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1. INTRODUCTION

In an earlier paper,!! we presented axioms and proof rules
for reasoning about concurrent Ada programs. As we
stated in that paper, we submitted our work for
publication before the proof system had been formally
checked for soundness and relative completeness; we
repeat our justification for doing this in appendix B.
However, after the paper appeared, we discovered that
the system did have some errors and omissions and,
therefore, a complete revision of Ref. 11 is presented in
this paper.

The organisation of this paper is as follows. Section 2
acknowledges the inspiration for our work and contains
some very simple examples of proofs. Section 3 is a formal
presentation of the basic (partial correctness) proof
system, and section 4 gives a non-trivial example of its
use. Section 5 extends the proof system to deal with
deadlock, and section 6 outlines the approach taken to
prove it sound and relatively complete. Section 7 consists
of a comparison with another Ada tasking proof system,
and some conclusions are drawn in section 8. Appendix
A contains a very brief survey of program proof systems
in general, and a critique of our original system is given
in Appendix B.

We assume that the reader is familiar with the Ada
language reference manual;'? a more readable introduc-
tion to the syntax and informal semantics of Ada is, for
example, Barnes.” Readers unfamiliar with CSP (Com-
municating Sequential Processes), see below, are referred
to Hoare.?

2. SIMPLE EXAMPLES

The basis of our proof system is the CSP proof system
of Apt, Francez and de Roever® (hereafter referred to as
AFdR), with its central notion that concurrently
executing processes cooperate to achieve some overall
result. To prove that this result is reached one first
deduces the effect of each process executing in isolation
and then considers the inter-process communications; if
these satisfy the definition of cooperation then one may
conclude that the overall result is the conjunction of the
individual processes’ post-conditions and a global
invariant, GI. (See section 3.1 for full definitions.)

*Ada is a registered trademark of the U.S. Government (Ada Joint
Program Office).

1 Present address: Data Systems Division, Marconi Radar Systems
Ltd, Writtle Road, Chelmsford CM1 3BN, England.

404 THE COMPUTER JOURNAL, VOL. 29, NO. 5, 1986

The proof system follows the axiomatic method of
Hoare; references for readers unfamiliar with Hoare-style
proof systems and associated terminology are given in
appendix A. In order to give a flavour of the style of
proofs, the rest of this section consists of some very simple
examples.

First, consider an isolated task body consisting of a
single assignment statement, x: = x+ 1. If x is initialised
to zero, then upon termination of the task, x clearly has
the value one, and this may be proved by using Hoare’s
‘backward assignment axiom’ ({p[e/x]} x: = e {p}). This
axiom states that for the formula denoted by p to be true
after execution of the assignment x: = e, the formula
obtained by replacing every free occurrence of x in p by
e, ple/x], must have been true just before execution of the
assignment. Thus, to achieve x = 1 after execution of
x:=x+1, we require that x = I[x+1/x], i.e. x+1 =1,
is true before execution. Now, as x = 0 implies x+1 = 1,
we have the desired result. Rather than write out a formal
proof in full, it is usual to annotate a program text with
assertions. These are formulae that express the values of,
and relations between, program variables at points in the
program’s execution. Assertions are enclosed in curly
brackets, and the annotated program is called a ‘proof
outline’. A formal proof could be constructed, if
necessary, from the proof outline and the axioms and
rules of the proof system. For our first example, we would
thus write

{x =0}
xX:=x+1;
{x=1}

which states that, if {x = 0} is true before execution of the
assignment statement, then upon termination of the
assignment, {x = 1} is true.

Now consider two tasks that rendezvous and then
terminate:

task body T is task body 72 is

begin x:integer;
{true} begin
T2.E(1); {true}
end; {true} accept E (y: in integer) do
xi=y;
end;
end: {x =1}

We may consider each task in isolation, and make
assertions as shown (‘true’ is effectively saying nothing).
The final assertion of 72 is an inspired guess: whether x
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really does have the value one or not at that point
depends on what calls are made to E. The cooperation
test checks that possible calls do not contradict the guess.
In this example we may show cooperation by simply using
the ‘communication’ proof rule. Thus, if

{true Ay =1}
x:=y;
{x=1}

is valid reasoning (which it is), then we may conclude
(where T, par T, represents parallel execution of 7, and
T;) that

{true} T2.E(1) par accept E...{x = 1}.

