Computing Random Fields

N. E. WISEMAN anp S. NEDUNURI*

Computer Laboratory, University of Cambridge, Corn Exchange Street, Cambridge CB2 30G
*Now at Hewlett Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS12 6QZ

A program that moves over a 2- or 3-dimensional mesh performing refinements by moving vertices or introducing new
ones is a common enough matter. If the data structure for the mesh persists across the entire calculation its management
is simple. However, it may be that the mesh data are needed only transiently, and in this case the maintenance of a
(possibly enormous) data structure across the whole calculation seems very space-inefficient. This point takes on extra
strength when the mesh is supposed to model some random field, such as a mountain range, cloud formation or meadow
plain (generated no doubt by a method related to Mandelbrot’s fractal curves) when the only use of the mesh is to make
a picture for display. Existing methods for dispensing with the need for the whole mesh across the whole calculation
complicate the program considerably. This paper proposes the use of co-routines to control the independent update of all
edges depending on a changing vertex. In this way facets are passed out as soon as they are complete and can then be
displayed and disposed of when convenient. Only visibility issues dictate how long a piece of data survives.

Received May 1985

1. INTRODUCTION

Suppose that a surface is to be modelled by generating
a mesh that clothes it and that this mesh is built by
successively refining a coarser one. The edges of the mesh
will enclose facets of surface and the refinement will cease
when these facets are either sufficiently small or
sufficiently close to the desired surface.

Figure 1. Mesh refinement

In Fig. 1 a portion of such a mesh is shown and facet
I having vertices PI1, P2, P3, P4 is about to be refined.
New vertices are introduced at the points marked a, b, c,
d, e by applying some formula to the mesh edges (it does
not matter here what this formula is). If the new facets
are sufficiently good they can be issued to the consumer,
otherwise further refinements take place. Eventually the
program moves on to other areas in the mesh, returning
at various times to neighbouring facets 7, such as J, K or
L.

On these return visits the refined facet /must be seen — in
particular, the new vertices which were introduced into
its boundary edges must be used as part of the refinement
of the present facet. There are really only two ways to
ensure this. Either they have to be recomputed by some
scheme guaranteed to come up with the same values each
time (not trivial if they depend on some random variable)
or they have to be stored somewhere in case they are
needed for future visits. Neither seems ideal, for

recomputing them is likely to be expensive in time and
storing them can be expensive in space. Ingenuity must
be brought to bear, so that the expense is not
unreasonably high. Two previously published approaches
will be described. Both are for use in making a mesh with
vertices that depend on random variables.

Fournier, Fussel and Carpenter! adopted a method of
recomputing the values on each encounter, making the
random number seed some unique function of the edge
coordinates to ensure repeatability. It was also necessary
to average the normals of the facets meeting on that edge
to establish the direction of perturbation repeatably. An
algorithm which initially offered considerable simplicity
and elegance suffered badly from these acts, although of
course something had been necessary to cure the difficulty
mentionedabove. Coquillart?takestheoppositeapproach.
He stores the values in a data structure specially
contrived to enable old data to be stripped out when no
longer needed — a form of heap with explicit capture and
release of space for storing the values in question. The
amount of store used is economized by this, but again at
a cost in algorithm simplicity. The method reported here
also stores the values for later re-use, but with very little
visibility to the programmer of the storage structures in
use. The idea is basically to regard every facet as being
computed concurrently and to pass new refinements of
existing edges to all consumers as they are calculated. Of
course there is no need actually to compute things in
parallel, and a fleet of co-routines is adopted instead.
Edges are never visited more than once, so there can be
no problem with consistency, and directly all the
consumers of a fresh piece of data have done their work
the data disappear.

2. MESH GENERATION

A mesh that clothes a patch of surface may be represented
as a set of vertices and joining edges that delimit a number
of plane facets each chosen to be close enough to the
surface. Refinement of the mesh corresponds with
tightening the interpretation of ‘close enough’. It can be
done by reducing the overall spacing of a regular mesh

THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986 373

¥20Z I4dy 01 uo 1senb Aq 1/ 109v/€ L€/¥/62/2101e/|ulwoo/wod dno-olwspeoe//:sdpy wolj papeojumoq

N. E. WISEMAN AND S. NEDUNURI

or replacing facets by smaller ones only where needed.
Some surfaces can be represented as a function of
position on a 2-dimensional rectangular grid which gives
the projection of the surface from that position. The
projection is orthogonal to the grid. In that case refining
the mesh consists of refining the rectangular grid in the
plane until the projected surface is sufficiently well
defined. Note in this case that not all surfaces will refine
properly (or at all) and that multiple projections of a
single position are disallowed. The resulting surface is
called a Projected Mesh. The methods proposed in this
paper will in general work for both clothing and projected
meshes, although the program details will be different.

