On the Choice of Grammar and Parser for the Compact

Analytical Encoding of Programs

R. G. STONE

Department of Computer Studies, University of Technology, Loughborough, Leicestershire, LE11 3TU

If a computer program is analysed according to the language in which it is written then it is possible to represent the
program by describing its derivation. It is shown that it is also possible to represent the program by recording the
decisions made by a parser while parsing it. Thus the term analytical encoding embraces derivation encoding and parsing

encoding.

Some general principles are given for choosing an analytical encoding method which yields good compression.

Received November 1983

INTRODUCTION

Conceptually, a program is usually stored and transmitted
in token form, i.e. as a string of terminal symbols from
a particular grammar. However, it is possible to represent
a program by the choices made while deriving it from the
starting symbol of the grammar. A leftmost (rightmost)
derivation gives rise to a leftmost (rightmost) encoding.
It is also possible to represent a program by tracing out
the path taken through a parser or recogniser for the
corresponding grammar. The parser, often a computer
program simulating a finite-state machine, will have
decisions at various points, and a program is represented
by recording the sequence of decisions taken. This type
of representation will be called parsing encoding. The
term ‘analytical encoding’ is intended to embrace both
derivation and parsing encoding.

Derivation encodings and parsing encodings are
related but not identical. There are usually many parsers
for a particular grammar and so many parsing encodings
are possible. Given a particular language, e.g. Pascal,
many ‘equivalent’ grammars may be written down,
leading to different derivations and parsings of the same
program.

If the choices made during derivation or parsing
encoding are encoded carefully, taking into account the
relative probabilities of each possible decision at a given
point, the encoding process makes a useful program-
compression scheme.

However, in order to establish the probabilities of the
various choices at each decision point, a statistical
analysis of a large number of programs must be
undertaken. This is a fairly costly process and so it is not
attractive to experiment with collecting different statistics
for varous grammars and parsers.

The problem then is to decide in advance which
grammar and which encoding scheme will produce on
average the shortest encodings of programs in the
language.

Derivation encoding is discussed in Refs 6 and 8. In
Ref. 6 it is recommended both as a method of file
compression and as an encryption method. Parsing
encoding using an LR parser is discussed in Ref. 1, where
practical results of compressing Pascal programs are
reported.

1. DERIVATION ENCODING - AN
EXAMPLE

Consider the grammar (later referred to as grammar G6)

Production Code
L:E L0
L:E,L L1
E:a EO
E:b El

The ‘program’ a,a,b has the following leftmost derivation
(in a leftmost derivation the leftmost non-terminal in a
sentential form is expanded first).

Sentential form Production
L L:E,L
I\
E,L E:a
I
a,L L:E,L
I\
a,E,.L E:a
I
a,a,L L:E
I
a,a,E E:b
I
a,a,b

The derivation encoding is
L1 EOL1EOLOEI1

There is only one possible binary code for two
alternatives. One alternative is given the codeword ‘0’
and the other the codeword ‘1°. So in this case the
encoding would actually be the binary string

101001

Given only that this originated from a leftmost derivation
the program can be reconstructed. In practice there will
often be more than two choices and these would be coded
with a (variable-length binary) prefix code depending on
the relative probabilities of the derivations (see e.g. Ref.
4 for variable-length prefix codes).

In the case that only one derivation from a non-terminal
occurs in the grammar no code at all need be sent. If ever
the sentential form contains that non-terminal in the
leftmost position the only possible derivation can be
assumed.

THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986 307

20-2

¥20Z I4dy 60 U0 1senb Aq 666651/.0€/¥/62/2101e/|ulWwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

R. G. STONE

The rightmost derivation (rightmost non-terminal
expanded first) is

Sentential form Production
L L:E,L
I\
E,L L:E,L
I\
E,E,L L:E
l
E,E.E E:b
|
E,E,b E:a
I
E,a,b E:a
|
a,ab

with derivation encoding
L1 L1L0E1EO0EO

Notice that the rightmost derivation is a permutation of
the leftmost derivation and not a reversal.