As the tasks cooperate, then upon termination x indeed
has the value one. Note that there is no need for a global
invariant in this example.

It is not always possible to prove a result using only the
original program variables; it may be necessary to
introduce ‘auxiliary’ or ‘history’ variables. Consider the
two tasks:

task body 71 is task body 72 is

x:integer: = 0; y:integer: = 0;
begin begin

x:=x+1; y:=y+1;
end; end;

We are given that {x = y} is true initially, and wish to
prove that {x =y} is true when the tasks terminate.
Assertions that appear in the text of T1 may not refer to
variables from 72, and vice versa; hence, we need to
introduce auxiliary variables x’,)” initialised to the initial
values of x,y respectively:

task body 71 is task body 72 is

x,x":integer: = 0;  y,y :integer. =0;

begin {x = x"} begin {y = )’}

x:=x+1; yi=y+1;

end; {x = x"+1} end; {y =y +1}
We also require a global invariant (that may refer to any
variable), namely {x’ = y’}. Gl is true initially, and must
be true finally as x’,y” do not alter. 71 and T2 trivially
cooperate (as they do not communicate), so we may
conclude that

x=x4+1Ay=y+1Ax =y}

is true upon termination of the tasks, i.e. {x = y} is also
true. In general, auxiliary variables and the global
invariant not only relate variables from separate tasks,
but also ensure that rendezvous that are possible
syntactically, but not semantically, trivially satisfy the
cooperations conditions (see section 4 for an example).
Variables free in a global invariant may only be altered
in so-called ‘bracketed sections’, i.e. areas of a task
immediately surrounding an entry call or accept
statement.

3. THE PROOF SYSTEM
3.1. Definitions and assumptions

We confine our attention to a subset of the Ada tasking
constructs that consists of:
tasks, entries, entry calls, accept statements and
selective wait statements with no else part and no delay
alternatives.

We do not treat the ‘real-time’ constructs (delay
statements, conditional and timed entry calls), priorities
and the abort statement.

We assume the following.

(i) An Ada program consists of a fixed number of
tasks, all at the same conceptual level. We ignore all
questions of their declaration and activation within some
containing unit, and assume that all programs are well
formed. We also ignore the declaration of entities
associated with a task, such as entries and variables, but
assume that all such entities have distinct names.

(ii) A statement within a task body is either an entry
call, or an accept, selective wait (restricted as indicated
earlier), assignment, while loop, if or null statement.

(iii) Tasks do not share variables, and there are no
hidden side-effects in expression evaluation or statement
execution.

(iv) Entry parameters have no defaults, and their
associations are always positional, never named.

(v) There are no identifier clashes (between task
names, or names of entities associated with different
tasks).

(vi) All constructs terminate normally (i.e. we only
consider partial correctness). Normal termination in-
cludes execution of a terminate alternative.

(vii) All actual parameters for a given entry call are

disjoint. Note that this means that in out parameters
cannot be handled simply by concatenating them to both
in and out parameter lists.
For the remainder of this paper, T denotes a task, E
denotes an entry, S a statement, x a variable (an object
that has a value), e an expression and b a Boolean
expression (an expression that evaluates to ¢ or ff, where
tt and ff denote the truth values). A set of tasks or
prograim is written 7, par...par T, or Pr (par indicates
concurrent execution). Assertions, i.e. formulae of some
first-order language whose variables and expressions
include those of our Ada subset, have typical elements
p,q,r; ‘true’ and ‘false’ are assertions whose meaning is
always ¢ and ff respectively. For any assertion ¢, FV(q)
denotes the set of free variables, i.e. those not bound by
any quantifier, appearing in ¢, for example
FV(3y.x = y) = {x}. The use of FV is also extended to
apply to statements as well as assertions, thus
FV(x:=y+1) = {x,y}.

