identifiers are accessible in the block in which they
are defined, or blocks within that block (unless shielded’
by re-use of the identifier name in a more local block),
but they are not accessible from outside the block in
which they are declared. Most modern languages have
some form of block structured scope rule, for example,
Pascal,? Algol-68,> Ada* and many more. Nevertheless,
many recent languages such as Ada and Modula-2% ¢
contain substantial language features violating this rule.
Most of these changes centre on the inability of a pure
block-structured language to set up self-contained
facilities which access global objects without those
objects becoming visible throughout the program, and
thus being open to accidental or deliberate corruption.
Most attempts at solving this problem incorporate
significant extra syntactic entities, adding substantially to
the number of concepts fundamental to a language.
Modula-2 has explicit import—export lists, while Ada has
packages with a private and a public part. All these
proposals suffer from considerable syntactic complexity,
which seems out of keeping with the elegance of the
originalscoperules. Nevertheless theyarestill ‘ traditional’
techniques with regard to their basic philosophy and
implementation requirements. A much more radical
alternative based on a dynamic view of types has been
proposed by Harland.” He offers as ‘first-class citizens’
in a language, fully dynamic types which can be
manipulated as data objects, and he shows how his
proposal can provide program modularity facilities, as
well as an equivalent of abstract data types. Although his
scheme goes far beyond the scope of the scheme to be
presented here (at the cost of a much more complex
implementation) it deserves mention due to its similar
philosophy of aiming for a clear and logical conceptual
structure while possessing the greatest power possible.
The present proposal is much more modest than
Harland’s, capable of a much simpler and more efficient
implementation by the traditional methods, and com-
parable in power with the ‘package’ style schemes
mentioned above, but without the considerable syntactic
and conceptual complexities of the extra language
elements found in those schemes. Like the package
schemes, it also relies on the fact that routines are not fully
manipulable values. It retains static typing and proposes
only a small change to the original Algol-60 block-struc-

turing rules, but one which has surprising consequen-
ces, providing modularity facilities like those available
with these more complicated mechanisms.

2. THE NEW SCOPE RULE
2.1. The basic concept

The Algol-60 scope rule can be stated as follows:
Accessibility from inner blocks: unlimited levels.
Accessibility from outer blocks: none.

The revised rule is:

Accessibility from inner blocks: unlimited levels.

Accessibility from outer blocks: zero or one level.

The rules regarding access from inner blocks are
unchanged; also all variables declared in the current
block are accessible as before. The difference is in
allowing the programmer to specify at the start of each
block whether its identifiers will be visible from the
immediately surrounding block. We therefore envisage
two possible block structures, the normal begin. .end and
the new block which we shall denote by use..end.

Identifiers within a begin..end are only visible within that

block; identifiers inside use..end are also accessible in the

block within which the use..end occurs. This outside
visibility never extends more than one level, however.

Should a use block occur within another use block, the

identifiers of the inner block are still only accessible inside

the outer use block, and no more globally than that. Thus,
for use to make an identifier visible outside, that identifier
must be declared immediately within the use block, and
not merely be visible within the use block. To improve
documentation, we may allow identifiers to be qualified
by the name of a label preceding a use block. So, if a use
block labelled * L:’ declares a variable ‘ x°, we may denote
the variable by ‘x’ or by ‘L.x’. The latter alternative
would often be preferable in the interests of readability.

Finally, we note that little purpose is served by making
the main block of a procedure into a use block due to the
fact that the entire text of a procedure constitutes a block
within which the statement of the procedure resides. (The
purpose of this extra block is to locate value parameters
and restrict the scope of any label labelling the entire
procedure statement part.) This extra block would
prevent any use within it from having any effect outside
the procedure declaration. This is probably just as well,
as if it were otherwise access to the variables would be
possible without the procedure necessarily having been
called at all to set them up properly. This problem could
probably be overcome but, as our purpose here is
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simplicity, it is fortuitous that, in Algol-60 at least, we
need not worry about this difficulty.