There are many ways in which the mesh data could be
generated. The most straightforward idea is probably
that of Fig. 1, illustrating recursive subdivision of a single
quadrilateral into a mesh of the desired fineness. At each
level of recursion the procedure inserts a cross-shaped set
of four new edges into the quadrilateral passed to it. If
the desired resolution has been reached the procedure
then returns, otherwise each quadrilateral formed by
inserting the new edges is passed down to four distinct
recursive calls to the same procedure. The following code
shows how it works (it makes the data, but does nothing
with them).

// pl, p2, p3, p4 is the input quadrilateral

// index is a control on level of recursion

let refine(p1l, p2, p3, p4, index) be

$(// make 4 new vertices by refining existing edges
let a = fun(pl, p2)

let b = fun(p2, p3)
let ¢ = fun(p3, p4)
let d = fun(p4, p1)

// and a new vertex by refining existing vertices
let e = another.fun(pi, p2, p3, p4)

unless index = 0
$(refine(p1l, a, e, d, index-1)
refine(a, p2, b, e, index-1)
refine(e, b, p3, c, index-1)
refine(d, e, c, p4, index-1)
$)
$

The procedure does not communicate with its brothers
of course, which give rise to the consistency problem
addressed by this paper — there will be two independent
refinements of each edge at every level of recursion, with
the result that the final mesh may not be properly
connected. An even more contorted result could be
obtained if the recursive call depended on the closeness
of match of the subdivided facet with the desired surface,
rather than the degree of subdivision.

Another method is to regard the quadrilateral mesh as
being delimited by struts running in one direction and
rungs in the other. The program scans along the struts
and rungs performing a recursive or iterative subdivision
of each to achieve the desired accuracy. The idea is shown
below using recursive subdivision:

let refine(pl, p2, p3, p4, index) be
$(let strut(p, q, r, s, strutindex, rungindex) be
$(1let strutrung(u, v, rungindex) be
$(let e = fun(u, v)

unless rungindex = 0
$(strutrung(u, e, rungindex-1)
strutrung(e, v, rungindex-1)
$)
$)
let d = fun(p, q)
let b = fun(r, s)

test strutindex = 0
then strutrung(d, b, rungindex)
or
$(strut(p, d, r, b, strutindex-1, rungindex)
strut(d, q, b, s, strutindex-1, rungindex)
$)
$)

// and a similar declaration for rung and rungstrut to
// cross the mesh in the other direction

strut(pl, p4, p2, p3, index, index)
rung(pl, p2, p4, p3, index, index)
$)

This seems no better. The code is less easy to understand
and the only points where strut and rung vertices must
coincide are at their beginnings and ends (that is each
strut(rung) must start(end) on a rung(strut)). The same
problem with consistency arises. The problem will only
go away if new mesh vertices remain available until all
neighbouring edges have used them. It could be thought
of as a scope rule matter — data are arranged to have a
scope just sufficient for the intended task (if too small the
values must be recomputed, if too large then space to
store them is being wasted). For a single-threaded
program moving over a multiply connected structure like
a quadrilateral mesh the necessary scope cannot be
achieved with local variables. We thus have to adopt some
form of off-stack storage for holding the values or use a
multi-threaded program. Taking the former approach,
we could try persistent data, such as a database or a file.
In-core storage on & heap, in a manner such as that used
by Coquillart, is better. The other idea, of using a
multi-threaded program, is more unusual. The program-
ming for a multi-threaded struts-and-rungs solution is
extremely easy and the mesh data survive exactly as long
as they are wanted (and no longer). True parallelism is
not necessary of course, and co-routines are used below,
enabling the same idea to be implemented with better
operating efficiency.

The basis of the algorithm can be explained as follows.
A co-routine is launched on each strut with the task of
moving along it, emitting coordinates at suitable
intervals. It adopts some method of subdivision to refine
each strut into as many parts as are needed, and is
assumed to be pure code, so that a single copy is sharable
over all struts. Each instance has to emit each new
coordinate to the main routine which makes rungs. The
algorithm driving each strut should preferably take no
information about the other struts or the rungs that result
from each step which it takes. The general form is seen
below:

// create a batch of coroutines and initialize them
for i = 0 to struts
$(strutvec!i := cocreate(strut, stacksize)
// set up initial arguments in pkt
// and start each strut off
cocall(strutvec!i, pkt)
$)

374 THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986

¥20Z I4dy 01 uo 1senb Aq 1/ 109v/€ L€/¥/62/2101e/|ulwoo/wod dno-olwspeoe//:sdpy wolj papeojumoq

COMPUTING RANDOM FIELDS

// go across the struts, making a chain of rungs on each step
for j = 0 to rungs
$(new.vertex := cocall(strutvec!0, 0)
for i = 1 to struts
$(old.vertex := new.vertex
// now collect another vertex from the next strut
new.vertex := cocall(strutvec!i,0)
rung(old.vertex, new.vertex)
$)
$)

and the strut co-routines go:

// invent a vertex P

// if sufficiently refined then

// make the next bit of strut that uses P
// and issue P to the rung maker with:
cowait(P)