2. CHOOSING A DERIVATION

If the grammar in use is unambiguous then only one parse
tree exists for each program. If the grammar is ambiguous
then there will be rules (precedence, dangling else, etc.)
which are used to choose a unique parse tree for any
program. Thusin practice only one parse tree is associated
with any program.

Given the unique parse tree for a program, all possible
derivations including the leftmost and rightmost can be
deduced. All these derivations will contain the same list
of productions, though possibly permuted into different
orders. This means that the encoded lengths of all
derivation encodings must be the same. Therefore, if
derivation encoding is chosen as a means of compression
the most convenient derivation may be chosen freely. This
will probably be dictated by the choice of a favourite
parser to produce the derivation. Notice however that
while a top-down parser produces a leftmost derivation,
a bottom-up parser produces a rightmost derivation ‘in
reverse’. In this sense the popular LR parser is at a
disadvantage.

3. CHOOSING A GRAMMAR

In what follows, distinctive production sets are analysed
to discover their contribution to a derivation encoding.
In particular, simple instances of the following four cases
are discussed:

(1) Sequence P:ABC.
(ii) Selection P:A
P:B
(iii) Repetition ~ P:empty
P:AP
(iv) Lists P:A
P:A,P

3.1 Sequence
Consider the grammar rule
P:ABC ...

Once this production has been chosen for expansion in
a leftmost derivation, non-terminal A will be expanded
with probability 1.0. At some time later B, then C, etc.
will necessarily be expanded. Thus there is no choice
associated with the sequence rule, and no code is needed
during a derivation encoding. Of course productions with
a left-hand side A will be used, and these may give rise
to choices and hence codes, but the decision to parse an
A is taken with certainty. Exactly the same argument
applies to rightmost derivations except that the sequence
is expanded in reverse order.

Similar remarks apply to ‘unit productions’. They
cause no code to be generated and thus cannot affect the
length of the encoding.

In the sense described above these rules are not critical
in obtaining a best encoding.

3.2 Selection

Consider the following common productions in human-
oriented syntax rules for Pascal.

Stmt: Structured-Stmt

Stmt: Simple-Stmt

Structured-Stmt: begin

Structured-Stmt: while

Simple-Stmt: Variable:= Expression

Simple-Stmt: Proc-Ident Actual-Param-List-Option

The essential structure of these rules can be abstracted,
giving
S:C
U

S:
Cfb Grammar G1
C:w
U:v

U:p

Another common version of the same rules would
abstract to

S:b
S:w
S:v
S:p

Grammar G2

In order to compare the encoding capabilities of these
grammars let the probabilities of the four ‘statements’ b,
w, v, p be py, py, Py, Pp respectively. (In practice this
corresponds to counting the relative frequencies of
compound statements, while-loops, assignment state-
ments and procedure calls in Pascal programs.)

In this simple case the program probabilities can easily
be transformed into production probabilities.

For grammar Gl

Production Probability Codeword
S:C Po+ Py SO

S:U PytDp S1

C:b Po/(Py+Py) Co

Ciw Puw/(Po+Py) C1

U:v Po/(Py+pp) uo

U:p Pp/(Py+Py) Ul

308 THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986

¥20Z I4dy 60 U0 1senb Aq 666651/.0€/¥/62/2101e/|ulWwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

CHOICE OF GRAMMAR AND PARSER FOR COMPACT ANALYTICAL ENCODING OF PROGRAMS

For grammar G2

Production Probability Codeword
S:b Db Sb
S:w Pw Sw
S:v Dy Sv
S:p Py Sp

The codes for G1, G2 are represented by symbols S0, S1,
etc. which stand for strings of binary digits. (Note. The
actual codes for G1 could have been inserted, since for
only two alternatives the code is independent of the
probabilities.)