2.2. Examples

The following program in a pseudo-Algol code illustrates
use of these rules to provide something similar to Algol-60
‘own’ variables, which are accessible to a group of
procedures, yet unknown to the rest of the program:
begin

use

comment Package for stack facilities;
use
integer stkptr;
real array stk{1:1000];
end;
procedure push(r); value r; real r;
begin
if stkptr <1000 then
begin
stkptr: = stkptr+1;
stk[stkptr]: =r
end
end;
real procedure pop;
" begin
if stkptr >0 then
begin
pop: = stk{stkptr];
stkptr: = stkptr-1;
end else pop: = 0.0
end;
stkptr: =0,
end of stack definition;
. Main prog ...
end;

A number of things should be noted regarding the
above program. First, the stack created is initialised to
theempty state by the statement ‘ stkptr: = 0’ immediately
the outer use block is entered, since it is an inline block,
and as such is not procedured. This is possible because
the code of the outer use block can access the variables
declared in the inner use block. The code of the main
block (not shown) can access both procedures push and
pop, since they are themselves declared in the outer use
block, but cannot access the variables implementing the
stack, in spite of the fact that they do continue to exist.
This continued, but invisible, existence of the variables
makes it perfectly safe for the procedures to access the
variables from any part of the program where the
procedures themselves are visible. This is why the
visibility rule and the variable lifetime rule differ. We see
that the procedures are using the variables as if they were
an extended form of ‘own’ variable, except that the
lifetime of these variables only extends to the nearest
surrounding begin, rather than to the life of the whole
program. These variables are properly initialised.

The following example sets up the equivalent of a
private type with the help of a type declaration similar to
those in commonly used languages:
begin

use

use
type (array stk{1:1000];
integer stkptr) innertype;
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end;
type stack = innertype,
procedure push(s,r);value r;
stack s;real r;
begin
comment Knowing the structure of a stack, we
can manipulate it here;
if 5. stkptr <1000 then
begin
s.stkptr: = s. stkptr+1;
s.stk(s.stkptr]: =
end;
end;
real procedure pop(s); stack s;
begin
if s.stkptr>0 then
begin
pop: = s.stk[s.stkptr];
s.stkptr: = s.stkptr-1;
end else pop: = 0.0
end;
end;
stack one, two;
comment We can declare stack s here, but cannot accesss
their internal structure, since the type innerstack is not 5
available here. We must access via push and pop which S
are visible from this point;

1Y Wouy pepeojumo(

end;

The type declaration in the inner use defines the
structure of an innertype object. That type is available 3
within the outer use to permit definition of type stack;
however, to actually access the components of a stack, 1t~2
is necessary to make use of the fact that it is equivalent &
to an innertype object. This is only possible within the o o
outer use so, although procedures push and pop can m
access the inner structure, this cannot be done in the main & c,o
program. There, objects of this type can be declared, but o
use is restricted to the procedures which have access to & By
the inner structure. One might argue that, in order to co
declare an object, a compiler must know its inner X S
structure, at least so far as knowing its size, but there isg
nothing inconsistent in the view taken here: any access ¢
requiring explicit mention of a shielded object (in this &
case, the fields of innertype) is prohibited more than one S
block out, whereas the object itself (the innertype type) 3
continues to exist as long as objects in the surrounding >
block exist, and we can rely on its existence (just as we %
rely on continued existence of the stack in the first 9
example) provided we do not actually mention it *
explicitly in the program text.

09°dno-olwep
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2.3. Detailed implications

Use blocks give rise to some new situations in which
identifiers must be resolved to one of several competing
declarations. These are as follows.

(a) The same identifier is declared in a block and in an
enclosed use block.

(b) The same identifier is declared in an outer block and
in an enclosed use block.

(¢) The same identifier is declared in two use blocks
enclosed by the current block.
The resolution of these questions is, unfortunately, not
as obvious as the resolution in normal block-structured
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languages of a local versus a global declaration.
(Although the resolution is by no means ad hoc, as we
shall see below.) The unmodified Algol-60 rules effectively
mean that a more local declaration takes precedence over
a more global one, and that the same identifier cannot be
declared twice in the same block. Since the intention of
the present proposal is to find a more powerful scheme
than the original, but without added complexity, it is clear
that all these problems should be resolved by appeal to
a concise set of rules (just as the ambiguity in Algol was),
otherwise the resolution will appear to be arbitrary, and
one could then legitimately argue that the new scheme is
conceptually more complex.