We shall assume that all entry parameters of a given
mode may be collected into a single list, which preserves
their order and is denoted by ain, aio, aout for actual
parameters, fin, fio, fout for formal, and we shall write
(fin, fio, fout) for

(fin:in...; fio: in out. .. ; fout: out...).

With this notation then, for example

accept SOME_ENTRY (x: in typex; y: out typey; z: in
typez) do

yi=x+z;

end;
may be considered as

accept E (fin, fout) do

Jout (1): = fin (1)+fin (2);

end;

We also define (cf. Ref. 11) the following notions.

(a) Proof outline or local proof
Considering a single task, 7, in isolation, we may derive
a formal proof of {p}T{q}, for suitable p, g, using axioms
A1-A4, R1-R5 of section 3.2. Formal proofs are
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notoriously tedious to produce and to understand, and,
following general practice, we shall simply annotate the
text of T with appropriate assertions from which, if
necessary, a formal proof could be constructed. For a
statement, S, of T we supply a pre-assertion, pre(S), and
a post-assertion, post(S); note that these assertions refer
solely to the variables of T. The body of an accept
statement is not annotated. Intuitively, pre(S) (respec-
tively, post(S)) holds just before (respectively, after)
execution of S. We call the annotated text a proof outline
or local proof.

(b) Global invariant, GI
An assertion that may include variables drawn from a
number of tasks.

(c) Input/output, IO, commands
An IO command is an entry call or an accept statement.
Two 10 commands match if one is a call to an entry for
which the other is an accept statement.

(d) Transformation
10 commands may be nested (inside the body of an accept
statement). The proof system does not handle nested 10
commands directly; should any occur, it is necessary to
transform the relevant accept statements, and all
matching entry calls, as indicated below. T’ is the
transformed version of T, E’, E” are some new entry
names, fin', fio', fio”, fout’ are some new variable names
with appropriate scope, and S’ is S with (elements of)
fin', fio', fout’ substituted for (the corresponding elements
of) fin, fio, fout.

T.E((ain, aio, aout); par accept E (fin, fio, fout)do S; end;
is transformed to

T’ . E’ (ain, aio);
T’ . E” (aio, aout);

par accept E’ (fin, fio) do

Sin': = fin; fio': = fio;

end;

S’;

accept E”(fio”, fout) do
fio”: = fio’; fout: = fout’;

end;

(e) Bracketed sections, BS
These are sections of the program, delimited by * <’ and
<>, of the form

S5 10; S,;

where S; and S, do not include any 10 command. Two
bracketed sections match if they contain matching 10
commands. every IO command in a program must appear
in a bracketed section. Assertions pre(BS), post(BS) are
identical to pre(S, ), post(S, ), where BSis S, ;...S,,. Note
that bracketed sections may not be nested: any nesting
of IO commands should be removed by program
transformation (d). A program is said to be bracketed if
all of its IO commands are bracketed.

(f) Auxiliary variables
These are variables introduced into a program solely to
express assertions that cannot be stated in terms of the
given program variables. We denote the set of such
variables, for a given program, by AV.

(g) Cooperation
Given a bracketed program Pr £ 7] par...par T,, with
no nested IO commands, and given a global invariant, GI,

and local proofs {p;} T;{g;} for all tasks T;, 1 < i < n, then
the local proofs cooperate if:
(i) No assertion used in the local proof of T; has a free

variable subject to change in T; (i # j);

(i) {pre(BS,) A (BS,) A GI} BS,parBS, post(BS,)
A post(BS;) A GI} holds for all matching pairs of
bracketed sections BS,, BS,;

(iii) no variable free in GI alters outside a bracketed
section.