The four ‘programs’ have the following leftmost
encodings

Program Gl-encoding G2-encoding
b S0 C0 Sb
w S0 Cl1 Sw
v S1 U0 Sv
p S1 U1 Sp

For a given set of messages and probabilities the
Huffman code?® is known to be optimal. So if the 4 codes
(3 for G1 and 1 for G2) are Huffman codes they will be
the best possible. The average encoded length of the four
programs will be

Gl G2
(Py+Pp)*L(SO) Py*L(Sb)
+ +
(pv+p,)*L(S1) Pu*L(SW)
+ +
(Po+Puw)*(Po/(Py+Pp))*L(CO) Py*L(Sv)
+ +
(Po+Pu)*(Pow/ (P +Pp))*L(C1) P,*L(Sp)

+
(Po+Pp)*(Py/(Py+Pp))*L(UO)
+

(Po+Pp)*(Pp/(Py+pp))*L(U1)

where L(s) is the length of the string s.

It can now be established that the average length for
Gl is never shorter than the average length for G2.

Let SOCO stand for SO and CO concatenated, etc. Then
S0CO0, SOC1, S1U0, S1U1 are four codewords that could
be used to code the four programs in the style of G2,
giving an average length of

Py*L(SOC0) + p,,*L(SOC1) + p,*+L(S1UO) + p,* L(S1U1)

Since L(S0CO0) = L(S0)+ L(CO0) this is the same as the first
expression for the average length for G1. If this were less
than that for G2 it would mean that G2 did not have the
best set of codeword lengths. This would contradict the
fact that the code in use for G2 is already optimum.

A simple generalisation of the above argument shows
that no ‘layering’ of potential choices can improve the
encoding. In fact the coding is liable to be worse. This is
the first occurrence of the general principle of keeping the
number of choices as large as possible.

For the most compact encoding it would seem that
grammars should be written so that the right-hand side
of every production begins with a terminal symbol (or is
empty), i.e. in GNF or Regular form.

3.3 Repetition
Consider the grammar

P:empty
P:AP
A:a
A:b

With this grammar a derivation encoding would encode
each ‘a’ with two bits (one for P: A P, and one for A:a),
each ‘b’ with two bits and the end of the sequence
(P:empty) with one bit. Using N,, N, to represent the
number of ‘a’s and ‘b’s in a program the coded length
can be written

length = 2*N,+2*N,+1

Grammar G3

From the lesson learned in section 3.2, the grammar is
better written as

P:empty]
P:aP - Grammar
P:bP J

Each program is now derived by L+ 1 ternary choices,
where L is the length of the program (L = N,+ N,). If
the choices of ‘a’, ‘b’, ‘empty’ are encoded by sequences
of length L,, L,, L, respectively then the coded length of
a program can be expressed as

length = L *N_,+ L,*N,+ L,

If the choices are encoded using a Huffman code then the
values of L,, L,, L, are bound to be 1, 2, 2 in some
permutation. If empty is the most probable choice then
the lengths would be L, =2, L, =2, L, = 1, giving the
same result as before. If ‘a’ or ‘b’ were the most probable
choice then this second version willhave L, = lor L, = 1
and will produce a shorter average length.

Having come this far it is clear that a further
‘improvement’ can be gained by writing

P:empty
P:a

P:b
P:aaP
P:abP
P:baP
P:bbP

Thereisno theoretical limit to the potential ‘improvement’
in this style, but there is a serious practical problem with
pursuing this expansion of the set of productions. This
problem is taken up again in section 7.

Grammar G5

3.4 Lists

Consider the grammar
L:E
L:E,L
E:a
E:b

which can be rewritten
L:a

Grammar G6

L:b
La,L Grammar G7
L:b,L

THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986 309

¥20Z I4dy 60 U0 1senb Aq 666651/.0€/¥/62/2101e/|ulWwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

R. G. STONE

It is clear that this type of rule can continue to be
‘improved’ in the same way as the repetition above, e.g.