Fortunately a solution can be found by a shift in our
understanding of the Algol rules above. We shall apply
the Algol rules rewritten as follows. A declaration ‘closer’
(see below) to the application takes precedence over one
further away, and two declarations of the same identifier
are invalid if there is any point in the program text at
which both declarations could possibly be applied and to
which the two declarations have exactly equal closeness.
The ‘closeness’ mentioned in this rule is closeness
measured in terms of blocks exited/entered but not
entered/exited in proceeding through the program text
from the declaration to the point of application. (This,
essentially a measure of difference in block level, is the
same thing as the original rule when applied to ordinary
blocks, since local variables are always closer than global
ones, and declaration of one identifier twice in the same
block is ambiguous within that block.)

Let us now address each of the three cases mentioned
above. Case (a) is easily resolved, since in any given block
its own variables are ‘closer’ than those of any other
block ; we may therefore say that the enclosed use block’s
variables should be hidden by those of the current block.
Case (b) is harder since, if the outer block declaration is
in the immediately enclosing block, one can legitimately
ask whether one level out is closer than one level in, or
vice versa. Since we are trying to obtain the simplest
possible system, and since two (or more) levels out are
definitely further away than one level in, clearly the
one-level-out case should be grouped with the many-
levels-out case rather than being a special case of its own.
Another argument leading to the same conclusion is that
included blocks actually form part of the current block,
and so in that sense must be regarded as closer. One could
also argue that a use block is half an ordinary block, since
it takes two such blocks to erect an impervious barrier to
access by more global blocks. Yet another reason for
choosing this was is that it is more useful (and that, surely,
is the unspoken reason behind most programming
language designs).

The most serious problem occurs in case (c), where a
block contains two use blocks, each declaring an identifier
of the same name. In that outer block, both declared items
would appear to have equal closeness. There are at least
two ways to approach this problem. Application of the
second part of our rewritten rules tells us that the
declarations should be illegal. In a language like Algol-60
which has no separate compilation features, this would
undoubtedly be the right choice, since the very purpose
of having the variables in use blocks is negated if one of
them (at least) cannot be used outside the block.
Unfortunately, in a language with separate compilation
facilities, the fact of life is that programmers will want to

include modules which were not written by themselves.
Therefore identifiers chosen by the writers of included use
blocks may be, for quite legitimate reasons, beyond a
programmer’s control. These difficulties are sufficiently
serious to warrant departure from the simple rules given
above.

Languages which allow external compilations will of
course provide a statement calling for inclusion of some
external module. It is not uncommon for such systems to
provide an identifier-renaming statement. An example is
the ALIAS compiler directive in Hewlett Packard’s
Pascal /3000.8 A common use for this sort of thing is when
external modules might be programmed in an assembly
language or some such system which permits extra
characters such as dollar, apostrophe, etc. in identifiers.
If such a thing already exists, it can be pressed into service
to save the day here also, renaming any clashing
identifiers so that no conflicts are presented to the
compiler at all. Another possible solution is to require
qualification by a label, as previously described, in any
ambiguous case. Since this latter rule is only effective if
a clash occurs, it does not complicate the basic rule in
straightforward cases. If it should be objected that this
is a complication simply in that the rule must exist, one
could reply, first, that such complications to resolve
ambiguities have a time-honoured historyin programming
languages (witness the Algol-60 rule requiring begin. .end
around an if after a then, and the Cobol rule requiring
qualification of field names when ambiguity arises), and
secondly, that the more complicated import-export and
package schemes themselves require a similar complica-
tion to eliminate the same ambiguity (Ada, for example,
having a system of qualification used to overcome
ambiguities which can arise in a host of different ways).

One more possible objection to the simplicity of this
scheme can be made, namely that having two types of
block is more complex than having only one. To this we
may reply that retaining the traditional block is little
more than a piece of syntactic sugar, as the sequence
‘begin..end’ is almost identical in effect to the sequence
‘use use..end end’. (The difference is earlier storage
de-allocation in the former case; there is no operational
difference. A good compiler could detect unnecessary
storage retention in the latter case and arrange its earlier
reclamation.) Viewed in this way, the discussion is seen
to be about one set of scope rules versus another, and not
about adding extra rules to an existing system.

