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1. INTRODUCTION

In order to achieve completeness and correctness in the
implementation of any system, it is desirable to specify
formally the properties of data types at an abstract level,
independent of any particular implementation.* The
resulting formal specifications may be used to verify the
correctness of an implementation and as a guide to help
programmers minimise the differences between various
implementations.

Several authors!® 118 have used the algebraic
specification techniques for abstract data type definition!®
to describe aspects of database.

A formal specification of the PRECI® data base and its
algebraic language, PAL are described in this paper. The
HOPE language? ¢ allows a new data type to be defined
in a way analogous to that used by Guttag & Horning??
to describe abstract data types in terms of constructors,
and functions defined for those constructors. This allows
an essentially algebraic specification to become an
implementation which is functionally defined, and for
which formal correctness proofs are trivial compared
with those needed for algorithms written in procedural
languages.

2. PRECI

PRECI (Prototype of a RElation Canonical Interface)?
isa generalised database system based on a canonical data
model, i.e. one which is potentially capable of supporting
user views of all major models through local schemas and
appropriate data manipulation languages. The version
under development has implemented the CODASYL and
relational subschema facilities. A relational algebra to be
used for Data Manipulation commands within Fortran
programs has also been provided.

The design of PRECI is partly dictated by the need
for a generalised system. It has been implemented at
Aberdeen University primarily as a test vehicle for
research in the various aspects of databases, with a
modular design and flexible approach so that future
changes will be straightforward. Run-time efficiency,
minimal memory usage, optimisation facility, data
independence and ease in restructuring and reorganisation
are themajor features of themodel. Otherimplementations
of PRECI are now envisaged, and the work described in
this paper will assist programmers to produce consistent
implementations.

This paper describes an attempt to isolate some
features of PRECI which are implementation-indepen-
dent, and rigorously defines the behaviour of these
aspects of PRECI from the user’s viewpoint.

* To whom correspondence should be addressed.

3. HOPE

HOPE is an applicative language first developed and
implemented at Edinburgh University.2 ¢ It is a simple
language which encourages clarity and manipulability of
programs, and provides a means of testing ideas in
programming methodology. The language allows maxi-
mum use of user-defined types and the techniques of data
abstraction, which makes it ideal for realising the formal
specifications of the abstract data types derived for the
PRECI database. The version of HOPE which is used
here was developed by Wu and Darlington at Imperial
College London. It is a portable version of the language,
implemented in PASCAL. The authors made the small
modifications necessary for it to run on a DECsystem-20.
This version of HOPE, which is still under development,
has most significant features of the full language, apart
from modularity.

4. PAL

The PRECI Algebraic Language, PAL, is a language
based on the relational algebra,® and contains the
following functions which return a relation as a result.
The definitions of PAL functions given below are not the
only possible ones, but are typical of the accepted
definitions of relational algebra operations. These are the
definitions used by the implementors of PRECI. It is
beyond the scope of this paper to perform a critical
comparison of alternative definitions.

4.1 Delete

The function, ‘delete’, is used to delete any required tuple
from a given relation.

4.2 Difference

The “difference’ between two union-compatible rela-
tions A and B is the new relation with all its tuples
belonging to 4 but not to B.

4.3 Division

The “division” function divides a dividend relation 4 of
degree m+n (i.e. A has m+n attributes) by a divisor
relation B of degree n, and produces a result relation of
degree m. The (m+ i)th attribute of 4 and the ith attribute
of B (i in range 1 to n) must be defined on the same
domain. 4 is considered as a set of pairs of values (x, y),
where x denotes the first m attributes and y denotes the
last n attributes of 4; B is considered as a set of single
values y. The result of 4 ‘divided by’ Bis the relation with
the set of values x such that the pair (x, y) appears in 4
for all values y appearing in B.
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4.4 Insert

The function, ‘insert’, is used for the addition of a suitable
tuple to a given relation.

4.5 Intersection

The ‘intersection’ of two union-compatible relations 4
and B is the new relation with all its tuples belonging to
both 4 and B.