// recurse, iterate or return as appropriate

S SoeSd
O S S Sy
SIS S5

The program sweeps across the mesh making at each step
a segment of every strut and the rung that joins these
segments together. The struts grow in the individual
instances of the strut co-routines, and the rungs are put
inby the calling procedure, which s released incrementally
as the strut co-routines advance. In a simple program that
draws meshes, the rung procedure would just draw a
segment of rung, and the strut co-routines would each
draw along their strut to each new vertex as it is
generated. Figures 2, 3 and 4 show examples of meshes
drawn in this manner. The first is a projected mesh for

z=fix+d, y+d)+fix+d, y—d)+fix—d, y+d)
+flx—d, y—d)

where

Sx,y) = A/(B+x*x+y*y)

,',,,,‘v‘v ’.‘.““ o
B AKX
/) ‘.{3}&
it Lo
;! oS

S0

XA

/] 'A”'VQ-“"V\\‘ '
ALL] () ‘ \ N
= AN

20558K, N
000

4 .
=
RS (> S e S
e
e < St
NS :d:‘.‘ig‘& RS
e s
s
e
N R
PRV

GO
W,

CAXXXS
"":::&.“‘ .,«s:': >

S,
o
Qo>

2
X S00TSi
SN
CODOSOSs
SeeSeateartess:
SRS
“O"
Pe0 T

> X % IR,
A, \\‘s\\\‘a&t‘:‘»_

AL X0 RN
R DT ANt S
s SRR
85 s
X I :
e

Figure 3. The same mesh with hidden lines removed

THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986 375

¥20Z I4dy 01 uo 1senb Aq 1/ 109v/€ L€/¥/62/2101e/|ulwoo/wod dno-olwspeoe//:sdpy wolj papeojumoq

N. E. WISEMAN AND S. NEDUNURI

'<
SR
B35
BOSON IS

RS
2%
e,

S

CIRCTHED X D SRRER S
SLRAX M NSRGNERCAND
SRR %, R KL DS
EREKRGSLHK ZOHSW

RN

Figure 4. Fractal mesh

Figure 5. Shaded fractal mesh

and the next is the same mesh with hidden lines removed,
using the painter’s algorithm and filling each facet with
background colour. Fig. 4 shows the hidden-line version
of a form of fractal mesh in which each strut is separately
refined from the original base function (z). The
refinement of the base function mesh (we call it
‘fractalising’ but only with apologies!) is done by a
method closely similar to that described in Ref. 1.
Observe that the mesh remains properly connected, with
no complication arising from the perturbation of its
vertices. Shaded versions using the growing silhouette
method are shown in Figs 5 and 6. In this case the sweep
direction is left to right, front to back, and the viewing

position must be such that the sweep never obscures itself.
This restriction arises from the fact that the scope rule (if
we may call it that) has no knowledge of the requirements
for facet visibility, but only ensures vertex survival for
long enough to guarantee a properly connected mesh. For
the use intended, however, the restriction is not serious,
and self-shadowing effects such as are shown in Fig. 6
scenes can be easily produced for a single light source in
front of the sweep. Scenes of quite high complexity have
been made by the method — a 100,000-facet image takes
about 30 minutes to compute and display with self
shadowing, and 10 minutes without, on an M68000-based
microcomputer.

376 THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986

¥20Z I4dy 01 uo 1senb Aq 1/ 109v/€ L€/¥/62/2101e/|ulwoo/wod dno-olwspeoe//:sdpy wolj papeojumoq

COMPUTING RANDOM FIELDS

Figure 6. Self-shadowing shaded fractal mesh

3. CONCLUSIONS

The method described combines economy of storage and
simplicity of code. With increasing interest in special-
purpose display processors it may find its place in
simplifying the process of mesh display by being

REFERENCES

1. A. Fournier, D. Fussel and L. Carpenter, Computer
rendering of stochastic models. CACM 25, (26) 371-384,
(1982).

2. 8. Coaquillart, Displaying random fields. Computer Graphics
Forum 4, (1), 11-19, (1985).

3. D. P. Anderson, Hidden line elimination in projected grid
surfaces ACM Transactions on Graphics, 1,274-288, (1982).

implemented in hardware. For implementation in
software, we have observed that multi-threaded programs
are frequently simpler and may even be more efficient
than their single-threaded counterparts. Simpler programs
are easier to get working.

4. E. Catmull and J. Clark, ‘Recursively generated B-spline
surfaces on arbitrary topological meshes. Computer-Aided
Design 10, (6), 350-355, (1978).

5. D.Doo & M. Sabin, Behaviour of recursive division

surfaces near extraordinary points. Computer-Aided Design
10, (6), 356-360 (1978).

THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986 377

¥20Z I4dy 01 uo 1senb Aq 1/ 109v/€ L€/¥/62/2101e/|ulwoo/wod dno-olwspeoe//:sdpy wolj papeojumoq