The accessibility of variable names outside a block
obviously raises the question of the lifetime of such
variables. The system works correctly if variables
declared in a use block exist as long as the variables in
the surrounding block do. Note that this is a recursive
rule. This may seem at odds with the strict limit on
accessibility of such objects, but we shall see how this
provides a very flexible and safe storage scheme. For
sensible semantics, the outer block should be restricted to
being a begin..end block as its data cannot exist longer
than the execution of the program.

As a use block is a statement rather than a declaration,
two issues arise concerning the sequence of execution of
statements. First, a use block may be labelled, and
therefore re-entered within a single execution of the sur-
rounding block. Section 4 shows how a straightforward
and efficient implementation can handle this. (There is
one subtlety in this case, however. Entry to a block has al-
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ways indicated redeclaration of entities within. If a block
encloses a use block, then the items declared in that use
block should be released no later than subsequent entry
to the block which encloses it. This keeps the present
proposal as close as possible to the usual system.) The
second issue is that a use block might be skipped entirely
in execution, but variables declared within it might be
referenced further on. Two solutions are available. For
an Algol-68-like language, the problem exists already for
other entities, and the standard language mechanisms can
be brought to bear on this case also. For an Algol-60-like
language, space for simple variables can be allocated
upon procedure (or program) entry, and arrays can be
initialised to have empty bounds (i.e. [1:0]). This is the
automatic effect of the implementation technique we
shall present. It resembles in philosophy the automatic
initialisation of own variables in the standard language,
and so is by no means a forced or unnatural solution.

3. DISCUSSION
3.1 Comparison with own variables

We have seen an example which sets up a facility very
much like an own variable. The precise differences bear
elaborating. Since storage for use block variables is
created in the same regime as that of the surrounding
block, the point of allocation of storage may be
transferred outwards if that blocks is itself a use block.
This means that storage for nested use blocks is all
grounded at the level of the most local normal block. As
we have already seen, if that block is the outermost
program block (as in the first example in Section 2.2.), we
effectively have own variables, with the two advantages
that we can include specific initialisations (rather than to
the predetermined value zero as for own variables), and
we can refer to them from any number of selected
procedures, rather than from only one. If, on the other
hand, we were to ground our use blocks in some other
block, say the outermost block of a recursive procedure
(if, say, our first example in 2.2 were the body of a certain
procedure x), we would have a more interesting
possibility. Within a single activation of that procedure,
the use block variables are persistent. Suitably located
internal procedures may access them just as if they were
own variables. However, after recursive activation of the
outer procedure, a new copy of the use variables will be
created, and the inner procedures again treat them like
own variables, except that they are not disturbing the
values of the variables set up by the outer invocation of
the recursive procedure. In that example, we see we would
be supplied with a fresh, empty stack at each call of
procedure x, be it a recursive call or not. This is a
powerful improvement upon own variables, also including
the ability to hide data.

There is one capability possessed by genuine own
variables which is not available here, however. That is the
possibility of declaring an own variable in a deeply nested
procedure, and having it persist for the duration of the
program. Which capability one would rather have is, of
course, a matter of personal opinion, but the absence of
own variables from recent languages would suggest that
experience with these variables in Algol-60 has shown
their limited advantages to be insufficient to justify the
added complexity and the cost of their implementation;
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on the other hand, the possibilities in the present proposal
for flexible data shielding on multiple levels within a
structured and clean environment would seem much
more likely to be extensively used.

3.2. ‘Packages’

Our second example from Section 2.2 sketched out a
‘package’ scheme. The power inherent in this approach
can be nicely enhanced in a host language possessing other
powerful facilities. For example, there is a distinction
made in Ada between private and limited private types.
This distinction is within the capacity of these scope rules
if embedded in a suitable language; a language like
Algol-68, in which operators are declared, could require
the programmer to declare all required operators in some
manner. Then the assignment and comparison operators o
could be declared in suitable places, or not, as the £
programmer prefers. In fact, just the right combination &
of operators could be set up for the required application. :%’
The Ada private/limited private distinction, being based =
on an arbitrary set of operators, can be seen to be a more
restricted concept.