3.2. Axioms and proof rules

In the list of axioms and rules given below, Al, A2 and
R1-R4 are the standard axioms and rules associated with
sequential programming languages. The other rules are
necessary to handle the extra tasking constructs and,
where necessary, some explanation is provided. (For con-
venience, we omit the final *;’ from Ada statements.)
Al. Null {p} null {p}
A2. Assignment {ple/x]} x: = e {p}
where ple/x] is p with every free
occurrence of x replaced by e.

A3. Entry {p} T. E(ain, aio, aout) {q}
provided FV(p) n {aout} = §.
A4. Accept {p} accept E (fin, fio four) do S; end {g}

provided FV (p, q¢) n {fin, fio,
Sfout} = 0.
Notice that the axioms A3 and A4 allow any assertion
to be written after an entry call or an accept statement.
Intuitively, the local proof outline of a task is asserting
what happens when the task is run in isolation and, hence,
any entry call or accept statement would block. Now,
because the local proof outline is only a partial
correctness proof anything may be concluded. However,
a successful proof of cooperation of local proofs of tasks
(3.1.g) will ensure that assertions concluded after such
statements will indeed be true when the task are run
together. The restriction on the appearance of free
variables in the assertions used in A3 and A4 —i.e., the
out parameters of acallmay not appear inits pre-assertion,
and none of the formal parameters of an accept state-
ment may appear in either its pre- or post-assertion — is
discussed after presentation of the communication rule
R6.
P=>p,{p}S{a}.q=>¢g
{p} Siq}

and similarly for T and Pr.
{p} Si{q},{q} S; {r}

{P}Sy;8,{r}

{p A B}S,{g},{p A 1B} S, {q}
{p} if b then S, ; else S,; end if {q}

treating elsif. . . as else if. . .

with appropriate parsing.

{p A b}S{p}

{p} while b loop S; end loop {p A 15}

R1. Consequence

R2. Composition

R3. Alternation

R4. Repetition

RS. Selective wait
{P Abi}Si{g), 1 <i<n,pAb,,, =>posy(T)
{p} select when b, = > S,; or...when b, = > S,;
or when b, ,, = > terminate; end select {g}
where post(T) is the post-assertion of the task, 7,
containing the selective wait.
For a selective wait statement with no terminate
alternative, the above rule (R5) without the premise
P A by, => post(T) should be used. Notice that R5

406 THE COMPUTER JOURNAL, VOL. 29, NO. 5, 1986

20z UoJe €1 U0 1senb A ¥81981/¥01/S/62/9101ME/|UlL0o/Woo"dno-olepese//:sdly Woly papeojumod



A PROOF SYSTEM FOR ADA TASKS

must be used to justify the premises of any other rule that
is applied to a statement containing a selective wait. (The
introduction of axioms like {true}S;x:=0;{x =0},
where S contains a selective wait is forbidden, cf
O’Donnell’s counter-examples to the Clint-Hoare Goto
rule in ref. 45.)

R6. Communication

{plfio/aio] A fin = ain} S{q}
{p} T. E(ain, aio, aout) par accept E(fin, fio, fout)
do S; end {g[aio/fio, aout /fout]}

provided FV(p) n {fin, fio, fout, aout} = ¢,
FV(g) n {fin, aio, aout} = ¢

plfio/aio] is p with every occurrence of an element
of aio replaced by the corresponding element of fio.

This rule would appear more symmetrical if we had
plfio/aio, fin/ain] in the premise, but this would necessi-
tate having glain/fin,...] in the conclusion (in order to
preserve ain), which clashes with our intuitive idea of
parameter passing. We cannot put p A fio = aio A fin =
ain in the premise because we could then ‘prove’, for
example:

{x=1}
T. E(x);paraccept E(y)do y: = 2; end;
{x=1Ax=2}

This is also the reason why aout cannot appear free in p
and for the restrictions imposed in A3 and A4 earlier.
R7. Formation