4.6 Join

‘Join’ is a function of two relations 4 and B where each
relation has an attribute defined over the same domain,
they are then ‘joined’ over these two attributes. The
result is a new relation in which each tuple is formed by
concatenating two tuples, one from each of the original
relations. The most common form of ‘join’ is the
‘equijoin’ where the two tuples have the same value in
the two joining attributes. The equijoin with one of the
two identical attributes eliminated is the ‘natural join’.

4.7 Projection

‘Projection’ forms a vertical subset of a relation by
extracting specified attributes and removing any redun-
dant duplicate tuples in the result relation.

4.8 Selection

This function returns a new relation by taking a
horizontal subset of a relation, i.e. all the tuples of the
result relation satisfy some condition.

4.9 Union

The ‘union’ of two union-compatible relations 4 and B
is the new relation with all its tuples belonging to either
A or B or both.

4.10 Union-Compatibility

This is not an explicit PAL function; however, it is an
essential condition which must be satisfied for the
functions, ‘difference’, ‘intersection’ and ‘union’. Date’
gives the following definition.

Two relations of degree n, say R(4,,...,4,) and S(B,,.. .,B,)
are said to be union-compatible with respect to a
Correspondence C, if and only if C is a set of exactly n
ordered pairs of attributes (4;, B;) (ij=1,...,n), and the
following three conditions hold:

(a) each attribute for R is some 4, (i = 1,...,n);

(b) each attribute for S is some B,(j = 1,...,n);

(c) within each pair (4;, B;) of the set, the attributes
designated by A4; and B; have the same corresponding
domain; .

It should be noticed that union-compatibility applies to
the schemes of relations and is independent of the content
of the tuples of the relations, and, indeed, the names of
the attributes. Nevertheless, when we come to define the
function ‘union-comp’, it will, for the sake of clarity, be
applied to relations as arguments.

S. THE ALGEBRAIC SPECIFICATION OF
DATA TYPES

The abstract (or algebraic) specification of any system

consists of two parts:

Syntax — the operations of the system are specified
indicating the number of arguments, the argument
types and the result type.

Semantics — algebraic equations (axioms) are given that

relate the values created by the operations.

The algebraic specification of data types, described by

Guttag & Horning,? involves the choice of a number of

constructor operators with which any element of that data
type may be defined. Each function on the data type is
then defined for each of the constructor operators for that

type, hence is completely defined.

The types num, char and truval(boolean) are supplied

as part of the HOPE environment. In addition, the
following abstract data types required to be defined in
order to realise PAL functions in HOPE: value, identifier,
attype, attribute, tuple, scheme, o_scheme, relation,
schema, database.

The hierarchy of abstract data types used to define the
PAL functions is shown in Fig. 1.

Three fundamental data types, num(numerals),
char(characters) and truval(boolean) are defined within
the HOPE environment, they are used to construct the
next level of abstract data types. On the lowest level in the
hierarchy, there is type identifier which is used in the
construction of an attribute and represents its name, and
type attype which is used in the construction of an
attribute and represents, in a limited way, its domain.” A
tuple is constructed from attributes and corresponding
values. A scheme which describes a relation is constructed
from attributes. An o_scheme is an ordered scheme, i.e. a
scheme which is constructed with a list of attributes, hence
the order is taken into account. A relation is constructed
from a scheme and a set of matching tuples. A schema is
constructed from the schemes which describe the set of
relations which make up the database. A database is
constructed from a schema and a set of matching
relations. Value is an occurrence which matches an attype.
There is at present no notion of a key in this model. It
will be seen that the functions defined do not require any
key.

It is necessary to define data types at all of these levels
in order that a HOPE realisation of PAL functions can
be achieved.