)

N
)

R TAE J0N J0 YO Sl ol o
oM oos N g

,a
,b
’% Grammar G8
,a
,b
,a

Using the right recursive grammar G7 the probabilities
of finishing a list with ‘a’ or ‘b’ are singled out. By using
the corresponding left recursive grammar G9 the
probabilities of starting a list with ‘a’ or ‘b’ become
important.

L:a
: Grammar G9

ity
il el

,a
,b

4. PARSING ENCODING OR DERIVATION
ENCODING

Given a particular grammar there are usually several
parsers that could recognise it. This section tries to
establish whether a parsing encoding could be expected
to improve on a derivation encoding.

Throughout this section the LR parser is used in
examples as it is a well-understood, popular parser which
can parse a broad class of grammars. A comparison of
parsing encodings obtained by different parsing methods
is left to section 5.

4.1 Sequence

As in section 3.1, it is argued that sequencing is never
coded in parsing encoding and can be ignored.

4.2 Selection

It might be supposed that for optimum results, derivation
encoding of grammars in the style of G2 is to be preferred.
However, an LR parser can ‘see through’ rules of the
form in Gl and makes decisions in the style of G2
automatically.

The set of states used by an LR parser for G1 would
be

State Set of items

[A:_S])[s:_C] [S: _U] [C:_b] [C:_w] [U:_v] [U:_p]
[A:S_]

[S:C]
[S:U_]
[C:b_]
[C:w_]
[U:v_]
(U:p]

The notation used follows that of Ref. 2. The
corresponding parsing program is

310 THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986

State Parsing alternatives

0: case b: shift 4

case w: shift 5

case v: shift 6

case p: shift 7

default: accept
default:reduce using S:C
default: reduce using S: U
default: reduce using C:b
default: reduce using C:w
default: reduce using U:v
default:reduce using U:p

(Note. In this and subsequent parsing programs the
possibility of errors is ignored. It is not possible to encode
analytically a syntactically incorrect program. Errors
should be detected and cause the encoding process to
stop.)

In parsing any of the four programs a four-way choice
is made away from state 1 and then two more
unconditional reduce actions are made. Since no code will
be needed for any of states 1 to 7 the LR encoding of G1
will be as good as the previous coding of G2.

NS Wn AW -

4.3 Repetition
Consider grammar G3 again
P:empty
P:AP
A:a
A:b
The sets of states and parsing program for the
corresponding LR parser are

State Set of items

0: [A:_P][P:_][P:_A P][A:_a] [A:_b]

1: [A:P_]

2: [P:A_P][P:_][P:_A P][A:_a] [A:_b]

3: [A:a_]

4: [A:b_]

5: [P:AP_]

State Parsing alternatives Codeword

0: case a: shift 3 S00
case b: shift 4 S01
default:reduce using P:empty S02

1: default: accept

2: case a: shift 3 S20
case b: shift 4 S21
default:reduce using P:empty S22

3: default: reduce using A:a

4: default:reduce using A:b

S: default: reduce using P:A P

The empty program causes the parser to trace through
the states 0, 1 giving a parsing encoding of S02.
The program aba is parsed as follows

State-stack Input Parsing action
0 aba shift 3
03 ba reduce using A:a
02 ba shift 4
024 a reduce using A:b
022 a shift 3
0223 reduce using A:a
0222 reduce using P:empty
02225 reduce using P:A P
0225 reduce using P:A P
025 reduce using P:A P
01 accept

¥20Z I4dy 60 U0 1senb Aq 666651/.0€/¥/62/2101e/|ulWwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

CHOICE OF GRAMMAR AND PARSER FOR COMPACT ANALYTICAL ENCODING OF PROGRAMS

The sequence of states in the parse is
03242325551

From the point of view of parsing encoding, states 1, 3,
4, 5 can be ignored, since they generate no code. Thus the
parsing encoding of program aba is

S00 S21 S20 S22

Once again it is seen that the LR parser is making a
wider choice than the grammar seems to suggest. In fact
it is making choices in the style of grammar G4. In
addition there are two separate states each with a
three-way choice. State 0 is used at the start of the
sequence of ‘a’s and ‘b’s and state 2 is used thereafter.
If the opportunity is taken to collect separately the
frequencies with which the actions of states 0 and 2 occur,
separate codes could be used for each state. This should
lead to a further improvement if (say) the probability of
starting a list with ‘a’ was very different from the
probability of an ‘a’ later on in the sequence.

