Short Notes

Join Dependencies in Relational Databases
and the Geometry of Spatial Grids

It is shown that a relation whose tuples describe
a regular folded spatial grid contains a join
dependency, that originates in the geometrical
properties of the grid. There is a class of join
dependencies corresponding to 2-dimensional
grids, or polygonal join dependencies, and a
class corresponding to 3-dimensional grids, or
polyhedral join dependencies, and so on.

1. INTRODUCTION

The determination of dependencies within
relations is important in database design, since
undesirable dependencies within relations can
lead to anomalies when the database is
updated. ¢ The best-known dependencies are
functional  dependencies,>3  multivalued
dependencies,* 7 1° join dependencies,® ® and
a variety of generalised dependencies.?

In this paper we point out a hitherto
unrecognised property of join dependencies,
namely that they directly reflect the geometrical
properties of a wide variety of spatial grids.

2. JOIN DEPENDENCIES

Join dependencies were first defined by
Rissanen.® The simplest join dependency
occurs in a 3-attribute relation. We use the
relation R(X, Y, Z) and the table below to
specify this dependency:

XY Z
a b —
— ¢ d
a — ¢
a b ¢

In other words, if the first three tuples occur
in the relation, so must the last. The
dependency is a join dependency because a
relation containing it can be non-loss-decom-
posed only into the three relations XY, YZ and
XZ, that is, the relation R can be regenerated
only from a join of these three relations, and
not any two of them such as XY and YZ.
Table 1 demonstrates this.

The relation XY* YZ is the natural join [1, 3]
of XY and YZ on the join attribute Y. We see
that this does not recover the original relation
XYZ.

3. THE TRIANGULAR JOIN
DEPENDENCY

We propose that the simplest join dependency
above be called a triangular dependency, for it
reflects the properties of a folded triangular

grid. To see this, consider first the unfolded
grid in Fig. 1 (ignoring dashed lines). There are
four ‘triangles’ (whose edges do not have to be
straight), identified by the apexes; these are
triangles (1, 5, 2), (1,2, 3), (2,3,3), (1, 3, 6)
where, as is usual in conventional geometry,
the order of listing the apexes is not important.
Thus, conventionally, the triangle (1, 5, 2) is
the same as triangle (5, 2, 1).

Figure 1.

Now it is self-evident that in the unfolded
grid in Fig. 1, if we have triangles (1, 5, 2),
(2,3,4) and (1, 3, 6), then because of the
existence of the edges (1, 2), (2, 3)and (1, 3) the
triangle (1, 2, 3) must exist as well. This is a
basic property of the surface defined by a
triangular grid.

Suppose that we wish to record each of the
four triangles in Fig. 1 as a tuple of the relation
R(X, Y,Z). We clearly need a standard
procedure for identifying X, Y and Z apexes
for each triangle. A viable method is as
follows. Simply fold each triangle on a triangle
edge, with repeated folds if necessary, until the
triangle being folded has been fitted on top of,
or below, a triangle that has been previously
selected as a standard for the grid. We refer to
this standard triangle as the base triangle. For
the grid in Fig. 1 we have chosen the triangle
(1, 2, 3) as the base triangle, and have defined
(1,2,3) to be a tuple of the relation
R(X, Y, Z).

The folds for each of the triangles (1, 2, 5),
(4,2,3) and (1, 6, 3) are shown in Fig. 2, so
that the relation R(X, Y, Z) describing the
four triangles is

XY
2
2
6

W wuN

1
4
1
1 2 3

Clearly, if we have a triangle in the fold with
XY edge (1,2), YZ edge (2, 3) and XZ edge
(1, 3), because of the identical apexes, we must
have triangle (1, 2, 3). Thus the geometry of
the grid explains the tuple-generating aspect of
the join dependency.

2(Y)

There is also a geometrical explanation for
the inability of a natural join of two of the
projections, such as XY and YZ, to recover the
original relation. Each tuple of a projection
XY describes an XY edge of a triangle
physically in the grid. Similarly, each YZ tuple
describes a YZ edge. Looking at the grid in
Fig. 1, it is clear that some edges occur in only
one triangle, while others occur in two
triangles. When we perform a natural join of
XY tuple (1,2) with YZ tuple (2, 3), geo-
metrically we are connecting edge (1, 2) with
edge (2, 3) at apex 2, to give two, and not three,
edges of the grid triangle (1, 2, 3). Nevertheless,
these two edges are sufficient to identify the
existing triangle (1, 2, 3). However, the natural
join XY*YZ will also give rise to a tuple
(4, 2, 5), because of connecting XY edge (4, 2)
to YZ edge (2, 5). But these two edges are from
two different triangles (4,2, 3) and (1, 2, 5)
that have a common Y-apex after folding. The
join of these two edges would therefore form
a spurious triangle (4, 2, 5), since there is no
XZ edge (4, ) in the grid in this case (although
there could be). And because the edge (4, 5)
does not occur in the XZ projection, the final
join of XZ with (XY*YZ) will eliminate the
spurious triangle (4, 2, 5).

It is thus clear that all recognised properties

Table 1
X Y Z X Y Y Z X Z X Y Z X Y Z
1 2 5 1 2 2 5 1 5 1 2 5 1 2 5
4 2 3 4 2 2 3 4 3 1 2 3 1 2 3
1 6 3 1 6 6 3 1 3 4 2 5 4 2 3
1 2 3 XY YZ XZ 4 2 3 1 6 3
XYX 1 6 3
or R XY*yz XY*YZ)*XZ
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of the join dependency in a ternary relation
have their explanation in the geometry of a
folded (2-dimensional) triangular grid. That
the result we have described is quite general
with respect to folded triangular grids becomes
clear from a study of the additional triangles
(2,4,7) and (3, 4, 8) in Fig. 1 (dashed lines).