5.1 Data type attype

The data type attype (‘attribute type’) is defined in a
HOPE data declaration as follows:

data attype = = chr(num)
+ + dig(num);

‘data’ is a reserved word. ‘= =" is pronounced ‘is
defined as’ and ‘ + + is pronounced ‘or’. The functions
chr(num) and sig(num) are constructors of data type attype
which defines the type of an attribute, which is either a
number (num) of characters (chr(num)), or a number
(num) of digits (dig(num)). These represent the data types
that are currently available on PRECI. It is possible,
however, to generalise attype for any kind of domain by
declaring it to be a type variable, using the polymorphic
facility provided by the Hope language.

5.2 Data type identifier

The data type identifier is defined in HOPE as:
data identifier = = 1st(list(char)); \CONSTRUCTOR;
Identifier is the name of an attribute which is made up
of alist of characters. Here, ‘ Ist” is a programmer-defined
constructor, with argument ‘list(char)’ —a predefined
data type for a list of characters.
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Figure 1. The hierarchy of abstract data types. The

arrows indicate the use of lower-level types in the
definition of higher-level types. Some types are defined
recursively (type, scheme, relation and scheme).

There is one function on identifier, ‘ getlst’, which gives
the list of characters of the identifier.

dec getlst: identifier — list(char); !SYNTAX;

——— getlst(Ist(l)) < 1; ISEMANTICS;

The syntax line should be read as follows. The word
dec is a reserved word of HOPE indicating a function
definition. ‘getlst’ is the name introduced by the
programmer for the function. The symbol ‘:’ is read as
‘takes a’. This is followed by the argument(s) of the
function; in this case there is one argument, of type
‘identifier’. Following the argument the symbol ‘—’
which reads ‘yields’ and the type of the function, which
in this case is ‘list(char)’, i.e. a list of characters, which
is a predefined type.

The semantics line is a recursion equation which
specifies the result in terms of the argument(s). In this case
the programmer-defined constructor function ‘Ist(l)’ is
the argument, ‘1’ being a list of characters.

5.3 Data type attribute
The data type attribute is defined in HOPE as follows:

data attribute = = acons(identifier x attype);

An attribute is constructed from two other data types,
identifier which is the name of the attribute and attype
which gives its type. ‘acons’ is a programmer-defined
constructor function.

Two examples of functions on type attribute are:

dec name : attribute — list(char);
——— name(acons(i,d)) < getlst(i);

dec getd : attribute — attype;
——— getd(acons(i, d)) <=d;

The ‘name’ function returns a list of characters which
is the name of the attribute, while‘ getd’ returns the attype
of the attribute.

Two attributes are said to be compatible if they are
drawn from the same attype. N.B. their identifiers are not
necessarily the same. Hence the two following functions
are defined:

dec atcomp : attribute X attribute — truval;
———atcomp(acons(i,d),a) <= getd(a) = d;
Iresult is true
lif the attributes
'have the same attype.
dec compair : attribute X attype — truval;
———compair(acons(i,dl),d2) « d1 = d2;
Iresult is true
lif the attribute is
lof the given type.
5.4. Data type scheme

In HOPE, the data type scheme is defined as follows:

data scheme = = senull
+ + secons(scheme X attribute);

A scheme describes a relation. From the scheme, one
can deduce the degree of the relation, i.e. the number of
attributes it has; and what the attributes are.

The following function on scheme may be used to
determine whether a particular attribute belongs to a
given scheme:

dec attof : scheme X attribute — truval;
attof(senull,a) < false;
attof(secons(s, al),a2) <if al = a2

then true

else attof(s,a2);

5.5. Data type o_scheme
The data type o_scheme is defined in HOPE as:

data o_scheme = = ocons(list(attribute));

An o_scheme, like a scheme, is made up of attributes.
However, the attributes are in an ordered list, hence the
order is fixed and provides a notation for correspondence
between schemes, as described above in Section 4.10.

5.6. Data type tuple
The data type tuple is defined in HOPE as:

data tuple = = tempty

+ + tcons(tuple X attribute X value);

A tuple can be empty, or it can be constructed from
attributes, each with its corresponding value. The need for
an ‘empty’ tuple will become clearer when the ‘project’
operation is defined.