4.4 Lists

Consider grammar G6 again
Production Codeword
L:E Lo
L:E,L L1
E:a EO
E:b El

The leftmost encoding of some short programs is given
below.

Program Encoding
a LOEO

b LOE1

a,a L1EOLOEO

a,b L1EOLOEI

Because all the parsing alternatives are binary choices the
encodings will be L+ 1 bits long, where L = length of the
original program.

The set of states and parsing program for an LR parser
is given below.

State Set of items

0: [A:_L][L:_E,L][E:_a] [E:_b]

1: [A:L_]

2: [L:E_J[L:E_, L]

3: [E:a_]

4: [E:b_]

5: [L:E, L][L:_E][L:_E, L] [E:_a] [E:_b]
6: [L:E,L_

State Parsing alternatives

0: case a: shift 3

case b: shift 4
default:accept

2: case ,: shift 5

default: reduce using L:E
default:reduce using E:a
default: reduce using E:b
case a: shift 3

case b: shift 4

—

(O~ V)

The program ‘a,b’ is recognised by tracing through the
state sequence 0, 3, 2, 5, 4, 2, 6, 1. States 1, 3, 4 and 6
can be ignored since they contain no alternative. States

0,2 and 5 each contain binary choices and thus have codes
with length 1. State 0 is entered once by every program.
State 2 is entered once for each comma and once more.
State 5 is entered once for each ‘a’ or ‘b’ except the first.
So the coded length of programs by this method will be
the same as for the leftmost derivation encoding.

In this case the LR scheme seems to have no advantage.
Certainly it is bound to agree with the leftmost encoding
in the coding of commas. However, if there were three or
more choices of elements

E:a
E:b
E:c

the LR scheme might regain the advantage. The point to
notice is that the code used to show every derivation from
E in the leftmost derivation will be established by the
‘total’ probabilities of ‘a’, ‘b’ and ‘c’. The LR parser will
use the probabilities of a list beginning with ‘a’, ‘b’ or ‘¢’
in state 0 and the probabilities of subsequent occurrences
of ‘a’, ‘b’ or ‘c’ in state 5. This will be to the advantage
of the LR scheme if (say) the probability of starting a list
with ‘c’ was quite high, but the probability of further ‘c’s
was quite low.

Returning to the encoding of the commas, it can be seen
that both systems code the length of the list essentially as
follows

Length Encoding
1 0

2 10

3 110

4 1110

This method of counting has been called ‘stone age
binary’, and will only be a satisfactory coding scheme if
the probability of a list of length i is approximately twice
the probability of a list of length i+ 1, for all i.

5. CHOOSING A PARSER

First compare an LL parsing encoding against an LR
parsing encoding. Consider the grammar G3 again

P:empty
P:AP
P:a

P:b

The LL parser is essentially described by a table with rows
indexed by non-terminals and columns indexed by
tokens.? In this case the table is

] a b $end

P P:AP P:AP P:empty
A A:a A:b

The LL parser operates using a stack of grammar
symbols and makes parsing decisions when the top-
of-stack symbolisanon-terminal. It uses this non-terminal
and the next token in the input to index the table. The
entry in the table is the grammar rule which is to be
expanded next.

First, notice that the LL parser does not naturally
expand the choices available like the LR parser (see 4.3).
Secondly, the LL parser treats all ‘a’s and ‘b’s in the same

THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986 311

¥20Z I4dy 60 U0 1senb Aq 666651/.0€/¥/62/2101e/|ulWwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

R. G. STONE

way and does not distinguish the first ‘a’ or ‘b’ from the
rest like the LR parser.