3.3. Separate compilation

Examination of existing compilers for languages such as
Algol-60, Algol-68 and Pascal reveals a nearly universal
tendency to provide some form of separate compilation <
facility, yet the syntax and semantics of these is often quite o
convoluted. To provide separately compiled ‘packages’
under this proposal, we simply assign a meaning to the
as-yet forbidden use of a use block at the outermost level =
of a program, as follows: all outer block names become
accessible to the linker (which most compiler-based
systems have) for resolution of undefined references in
other object files; such a use block becomes a ‘package’.
Provision of a suitable ‘external’ declaration will now
permit the main program (or another package) to access
the objects in this package. This would probably work
best if the compiler wrote a special information file on the
objects in the outer use block. The ‘external’ declaration
could then, with a single request, incorporate all the
public information about the package. The effect would
be as if the entire use block of the package were
included in the program text at the location of the ex-
ternal declaration. Remarks regarding the implementa-
tion of external compilation will be made in Section 4.
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3.4 Other scope rules

One of the more interesting variants of block structure
is found in the Euclid system.® There ‘block structure’ is
retained in so far as scopes may be nested indefinitely, but
the Algol system of local declarations taking precedence
over global ones is discarded. There are two kinds of
scopes, closed and open, but in both kinds it is illegal to
redefine an identifier from another scope which would
otherwise be visible in this scope. Thus questions
regarding ambiguous use of names cannot occur. In a
closed scope (the more interesting kind) identifiers from
the enclosing scope are only accessible if explicitly
mentioned in an import list. The purpose of this rule is
to enforce explicit mention in the text of regions where
access to an object is possible. Nevertheless, it must have
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proved to be quite a burden on the programmer, since a
special dispensation is given to constants in that they may
be declared ‘pervasive’, meaning that they are automat-
ically imported into all enclosed scopes. The designers
have been prepared to accept the loss of orthogonality in
order to give each type of object what they believe to be
the ideal set of properties.

The clarity provided by the Euclid rule just mentioned
is obtained in the present proposal by physical placement
of blocks. The Algol scheme has been widely recognised
as providing clear indications of the hierarchical structure
of a program as well as excellent protection for local
variables against global access, but lacking equal
protection for globals against illegitimate local access.
This defect is remedied here, as the new system increases
the power of block placement strategies. Thus all data
protection is indicated by the physical structure of the
program, rather than indicating some by block placement
and some by use of import lists. In that only one strategy
is required of the reader to understand the program, this
scheme would appear to present a better human interface
than any import/export or module scheme mixed with a
variant of block structure. With notational differences,
most modern languages (such as Euclid, Ada and
Modula-2) fall into that latter category, although the
designers of Euclid have given us a simpler system than
the others, due to their changes to the block-structure
system, described earlier.

Before leaving this subject, we must examine an
argument in favour of import lists, namely that the
present proposal by its very nature forces regimes of
access to be hierarchically nested. Some arrangements
will therefore prove to be unrepresentable in any
reasonable way. For example, given variables a, b and c,
and procedures X, Y and Z, there is no straightforward
way to arrange for X to access only the set of variables
{a, b}, Y only {a, c}, and Z only {b, c}. At least some of
the statements accessing particular variables would have
to be procedured out and relocated. (Another method
which we cannot, in all fairness, consider is to allow all
three procedures access to all three variables and
redeclare the unwanted name!) The example given
presents no difficulty, of course, to import-list schemes.

The interesting question, then, is whether the structured
discipline of the present proposal would actually exclude
useful cases or whether, on the other hand, the excluded
arrangements would turn out to represent poorly
designed solutions to problems or to be easily expressed
in an alternative, more amenable form. It is hard to see
how a convincing answer to this question can be provided
without actual experience in using a language designed
along the lines proposed. After all, without experience in
any block-structured language, one might argue that a
system such as FORTRAN’s named common blocks is
superior to the Algol 60 scheme, since common permits
arbitrary selections of variables to be shared in any
desired manner between procedures. Experience, however,
and the subsequent proliferation of block-structured
languages provides adequate testimony to the usefulness
in actual practice of this idea. In fact, its restrictions are
seen by many to be the actual source of its strength,
enforcing as they do a certain discipline on the
programming process. Whether similar considerations
apply to this latest development of block structure only
time may tell.