‘Getval’ is defined to facilitate the retrieval of the value
of a particular attribute in a given tuple. ‘tscheme’ is for
getting the scheme which the tuple is matched into.

dec getval : tuple x attribute — value;
———getval(tempty,a) <= undefine;
———getval(tcons(t,a,v),al) <if a = al
then v
else getval(t,al);
dec tscheme : tuple — scheme;
———tscheme(tempty) <= senull;
———tscheme(tcons(tempty,a,v)) <= secons(senull,a);
———tscheme(tcons(t,a,v)) <= secons(tscheme(t),a);
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Note that both of the above furctions are recursively
defined. Since a tuple must belong to a certain relation,
it must match the scheme of that relation. Therefore the
function shown below is defined to test the compatibility
of a tuple and a scheme.

dec compatt : scheme X tuple — truval;
———compatt(senull,t) <= true;
———compatt(s,tempty) <= true;
———compatt(s,tcons(t,a,v)) < if attof(s,a)

then compatt(s,t)
else false;

5.7 Data type relation
In HOPE, the data type relation is defined as follows:

data relation = = rnull
+ +rcons(relation x scheme x tuple);

A relation can either be null, or it can be constructed
from a scheme which describes it and a set of matching
tuples.

Two functions are defined to facilitate the manipulation
of relations. Getsche returns the scheme of the relation,
tuple_of determines whether a particular tuple belongs to
the given relation.

dec getsche : relation — scheme;
———getsche(rnull) <= senull;
———getsche(rcons(r,s,t)) < s;

dec tuple_of : relation x tuple — truval;
———tuple_of(rnull,t) < false;
———tuple_of(r,tempty) <= true;
———tuple_of(rcons(r,s,t1),t2) <=

if tequal(t1,t2)

then true

else if compatt(s,t2)

then tuple_of(r,t2)

else false;

Where ‘tequal’ tests for the equality of the two tuples.
Two tuples are equal if for each attribute and its
associated value in one tuple, there is a corresponding
attribute with the same value in the other tuple. There is
no specific limitation on ordering.

5.8 Functions of PAL
Delete

The Delete function is called ‘tdelete’ and is defined in
HOPE as follows:

dec tdelete : relation x tuple — relation;
———tdelete(rnull,t) <= rnull;
———tdelete(rcons(r,s,t1),t2) <=

if tequal(tl,t2)

then r

else rcons(tdelete(r,t2),s,t1);

Difference

The function Difference is called differ’ and is defined
as follows:

dec differ : relation x o_scheme x
relation X o_scheme —

relation;

———differ(r1,01,rnull,02) <= orcons(r1,01);
———differ(rnull,01,r2,02) <= rnull;
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———differ(rcons(rl,s1,t1),01,r2,02) <=
if not (union_comp(
rcons(rl,s1,t1),01,r2,02))
then undefine
else if tuple_of(r2,t1)
then tdelete(differ(
rl,ol,r2,02),t1)
else rcons(differ(
rl,01,r2,02),
socons(ol,02),t1);

The two ‘o_scheme’ arguments provide a correspon-
dence between the attributes to be matched up in the
Difference. The scheme of the result is given by
‘socons(01,02)’, which returns a set of attributes whose
identifiers are constructed by concatenating the identifiers
of the corresponding attributes in the two relations.
Division
The function Division is called ‘division’ and is define
in HOPE as:

dec division : relation x o_scheme x
relation X o_scheme —
relation;
———division(r,01,rnull,02) <= undefine;
———division(rnull,01,r,02) < undefine;
———division(rcons(r1,s1,t1),01,r2,02) <
divide(r,r2,02,
rcons(rl,s1,t1),01)
where r = = project(rcons(
rl,sl,tl),
sominus(s1,01));

woo/woo dno olwepeoe//:sdiy woly pepEdiUMO(]