The critical observation here is that it is common in an
LR parser for the recognition of a derivation from a
particular production to be reported from one of several
states depending on context. This never happensinan LL
parser, so the advantage shown by this small example is
likely to be obtained with any grammar.

This context sensitivity of the LR parser could be
expected to be useful in practice. Consider the grammar

STMT :begin STMTSEQ end
STMT : while EXP do STMT
STMT :repeat STMT until EXP
STMTSEQ:STMT
STMTSEQ:STMT STMTSEQ

The state containing the core item
[STMT : while EXP do _ STMT]

will be able to record a large probability of the following
STMT having ‘begin’ as its first token. The state
containing the core item

[STMT :begin _ STMTSEQ end]

will be able to record a very small probability of the first
STMT in the STMTSEQ opening with ‘begin’. So the
evidence seems to suggest that the LR parser is more
information-conscious than the LL parser.

If the leftmost derivation is being produced by a
recursive descent parser then it is committing itself to a
parsing decision on seeing the first token derived from a
non-terminal. An LR parser on the other hand waits till
all the tokens derived fom a non-terminal have been
seen before making its reduction. In this sense the LR
parser has more information available at the time of a
decision. The only type of top-down parser which could
be expected to delay its decisions even longer would be
one which backtracked. This could (potentially) read all
the program before announcing its parse.

6. THEORETICAL MINIMUM AVERAGE
CODED LENGTH

If a message source is imagined which emits the programs
P,, P, P, etc. with the probabilities p,, p,, p,, etc. then
the source is said to have entropy

—Zp;i*log(py)
(2

If the logarithms are taken to base 2 this gives a
theoretical minimum average coded length of programs
in bits. It would be nice to use this as a base to measure
various actual coding schemes, but for real languages this
is clearly impractical.

However, if a probabilistic grammar for the language
is available it is possible to deduce the entropy. Before
describing how this is done it is shown that dividing a
source does not change its entropy. This means that all
probabilistic grammars which describe a given language
have the same entropy. This is in contrast to the result
of section 3.2 where it is shown that dividing a source can
affect the average code length.

Suppose again that a source emits messages with
probabilities p,, p,, ..., p,. Without loss of generality

312 THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986

assume that these messages are to be split into two groups
containing the messages 0 to / and 7+ 1 to n. Let

PL = py+p,+...+p;
and
PH=p; +Priat...+Py

Then the entropy of the lower group (in isolation) is
I
HL=~ X (p,/PL)*log (°L/p)

Similarly for the entropy of the higher group HH. Thus
the entropy of the remodelled source is

—PL+log(1/PL)+PL*HL
—PH=xlog(l/PH)+ PH*HH
I

=—PLx*log(1/PL)— X p,*log(PL/p;)
i=0
n
—PH=*log(1/PH)— X p;*log(PH/p,)
i=I+1

n
= —Eo pi*log(1/p;)

Hence the entropy of a divided source is the same as the
entropy of the original source.

Most of the following steps in the calculation of the
entropy are from Wetherell.?

First, define a matrix Q with elements Q,; such that if
non-terminal i occurs on the left-hand side of production
J» Qi; = probability of production j, otherwise Q;; = 0.

Working with grammar G3 and symbolic probabilities

Production Probability
P:empty PO

P:AP P1

A:a A0

A:b Al

Q is found to be

0=|POP10 O
0 0 AOAI

Define a matrix C with elements C;; such that C;; is the
number of times that non-terminal j occurs on the
right-hand side of production i.

C=|00
11
00
00
Define a matrix 4 to be the matrix product Q * C.
A =|plpl }
00

Finally, after checking that the grammar is consistent (by
showing that the spectral radius is less than 1) define a
matrix 4" to be 1/(1 —A)

A’=‘ l/pOpl/pO‘
0 1

The first row of 4’ (associated with the start symbol) gives
the expected number of each of the non-terminals in an
arbitrary derivation. Thus for grammar G3, 1/p0 Ps are
expected and pl/p0 As. Treating the non-terminals as
separate sources their entropies can be found. The
entropy of the language is then

N
x Al]*Hj

J=1

¥20Z I4dy 60 U0 1senb Aq 666651/.0€/¥/62/2101e/|ulWwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

CHOICE OF GRAMMAR AND PARSER FOR COMPACT ANALYTICAL ENCODING OF PROGRAMS

where H;is the entropy of non-terminal j, and N is the total
number of non-terminals.