4. Implementation

Compared with the difficulties of implementing a full
‘package’ language such as Ada, effort required is
remarkably modest. To implement correct run-time
behaviour, encountering a use block should result in all
inner variables being created along with those of the outer
block. Thus, for any sequence of nested or sequential use
blocks within a normal block, the total storage required
is evaluated at compile-time, and the original stack
allocation to that outer block is made that much larger
at block entry. For a two-pass compiler this is very easy,
and for a one-pass compiler it is no harder than arranging
correct addressing for forward gotos; the address of the
original allocation instruction is remembered, and a fix
inserted into the object code when the end of the block
is encountered and all use block space is known. The only
difficulty for code generation occurs with dynamic arrays.
Dynamic extension to the data stack can be performed,
provided care is taken that a use block is not re-entered
during a single execution of the surrounding begin block;
even thisis not really insurmountable : the DEC System-10
Algol compiler,!® for example, permits redefinition of the
size of own arrays (a task of comparable difficulty) by
storing the array elements in a heap.

In order to see that the above is really no more complex
than a scheme designed purely for implementation of the
normal variable scopes of Algol-60, we shall now modify
an early and efficient scheme for Algol-60 storage
administration to enable it to handle use blocks. The
scheme to be modified is due to Gries et al.,'' and is
explained well in Gries.!2 To avoid lengthening this paper
unduly, the reader is asked to refer to these references for
full details, and only a brief outline of the unmodified
scheme will be given here.

A fundamental insight of Gries’ scheme is that blocks
which are not procedures do not have to be allocated by
a fully general mechanism, since the compiler knows more
information about such blocks than for general procedure
blocks (in particular, the point of activation, and the fact
that they cannot be recursively activated without an
intervening recursive procedure activation). Therefore
Gries allocates space primarily on a procedure-by-
procedure basis, only allocating arrays explicitly within
blocks. Except for arrays, the space requirements of the
entire procedure are evaluated statically, and upon
procedure entry sufficient stack space is allocated for all
blocks’ fixed storage requirements. These requirements
include, for each block within the procedure,

(1) a location stacktop which stores a pointer to the
stack top while in the block,

(2) space for simple variables,

(3) locations for dope vectors of arrays, and

(4) locations for any temporary results needed in the
block.

We shall call this the fixed space. Upon entry to a
particular block, setting stacktop to the stacktop of the
surrounding block is the only required action. (If this is
the outermost block of the procedure, stacktop is set to
indicate the end of the space allocated as just described.)
Then, for each array in the current block, an array
allocation routine is called which allocates space for the
array on the end of the stack and updates stacktop. Since
a separate stacktop exists for each block, absolutely
nothing need to done for a block exit, whether normal or
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caused by a goto. (A goto out of the entire procedure will,
of course, require execution of the usual procedure
termination code.)

Gries points out that for blocks which are not nested,
the necessary fixed spaces may be overlaid, thus reducing
the required total storage. We now come to ask what
changes are needed to implement the use blocks suggested
in this paper. Clearly, our first change must be that space
for use blocks cannot be overlaid with any other block’s
storage if that other block can be entered while the use
block’s data is still required, be that other block a use
block or not. The solution to this problem is to alter the
compiler’s algorithm for working out the locations within
the stack frame for allocations of storage space, and is
not inherently difficult.

A trickier problem than the foregoing is ensuring that
space allocated during a use block is not a de-allocated
upon exit. Since block exit involves no instructions, we
cannot proceed by trying to prevent an explicit
de-allocation, but rather by taking some extra action to
ensure that outer blocks’ stacktops are correctly set. The
only way they can be incorrectly set, given the allocation
mechanism described, is if arrays are declared. The
solution is to ensure that, upon array declaration, all
stacktop variables out to and including that for the most
local non-use block are also updated. The number of these
and their locations within the procedure data frame are
known at compile time, so performing this is simple.
Furthermore, since, usually, relatively few use blocks will
be nested within each other, this will be quite fast. It also
adds nothing to the difficulty of allocating normal Algol
blocks. We have noted the fact that a use block at the
outermost level of a procedure is meaningless, and this
procedure-oriented allocation scheme fits in well will that
observation, since we can always be sure that there will
in fact be a most local non-use block.