{P}S1;S5{p,},{p,} 10, par 10, {q, },{q, } S2;S:{q}
{p} < BS, > par < BS, > {q}

where BS, is S,;10,;S,
and BS, is S;;10,;S,.
:nformally, the execution of a matching pair of bracketed
sections, say BS; and BS,, will proceed by executing S,
and S, in parallel, then by performing the rendezvous
10,parlO,, and finish with the parallel execution of S,
and S,. Since S, and S, (S, and S,, respectively) do not
contain any IO commands (3.1.e) and do not share any
variables (3.1.iii), the effect of their parallel execution
will be the same as their sequential execution (in any
order) and so the usual sequential proof rules can be
used. R7 uses the arbitrarily chosen execution order of
S1585 (S2554).
R8. Parallel composition

Vi, 1 < i<n: local proofs {p;} T; {q;} cooperate

{prAN ... A\p, AGI} T, par...par T,{g, A ... A g, A GI}

provided no 7; contains nested IO commands.
R9. Auxiliary variables

{p}Pr'{q}
{p}Pr {q}

where xeAV = > x¢FV(q), and x only appears in Pr’
either in assignments which have x (or yeAV) as the target
variable, or as an actual or formal in parameter; Pr is
obtained from Pr’ by deleting all such assignments and
parameters.
R10. Substitution

{p} Pr(q)

{ple/x]} Pr {g}
provided x ¢ FV(q, Pr).

R11. Transformation

{p} T’ par...par T,/ {q}
{p} T, par .. .par T, {q}
where T;" is T; transformed (as in 3.1(d)) to remove all

nested IO commands, and g contains no reference to any
formal parameter.

4. EXAMPLE OF USE

The axioms and proof rules may be divided into three

groups:

Al-A4, R1-RS are used to construct local proofs,
and the premises of R6 and R7;

R6-R8 are used to combine the local proofs
and derive a conclusion about the
program as a whole;

R9-R11 relate, back to their original versions,

programs that have been altered (by

the addition of auxiliary variables,

or the removal of nested IO com-

mands) to their original versions.
Thus, given an Ada (subset) program, the general order
of procedure is as follows.

(1) Transform the program to remove any nesting of
I0 commands.

(2) Add auxiliary variables, if necessary, and bracket
the resulting program.

(3) Construct local proofs and the global invariant GI.

(4) Establish cooperation conditions (use R6 and R7).

(5) Draw an overall conclusion about the transformed
program that includes auxiliary variables (use R8).

(6) Remove auxiliary variables and draw a final
conclusion for the transformed program (use R9 and
R10).

(7) Use R11 to establish that this result holds for the
original program.

We exemplify use of the proof system with a program to
partition the union of two disjoint non-empty sets of
integers, S” and L”, into two subsets S’ and L’ such that
|S| =187, IL'|=|L"], S’UL"=S8”UL” and every
element of S’ is smaller than any element of L’. This
problem, with a CSP solution, is given in Ref. 5 and
attributed to Dijkstra. Assuming the availability of
obvious set operations max, min, U (union), —, the
program consists of the following two tasks.

task body SMALL is

S:set_of integer: = S”;

maxS, minL:integer,
begin

maxS: = max(S);

LARGE.GETS (maxS);

S:=8—maxS,
LARGE.GETL (minL);
S:=SUminL;

maxS : = max(S);

while maxS > minL loop
LARGE.GETS (maxS);
S:=S—maxS,
LARGE.GETL(minL),

:=SUminL;

maxS : = max(S),

end loop;

end;
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task body LARGE is
L:set_of integer: = L”;

begin
accept GETS (bigS: in integer) do
L:=LU bigs,
end;

accept GETL (littleL: out integer) do
littleL : = min(L);

L:=L — littleL;
end;
loop
select
accept GETS(bigS': in integer) do
L:=LU bigs,;
end;

accept GETL (littleL: out integer)
do littleL : = min(L);
L:=L — littleL;
end;
or terminate;
end select;

end loop;
end;

We claim that, if the program terminates, then the final
values of S,L satisfy the requirements for S’,L’.
Informally, task SMALL passes maxS, the largest
element of S, to task LARGE in return for minL, the
smallest element of L, until maxS < minL. For conveni-
ence, we have set operations performed in the bodies of
the GETS, GETL accept statements; in practice the tasks
would probably be coded so that these operations were
executed outside a rendezvous.