This is a practical method of establishing the entropy
of the language and thus the minimum average coded
length of programs.

7. SUGGESTED ENCODING SCHEME

The main weakness exposed in the encoding schemes
discussed so far has been in dealing with repetition and
lists. The following discussion works towards a practical
scheme which can be used to improve the information
consciousness of the encoding of repetition and lists.

Consider the grammar below, which defines the same
language as G6

Production Codeword
L:E LO
L:Pairs L1
L:E, Pairs L2
Pairs:E , E PO
Pairs:E , E , Pairs Pl
E:a EO
E:b El

The leftmost derivation begins with a ternary choice, and
then for longer programs uses binary choices to show how
many pairs of elements there are in the program. The LR
parser for this grammar contains four states which choose
between ‘a’ and ‘b’, and three states to choose
comma-continuation or not. Thus the LR parsing
encoding will be a sequence of binary choices as before
(section 4.4). Since both methods encode the elements of
the lists in the same way, only the encoding of the lengths
of the lists is compared below (B indicates a binary
decision).

Length Leftmost LR

1 Lo B

2 L1PO BB

3 L2P0 BBB

4 LI1PIPO BBBB

5 L2P1P0 BBBBB

6 LI1PIP1PO BBBBBB

7 L2P1P1PO BBBBBBB
8 L1P1P1P1P0 BBBBBBBB

The lengths of LO, L1, L2 will be 1, 2, 2 in some
permutation and the lengths of P1, PO will each be 1. So
for lists of length 5 or more the leftmost encoding is bound
to be the shortest. The leftmost encodings of lists of
lengths 3 and 4 cannot be longer then the LR parsing
encodings. So the only lists that could be longer in the
leftmost encoding are those of lengths 1 and 2. So
provided the probabilities of the longer lists are high
enough the leftmost derivation is the best, as predicted
at the end of section 5. However, the leftmost derivation
will have to be produced by a backtracking parser. If a
recursive descent parser were to be used then the
grammar would have to be left-factored, which would
result in grammar G6 again.

The ideal of identifying larger sublists can be extended
indefinitely, e.g.

L:E

L:E,E
L:E,E,E
L:Quads

L:E, Quads

L:E, E, Quads
L:E,E, E, Quads
Quads:E ,E ,E ,E
Quads:E ,E ,E, E, Quads
E:a

E:b

The leftmost derivation now contains a 7-way choice, and
stone age binary is used to indicate how many Quads
there are in long lists. Since the grammar is beginning to
look a little ridiculous the common abbreviation using a
star rule (* = as many as you like of) is now considered.

The star rule

L:E(E)*

E:a

E:b
The encoding of the left most derivation in this case could
be

(E0 | El) (n) (EO | E1) (EO | E1) ... (EO | E1)

n times

Now the need arises for a prefix code for the ordinal
numbers which is optimal for the observed probability of
each length of list.

Apart from stone age binary, other infinite prefix codes
exist (e.g. Ref. 7) but they have very definite patterns of
lengths and could not be expected to provide the
optimum code for an arbitrary set of probabilities.

A practical solution is as follows. Suppose the rule in
questionis the Pascal statement sequence rule. In any finite
group of programs analysed, the largest number of
statements in a sequence can be found (say N). Let the
lengths from 0 to N occur with probability p;, i = 0(1) N.
Create a Huffman code for N+2 messages, being the
numbers 0 to N with probabilities p; and an extra message
with infinitesimal probability. If, in use, a program with
more than N statements in a sequence is found the special
message can be sent together with the excess length in
stone age binary.