The parameters of this function are, respectively, the%
dividend relation, the ordered subscheme for the=:
attributes which correspond to those of the divisor®
relation, the divisor relation and its ordered scheme ®
‘sominus’ is a function to return the scheme of the
attributes which are not directly involved in the division.>
‘divide’ performs the main part of the division operation%
and is defined as follows:

dec divide : relation x relation X o_scheme
X relation x o_scheme — relation;

——~divide(rnull,r1,01,r2,02) <= rnull;
———divide(r1,rnull,01,r2,02) <= undefine;
——~divide(r1,r2,02,rnull,03) < undefine;
———divide(rcons(r,s,t),r2,02,r1,01) <
if rsub(r1,01,trjoin(t,r2),02) then <
rcons(divide(r,r2,02,r1,01),s,t)
else divide(r,r2,02,r1,01);

Z ludy 01 uo1senb Aq 6.6
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Where ‘rsub’ checks whether one relation is a sub-relation
of another relation.

Insert
Insert is called “tinsert’ and is defined as:

dec tinsert : relation X tuple — relation;
———tinsert(r,tempty) <r;
~——tinsert(rnull,t) < rcons(rnull,tscheme(t),t);
———tinsert(rcons(rl,s1,t1),t2) <
if not(sequal(s1,tscheme(t2)))
then undefine
else if
tuple_of(r1,t2)
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then rcons(rl,sl,t1)
else rcons(rcons(rl,s1,tl),s1,t2);

where ‘tscheme’ is the function which returns the scheme
of a given tuple. Two schemes are equal if for each
attribute in one scheme there is a corresponding one in
the other scheme; again, ordering is not important.
‘sequal’ is the function which tests for this condition.

Intersection
This function is called ‘inter’ and defined in HOPE as:

dec inter :  relation X o_scheme X
relation X o_scheme —

relation

———inter(r1,01,rnull,02) <= rnull;
———inter(rnull,01,r2,02) <= rnull;
———inter(rcons(rl,s1,t1),01,r2,02) <=
if not(union_comp(
rcons(rl,s1,t1),01,r2,02))
then undefine
else if tuple_of(r2,t1)
then rcons(inter(
rl,ol,r2,02),
socons(01,02),t1)
else inter(r1,01,r2,02);

The first two parts of the function definition show that
the intersection of the empty relation with any relation
gives the empty relation. The third part defines the
intersection of two non-empty relations. The two
relations have to be checked for union-compatibility. The
result relation is defined as tuples which belong to both
relations. The recursive property of the function ensures
that all tuples matching the criteria are put into the result
relation. The two ‘o_scheme’ arguments provide a
correspondence between the attributes to be matched up
in the Intersection. The scheme of the result relation is
provided by the ‘socons’ function (- see definition of
‘differ’ above).

Join

The Join function is called ‘join’ and is defined as
follows:

dec join : relation X relation x (tuple x tuple — truval)
— relation;

!Maps two relations and a predicate on a

Ipair of tuples into a relation.

———join(r,rnull,f) <= rnull;

———join(rnull,r,f) <= rnull;

———join(rcons(rl,s1,t1),r2,f) <=
runion(join(r1,r2,f),
condjoin(tl,r2,f));

where f represents a condition on two tuples, one from
each of the two relations participating in the Join, and
returns a boolean result. The function ‘runion’ is a simple
union of two relations. ‘ Condjoin’ is the function defined
to check each tuple against the condition of the Join.

dec condjoin : tuple X relation x (tuple X tuple — truval)
— relation;

———condjoin(t,rnull,f) <= rnull;

———condjoin(tempty,r,f) <= rnull;

———condjoin(t,rcons(r,s,t1),f) <

if f(t,t1)

then rcons(condjoin(t,r,f),
sjoin(tscheme(t),s),
tcat(t,t1))

else condjoin(t,r,f);

where ‘sjoin’ is the join of two schemes and tcat’ is the
concatenation of two tuples. These two functions are
defined as follows:

dec sjoin : scheme x scheme — scheme;
———sjoin(senull,s) <s;

———sjoin(s,senull) <s;