Let us first fold these triangles over the base
triangle. Triangle (2, 4, 7) is first folded along
edge (2, 4), and then along edge (2, 7), showing
us that the XYZ tuple (4, 2, 7) will describe that
triangle. The folding of triangle (3, 4, 8)
similarly results in XYZ tuple (4, 8, 3). The
relation XYZ for the six triangles in Fig. 1 is
therefore:

XY

L N el
ONNNNANN
W\IWWWMN

Looking at Fig. 1, we would expect that since
triangles (1, 2, 3), (2, 7, 4) and (3, 4, 8) are in
the grid, then triangle (2, 4, 3) must be in it as
well, so that there should be a generation of
XYZtuple (4, 2, 3) from three other tuples — in
conformity with the rules for specifying the
join dependency. There is. According to the
rule from section 2, since we have tuples
4,2,-), (- 2,3) and (4, -, 3), we must have
tuple (4, 2, 3).

Extending stepwise in this manner, it is clear
that the grid can be extended indefinitely with
preservation of the join-dependency rule. The
grid does not have to form a plane in order for
the join dependency to hold. An edge of the
grid can be an edge of three or more triangles,
that is, the grid can have been constructed
from the intersection of two or more grids. We
define two grids to intersect when they have at
least one edge in common. In all these cases the
relation for the folded grid will contain a join
dependency.

Note the following restriction, however. For
a planar grid, an apex is saturated, so that no
additional triangles can be inserted, when it is
the apex of 6 triangles. Thus, in Fig. 1, triangle
(5, 2, 7) is invalid. Instead we would expect to
have triangles (5, x, 2) and (x, 2, 7).

4. POLYGONAL JOIN
DEPENDENCIES

If a grid is composed of tetragons, or 4-sided
meshes, the relation described by folding the
tetragonal grid contains another join depen-
dency, which we propose to call a tetragonal
dependency.

Consider the grid of 5 tetragons, as in Fig.
3, and consider the tetragon in the middle to
be the basic tetragon, on which the others are
folded. Now, referringto Fig. 3, the dependency
arises because the existence of tetragons
5,6,2,1), (2,7,8,3), (3,9,10,4) and
(12, 1, 4, 11) means that tetragon (1, 2, 3, 4)
must also exist. When we fold the five
tetragons on base tetragon (1,2, 3, 4), each
tetragon can be described by a tuple in the
relation:

XY zZ w
109 3 4
1 12 11 4
1 2 6 5§
7 2 3 8
1 2 3 4
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Figure 3.

which therefore must contain the join
dependency:

X Y Z wW
a b - -
- b ¢ -
- - ¢ d
a - - d
a b ¢ d

If we project on XY, YZ, ZW and XW, we will
be able to reform XYZW only if all four
projection relations are joined. As in the case
of the triangular dependency, a join of less
than the total number of projections gives rise
to spurious tuples, for the same geometrical
reasons.

In a similar manner, a grid made up of
S-sided figures will give rise to a relation with
a pentagonal dependency, and so on for
hexagonal, septagonal grids, etc.

5. POLYHEDRAL JOIN
DEPENDENCIES

Relations described as polygonal folded grids
define the class of polygonal join dependencies.
In addition, relations describing polyhedral
folded grids define the class of polyhedral
dependencies.

As with the polygonal grids, a polyhedral
grid must be folded before each volume of the
grid can be given a tuple in the relation for the
grid. Although‘folding’ here is mathematically
similar to the case of a polygon, geometrically,
it consists of turning the object inside out, as
is illustrated in Fig. 4 for the case of a cubical
grid. The relation to describe the grid has
attributes XYZWABCD with the tuple
(1,2,3,4, 5,6, 7, 8) describing the basic cube
of the grid (Fig. 4). When the neighbouring
cube (4,3,12,13,8,7,10,11) is folded
it will be described by the tuple
(13,12, 3,4, 11, 10, 7, 8). If we have six such
cubes, one extending from each side of the
basic cube, then the basic cube must exist. This
is the basis for the hexahedral join dependency,
which is

X Y Z WA B C D
a b ¢ d - - - -
- - - - e f g h
a b - - e f - -
- - d ¢ - - g h
- b ¢ - f g -
a - d - e - - h
a b ¢ d e f g h

in the relation describing a folded grid of
hexahedra. In similar manner we can have

y
[ 3]

NV

tetrahedral and pentahedral join dependencies,
and so on for all the polyhedrons. This gives
us a whole class of 2-dimensional or polyhedral
join dependencies.

6. N-DIMENSIONAL JOIN
DEPENDENCIES

There will clearly also be a join dependency in
a relation that describes a folded grid of
n-dimensional objects, for example, 4-dimen-
sional cubes. Thus it is possible to classify join
dependencies as 4-dimensional, 5-dimensional
and so on. For each dimensional class there
will be an essentially infinite number of join
dependencies.

7. CONCLUDING REMARKS

The dependencies for the 2- and 3-dimensional
cases could conceivably have application in
databases describing engineering structures.
However, it seems highly unlikely that the
higher-order join dependencies will have any
application in the foreseeable future. Never-
theless, the elucidation of the individual
higher-order n-dimensional join dependencies
represents an interesting mathematical chal-
lenge, which will undoubtedly be taken up
in years to come.
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