Regarding interference with other parts of the
implementation, we can be sure than none of the Algol
complications such as thunks, recursion, procedures as
parameters, etc. can have any effect on, or be affected by,
these changes. This is thanks to the insulation provided
by the usual procedure-calling mechanism, which this
modification does not alter in any way. This can also be
appreciated by noting that the first modification could be
implemented anyway for normal blocks. (Gries in fact
points out that his method of sharing storage is not
necessary.) As for the second modification, it only means
that array space used by a use block is not reclaimed at
its exit, but it certainly does not cause any failure in the
mechanism.

Should the above scheme be used, correct operation of
programs including use blocks will result, unless one
wishes to allow use blocks to be re-entered within a single
activation of the procedure. Under the above scheme,
re-entry would correctly allocate space for arrays with the
sizes specified at the latest entry to the block, but the space
which was previously occupied will not be reclaimed, as
the array allocation mechanism simply allocates on top
of the existing stack, which has not been reset.

In order to permit this, one might contemplate
recording the stacktop prior to array allocation and reset
it to its old value upon re-entry to the same use block.
This would work except for the possibility of two or more
non-nested use blocks within a block. The first use block
might be entered, allocating stack space for arrays, then
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the second, also allocating space, and then the first might
be re-entered. Resetting the stack would result in
inadvertent de-allocation of the array space allocated to
the arrays in the second use block (since it lies on top of
the space allocated for the first one). Allocating the space
in a heap will obviously get around all these problems,
but we want to be sure that the scheme is not thereby
made much more inefficient. Luckily we need not
introduce any inefficiency in processing normal blocks, as
their arrays may still quite happily be allocated on the
stack, whether or not use blocks are present.

If we are to allocate space in a heap, provision must
be made to deal with the problem of de-allocation. One
of the advantages of the example implementation method
given above is that block exit requires no instructions. To
keep faith with Gries’ original idea, we shall continue to
insist that no operations be performed at block exit. Thxs
is the hardest situation, and success will provide the most &
convincing demonstration of the viability of the rules§
proposed. It is certainly essential that the full complexity 8
of a generalised heap-management system be avoided, 3
and heap management is much simpler if an explicit
de-allocation instruction can be relied upon. This can be 3
arranged as follows. Each use block array is allocated aTJ
pointer in the fixed space in the stack frame, as for £
ordinary array variables, but it points to regions allocated & 3
in a heap rather than on the stack top. If this pointer is &
non-zero, it signifies that it is currently in use. The actions 2 3.
to be taken up encountering each syntactic entity durmg 5
execution are as follows. -

(a) Procedure (and main program) entry: zero the g
pointers for all use arrays within the procedure. g

(b) Block entry: check the pointers for all arrays in use2.
blocks within the block at any level of nesting. If any are 2
non-zero, call the de-allocation routine and zero thez 3-
pointer.

(c) Use array declaration: If the pointer is zero, merely ©
allocate the required space; if it is non-zero, the old space 5 X
must be de-allocated and fresh space assigned (since the & w
array bounds may have been changed) - if requlred
elements which existed in both the old and new arrays\.
could be copied over, as is done by DEC System-10 Algol
when own arrays are redefined.

This means that the array space might remain allocated rD
beyond the point where it could logically be reclaimed ifo g
an outer normal block is exited, and also the procedure - 3
exit mechanism must de-allocate any such arrays before 5 z
exit. The latter objection is minor, as the locations of all =.
these pointers within the stack frame are known(3 N
statically, and procedure exit code cannot be avmded»
anyway; the former objection can only be overcome by
tolerating operations at block exit time (not that there is
anything wrong with that, but we have deliberately posed
ourselves the harder problem).