To prove the claim, using our system, we shall need to
introduce auxiliary integer variables AS, AL, to indicate
precisely when minL is the smallest element of L, and to
ensure that the cooperation conditions are satisfied for all
matching bracketed sections, including those that match
syntactically but never interact in practice (e.g. the first
accept GETS in LARGE and the call to LARGE.GETS
in the loop of SMALL). Hence, we arrive at the following
annotated program, assuming |S”|=mn, |L’|=m
(n,m > 0):

task body SMALLI is
S:set_of integer: = S”;
hS:integer: = 0; maxS, minL:integer;
begin

{ISlI=n AWS=0AS=S" A max(S)e S}

maxsS : = max(S);
{IS|=n A hS =0 A maxSe S}

< LARGE!.GETS(maxS), BS1

{|S|=n A maxSeS}

S:=8— maxS;
{IS|=n-1}

hS:=1; >
{ISl=n—1AKS=1}

< LARGEI.GETL(minL);

{IS|=n—1 A minL¢S}

S:=8UminL;
{IS|=n}

hS:=2; >
{S|=n A hS=2 A max(S)eS}

maxS : = max(S);
{p}, where p=|S|=n A hS =2 A maxSeS A
maxS = max(S)

while maxS > minL loop

BS2

{p A maxS > minL}
< LARGE!.GETS(maxS);
{IS|=n A maxSeS}
S:=S8—maxS;
{IS|=n-1}
hS:=3; >
{IS|=n—1AhS =3}
< LARGEI].GETS(minL);
{IS|=n—1 A minL¢S}
S:=SUminL;
{IS|=n}
hS:=2; >
{IS|=n A hS =2 A max(S)e S}
maxS : = max(S),
{p}
end loop;
{p A maxS < minL}
end; {p A maxS < minL}

task body LARGE]I is

L:set of integer: = L”; hL:integer: = 0;
begin

{ILl=mABRL=0AL=L")

BS3

BS4

< accept GETS(bigS: in integer) do BLI
L:=L U bigs,
end;
{IL|=m+1}
hL:=1; >
{{Ll=m+1AKL=1}
< accept GETL (littleL: out integer) do BL2

littleL : = min(L);
L:=L —littleL;

end;
{IL| = m}
L.=2;, >
{q}, where g=|L|=m A hL =2
loop
{q}
select
{q}
< accept GETS(bigS: in integer) do BL3
L:=LU bigs,
end;
{IL| =m+1}
hL:=3; >

{ILl=m+1 A hL = 3}
< accept GETL (little;L: out integer) do BL4
littleL : = min(L);
L:=L — littleL;
end;
{IL] =m}
hL:=2; >
g}
or {g} terminate;
end select;
{4}
end loop;
@}
end; {g}
The global invariant, GI, is
SNL=OASUL=S"UL"AhS=hL A
hS =2 => minL < min(L).
The local proofs are constructed by a straightforward
application of A1-A4, R1-R5; each local proof refers
only to variables from the appropriate task, and no
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variable free in GI alters outside a bracketed section.
Hence the local proofs cooperate, provided that

{pre(BS,) A (BS,) A GI} BS, par BS, {post(BS,) A
post(BS,) A GI} 4.1)

holds for all matching bracketed sections, i.e. BS1-BL1,
BS1-BL3, BS2-BL2, BS2-BL4, BS3-BL3, BS3-BLl1,
BS4-BL4, BS4-BL2. (4.1) holds trivially for BS1-BL3,
since