———sjoin(secons(s1,a),s2) <= secons(sjoin(s1,s2),a);

dec tcat : tuple x tuple — tuple;

———tcat(tempty,t) < t;
———tcat(t,tempty) <= t;
———tcat(tcons(t1,a,v),t2) <= tcons(tcat(t1,t2),a,v);

To call ‘join’, it is convenient to set up a function
specifying the required condition, using the internal
mapping facility in HOPE. ‘Join’ is then called. The
following is an example of an Equijoin performed over
the third attribute of one relation with the fourth attribute
of another relation.

dec rjoinl : relation X relation — relation;
———rjoin(rl,r2) < join(rl,r2,(lambda(t1,t2)
= (getval(tl,acons(1st(‘scty’),chr(10)))
= getval(t2,acons(1st(‘ pcty’),chr(10))))));
Projection
This function is called ‘project’ and is defined in HOPE
as:

dec project : relation x scheme — relation;
———project(rnull,s) <= rnull;
———project(r,senull) <= r;
———project(rcons(r,s,t),s1) <
if not(tuple_of(project(r,sl),
tproj(t,s1)))
then rcons(project(r,s1),sl,
tproj(t,sl))
else project(r,sl);

where sl is the scheme of the result relation. ‘tproj’ is the
function defined to pick out the required attributes from
each tuple of the relation to form a new tuple to put into
the resulting relation. In HOPE, it is defined as:

dec tproj : tuple x scheme — tuple;
———tproj(tempty,s) <= tempty;
———tproj(t,senull) <= tempty;
———tproj(t,secons(s,a)) <

if atoftp(t,a)

then tcons(tproj(t,s),a,

getval(t,a))

else tproj(t,s);

where ‘atoftp’ tests whether an attribute belongs to a
tuple.

Selection

The function Selection is called ‘select’ and is defined as
follows:

dec select : relation x (tuple — truval) — relation;
———select(rnull,f) <= rnull;
———select(rcons(rnull,s,t),f) <
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if f(t)
then rcons(rnull,s,t)
else rnull;

This function picks out the tuples in a relation which
satisfies certain conditions and forms a new relation. To
call ‘select’, it is convenient to set up a function for the
condition, using the internal mapping facility of HOPE
as in ‘join’ above. The condition in the following is that
the value of the particular attribute in a relation is greater
than 200.

dec selectl : relation — relation;
———select1(r) <= select(r, (lambda t

= (getval(t,acons(1st(‘ quantity”),

dig(3))) > 200)));

Union
The Union is called ‘union’ and is defined in HOPE as
follows:

dec union : relation X o_scheme X
relation X o_scheme —
relation;

———union(rnull,01,r2,02) <= orcons(r2,02);
———union(rl,01,rnull,02) <= orcons(r1,01);
———union(rcons(rl,s1,tl),01,r2,02) <
if not (union_comp(
rcons(rl,sl,tl),01,r2,02))
then undefine
else if not(tuple_of(
union(rl,ol,r2,02),t1))
then rcons(union(rl,ol,
12,02),
socons(01,02),t1)
else union(rl,o1,r2,02);

Here, as in Intersection and Difference, the ‘o_scheme’
arguments provide a correspondence between the
attributes to be matched.

Union-Compatibility
The function to check whether two relations are
Union-Compatible is called ‘union_comp’ and is defined
in HOPE as follows:

dec union_comp: relation X o_scheme x
relation X o_scheme — truval;
———union_comp(rnull,01,r2,02) <= undefine;
———union_comp(rl,ol,rnull,02) <= undefine;
———union_comp(rcons(rl,s1,tl),01,r2,02) <
if not (oscom(s1,01)) or
not(oscom(
getsche(r2),02)))
then false
else if
not(oequal(o1,02))
then false
else true;

Oscom checks whether the attributes in an o_scheme are
same as those in a scheme, not necessarily in the same
order. Oequal checks for the equality of the lists of
attypes from two o_schemes.