Another problem connected with a mixture of normal
and use blocks concerns allocation of fixed space for
normal non-nested blocks which, we have observed, may
be done in an overlapping manner. It is obviously
desirable to permit any reasonable overlap of use block
space with space for other blocks to avoid wasted space
in those cases where large numbers of local variables exist.
The following procedure illustrates such a case:
procedure x;

begin

h:begin real a;
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i: usereal b;
array ¢[...];
end;

end;

Jj: begin real c;
k: usereal d;

array f[...];
end

end
.g'o‘to h;

end;

In this case, space for blocks /4 and i is never needed
at the same time as space for j and k. However, if blocks
i and k are overlaid, as they declare arrays, the pointer
to the allocated heap space in one block will be re-used
for storage within the other, thus resulting in incorrect
actions should the first block be re-entered. This can be
circumvented by either de-allocating at block exit or not
overlapping storage for any use blocks at all. In the above
example, blocks 4 and j could use the same space, but i
and k would be stored in different locations. If this latter
alternative is adopted, storage allocation is slightly
complicated for the compiler, but at run-time no feature
of standard Algol has its efficiency compromised, while
array allocation in use blocks introduces a modest
overhead.

A slightly more subtle scheme from the point of view
of the compiler is to remember exactly which locations
in each use block’s fixed space are critical and, although
taking advantage of permitted overlap of ordinary
variables, always skip over the critical storage when
allocating space for other blocks. This gives the greatest
compactness of the stack while adding nothing to the
execution overheads. This is not as difficult as it sounds
because the compiler can collect all the required
information at compile-time, in spite of Algol’s various
dynamic features. This final subtlety must not be applied
in such a way that external use blocks (‘ packages’) have
their fixed space allocated non-contiguously. With this
precaution there will be no problem provided an
information file is available to the compiler as mentioned
in Section 3.3; the compiler, knowing the required stack
usage, allocates space at the procedure level as described.
The actual code for the external section is brought in from
other object files by the linker. It is not, of course, actually
merged in-line; a procedure call is inserted. The base
address for the use block’s fixed space must be passed
across whenever execution passes into code in the
external section.

For correct compile-time error detection, any variables
or type definitions use d in a surrounding block should be
implemented by a pointer into the (retained) symbol-table

of the inner block. When a reference in a program results
in more than one such pointer being followed, a syntax
error results. For correct operation of the ‘private’ type
shown in the previous section, we need only postulate that
the size of a structure is directly associated with any type
name referring to it, whereas detailed description is only
accessible by following the trail back to the original
declaration.

We see that both ease of compilation and run-time
efficiency are good in an implementation of this proposal.
Perhaps one reason for this is that the proposal forces all
of the non-traditional data accesses to obey a single highly
disciplined rule.

5. CONCLUSION

The rules presented here are essentially no more complex
than the original block-structure scheme defined in
Algol-60 when one allows for that language’s own
variable feature. In fact, one could argue that they are in
fact simpler than the Algol-60 rules, because they are
based on a single concept, namely block structure, rather
than two concepts (block structure and own variables).
Nevertheless, we have designed the equivalent of own
variables with two extra advantages: they can be
accessible from more than one procedure, and they can
be ‘grounded’ on any level, not just the outer block,
depending on how far out the surrounding nest of use
blocks extends.

Import/exportand package schemesare often suggested
as a replacement for the unlimited accessibility of data in
outer blocks. Under Algol scoping rules, the danger of an
inner block damaging global data will always be present.
This danger is even greater in languages like Pascal where
block equals procedure, because in such languages all
procedure data must be declared at the head. The rules
proposed here, however, provide excellent security on a
par with that of import/export or package schemes, but
much simpler. The author’s belief is that block
structuring is elegant and simple and can be used safely
without complicated additional language features.

Although Algol-60 has been mentioned frequently in
the preceding discussion, the ideas presented here could
be of relevance to any block-structured language which
has not already been complicated by inclusion of more
complex data visibility rules. Nevertheless, out of existing
languages, these proposals seem to fit most naturally in
Algol-60 or Algol-68. The point is, of course, that these
proposed rules, even though just as simple as the original
Algol-60 scheme, provide a basis for much more flexible
and secure treatment of data, and demonstrate that it is
not always necessary to include large extra ‘features’ in
a language to obtain improved functionality.
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