This technique allows a good encoding of the expected
cases plus the capability to cope with the unexpected.
However, a backtracking parser is needed to produce the
derivation required unless the following scenario is
accepted. Modify an LR parser built on the list rule of
grammar G6 so that it produces the derivation expected
by the star rule. The counts can be output after the
derivations of the repeated entries since the parser
naturally produces the derivation in reverse. This avoids
backtracking during parsing but requires the whole
output to be reversed.

8. APPLICATION OF METHOD

The term ‘program’ as used in this paper should be taken
to mean a sentence in the language generated by some
context-free grammar. This means that analytical
compression can be applied to any data which have
formal syntactic structure (e.g. database, perhaps).

THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986 313

¥20Z I4dy 60 U0 1senb Aq 666651/.0€/¥/62/2101e/|ulWwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

R. G. STONE

Since the data are parsed as part of the compaction
process they must be syntactically correct. However
(semantically) incorrect programs in the process of
development can still be compacted. For example,
programs with missing procedure declarations or dummy
procedure bodies (begin {null} end) can be syntactically
correct and successfully compacted.

The compaction process described here does not
preserve editing characters (white space) or comments. In
the absence of comments a pretty-printer could be used
on the decoded form to make it ‘human-readable’. If this
is not satisfactory then the compaction scheme must be
extended to encode and decode the white space and
comments as for example in Ref. 1.

9. CONCLUSION

A method of program compaction has been introduced
which encodes the decisions made by a parser while
parsing the program. It is felt that this method of
encoding deserves the name parsing encoding, while
previous use of the term (e.g. in Ref. 8) should be replaced
by derivation encoding. The term analytical encoding has
been used to embrace derivation and parsing encoding.

REFERENCES

1. A. M. M. Al-Hussaini, File compression using probabilistic
grammars and LR parsing. Ph.D. Thesis, Loughborough
University (1983).

2. A.V.Aho and S.C.Johnson, LR Parsing. Computing
Surveys 6 (2), 99-124 (1974).

3. A. V. AhoandJ. D. Ullman, Principles of Compiler Design.
Addison Wesley, London (1977).

4. R. W. Hamming, Coding and Information Theory. Prentice-
Hall, Englewood Cliffs, NJ (1980).

5. D. A. Huffman, A method for the construction of mini-
mum-redundancy codes. Proc. IRE 40, 1098-1101 (1952).

Four distinctive sets of productions have been
discussed to demonstrate their effect on the derivation
encoding and parsing encoding of programs.

Anoptimum encoding of (potentially infinite) repetition
and lists seems to require a grammar containing an
infinite number of productions. Since this is impractical,
some compromise over the encoding of repetition and
lists is necessary.

It seems that the LR parser, currently popular for other
reasons, is also a good practical choice for parsing
encoding. Its encoding -of sequence and selection is
optimal. Its encoding of repetition and lists can only be
improved upon by a backtracking parser, which might be
rejected on the grounds of efficiency.

The LR parser displays a small amount of context
sensitivity which can be utilised during parsing encoding.
An example from the Pascal language showed that this
could be useful in practice.

Acknowledgements

The author would like to record his thanks to Professor
M. Wells of Leeds University and Dr C.J. Hinde of
Loughborough University for their detailed comments on
draft copies of this paper.

6. S. E. Hutchins, Datacompressionincontext-free languages.
Proc. IFIP 1, 104-109 (1971).

7. R. G. Stone, On encoding commas between strings. CACM
22 (5), 310-311 (1979).

8. R. A. Thompsonand T. L. Booth, Encoding of Probabilistic
Context-Free Languages, (Conference Report: Theory of
Machines and Computations). Academic Press, London
(1971).

9. C. S. Wetherell, Probabilistic languages: a review and some
open questions. Computing Surveys 12 (4), 361-379 (1980).

314 THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986

¥20Z I4dy 60 U0 1senb Aq 666651/.0€/¥/62/2101e/|ulWwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