Data type SCHEMA
A schema describes a database and is defined in HOPE
as follows:

data schema == snull
+ + scons(schema X scheme);

A schema can either be null, or it is constructed from
the various schemes of the relations which belong to a
given database.

Data type DATABASE
The type database is called ‘dbase’ and is defined in
HOPE as:

data dbase == dbempty
++ dbcons(dbase x schema X relation);

A database can either be empty, or it can be constructed
from a set of relations.

Example

The following is an example of three relations taken from

C. J. Date’s text book.” They are constructed in HOPE

using the function ‘tinsert’. A function ‘prrel’ is defined

to print out the relations in their familiar tabular form.
Thethreerelationsare ‘ supplier’, ‘part’and ‘ shipment’,

and they are displayed as follows:

> : prrel(supplier(rnull));

> [ ‘scty’,‘sts’,‘snam’,‘sno’,
‘paris’,30,blake’, s3’,
‘paris’,10,‘ jones’, s2’,
‘london’,20,‘smith’,*s1°] : list(TV000)

> : prrel(part(rnull));

> [ ‘pety’,‘wt’,‘color’,‘pnam’,‘pno’,
‘london’,14,‘red’,  screw’, p4’,
‘paris’,17, blue’,screw’, p3’
‘rome’,17, green’, bolt’, p2’
‘london’,12,‘red’, nut’,*p1°] : list(TV000)

: prrel(shipment(rnull));

:[ ‘quantity’,‘pno’,‘sno’,
200,°p2°,‘s3’,
400,p2°,‘s2’,
300,p1°,‘s2’,
400,'p3°,‘sl’,
200,p2’,‘sl’,

300, p1’,‘s17] : list(TVO000)

A

The results of three functions ‘join’, ‘select’ and
‘project’ are shown below. As explained before, for
convenience, separate functions ‘rjoinl’ and ‘select2’ are
set up to call ‘join’ and ‘select’ with specific conditions.

This first example shows the result of an ‘equijoin’
performed over city of the supplier relation and that of
the part relation:

dec rjoinl !join relations supplier and part over city
: (relation X relation) — relation;
———rjoinl(rl,r2) < join(rl,r2,(lambda(t1,t2)
= (getval(tl,acons(1st(‘scty’),
chr(10)))
= getval(t2,acons(1st

(‘pety’),chr(10))))));
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> : prrel(jroinl(supplier(rnull),part(rnull)));

> :[‘scty’,‘sts’,snam’, sno’,  pcty’, wgt’,color’
‘pnam’,‘pno’,

‘london’,20,‘smith’,‘s1’,‘london’,14,‘red”’,

‘screw’,‘'p4’,
‘london’,20,‘smith’,s1’,‘london’,12,‘red’,
¢ nut,,‘ pl ’,
‘paris’, 10, jones’,*s2’,  paris’, 17, blue’,‘ screw’,
[ p3 ”

‘paris’,30, blake’,*s3’, paris’, 17, blue’,  screw’,
‘p37] : list( TV000)

The second example is to select those tuples from the
shipment relation with the value of quantity greater than
200.

dec select2 : relation — relation;
———select2(r)
<= select(r,(lambda t = (getval(t,
acons(1st(‘ quantity’),
dig(3))) > 200)));

> : prrel(select2(shipment(rnull)));
> :[ ‘quantity’,'pno’,‘sno’,
400,p2°,'s2’,
300,'p1°,s2’,
400,°p3’,‘sl’,
300,p1°,°s1°] : list( TVO0O0O)
This third example shows the result relation when a
Projection is performed over the three attributes of the
supplier relation.

> : prrel(project(supplier(rnull),new_scheme(senull)));
> :[ ‘sts’,’snam’,‘sno’,

30,°blake’,‘s3’,

10,jones’,‘s2’,

20,smith’,*s1°] : list(TV000)

where new_scheme is the scheme of the result relation.

8. DISCUSSION

The definition of the PRECI database using abstract data

types benefits the design team in the following ways.
It provides an unambiguous specification for imple-
mentors to follow. Implementations may be tested
against the HOPE model.
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