(hS =0 AhL =2 A hS = hL) = false,

and similarly for BS2-BL4, BS3-BL1, BS4-BL2.
Now consider BS1-BL1. Clearly,

{IS|l=nAhS=0AmaxSeSA|Ll=mAhL=0
AN L=L"A GI A bigS = maxS}

L:=LUbigS;{pl}
where

=|S|=nAhS=0AmaxSeS A |L|
=m+1AhL=0AmaxSeL A (S—maxS) N L
=0ASUL=S"UL"AhS=hL ANhS=2
= > minL < min(L).
Hence, by R6,
{pre(BS1) A pre(BL1) A GI} LARGE.GETS(...)
par accept GETS. . .{pl}

Clearly, {p1} S:=S—maxS; hS:=1; hL:=1;
{post(BS1) A post(BL1) A GI}. Hence, by R7, (4.1)
holds for BS1-BL1, and similarly for BS3-BL3.

Now consider BS2-BL2. Clearly,

{IS|l=n—1ARS=1A|Ll=m+1 AhL=1
ASNL=PASUL=S"UL"Amin(L)eL}
littleL : = min(L);
L:=L —littleL; {ql}
where
gl =|S|=n—1AKS=1A|L|=
ARL=1ASNL=0ASULU {littleL} =
A littleL < min(L) A littleL ¢ S.
Hence, by R1 and R6,
{pre(BS2) A pre(BL2) A GI}
LARGE.GETL(...) par accept GETL. ..
{q1 [minL/littleL]}

Clearly, {ql[minL/littleL]; S:= SUminL; hS:=2;
hL: = 2; (post(BS2) A post(BL2) A GI}. Hence, by R7,
(4.1) holds for BS2-BL2, and similarly for BS4-BL4.

We have now shown that the local proofs cooperate.
Let

pP2=|S|=nAhS=0AS=S" AmaxSeS
ALl=mAhRL=0AL=L"AGI,

R2=|S|=|S"|A|IL|=|L"|ASUL=S"UL"
ASNL=0A max(S) < min(L).

By R8, {p2} SMALL1 par LARGEI
<minL A g A GI},
and this post-condition implies ¢2, as required.

S// U L”

{p A max$S

By R9, we may remove the assignments to AS and hL in
SMALL1 and LARGEL.
By RI10, substituting AS = 0, AL = 0 in p2 yields

(SI=nAS=S"A|Ll =

L=L"ASNL=pASUL=S"UL"}
SMALL par LARGE
{q2}.

Hence, if the program terminates, the final values of S, L
do satisfy the requirements for S’, L’.

5. DEADLOCK DETECTION

The deadlock detection rules and definitions of our
paper!! (which are based on those of Ref. 5) need no
revision; we repeat them, with slight changes of
terminology, as follows.

An Ada (subset) task is blocked if it is waiting to
execute

(1) an entry call or an accept statement, or

(ii) a selective wait statement.

The corresponding set of communication capabilities of a
blocked task is then as below.

(i) the bracketed section, BS, surrounding the entry
call or accept statement,

(ii)) a subset of {any terminate alternative} U {the
bracketed sections surrounding the accept statement(s) of
the selective wait, S}. The subset consists of those
members whose guard, b;, 1 < i < m, is true, where m is
the number of alternatives in S Let A (< {1,...,m})index
these members. As we are only concerned with programs
that terminate normally, 4 # 0.

A terminated task, 7, also has a communication
capability, namely

(iii)) acknowledgement of termination.

We associate assertions with these possible sets of
communication capabilities as follows:

(i) pre(BS),
(i) pre(S) A (Ajeab;) A (AGgayrb;)
(I <j<sm,

(ii1) post(T).

If all tasks T;, 1 < i< n, of a program are blocked or
terminated, then we may define a corresponding n-tuple
of sets of communication capabilities, one set per task,
and a corresponding n-tuple of assertions. We call the
conjunction of elements of the n-tuple of assertions a
potential deadlock formula if, considering the n-tuple of
sets of communication capabilities, the following clauses
apply:

(a) the sets of communication capabilities do not
contain a matching pair of bracketed sections,

(b) not all sets of communication capabilities include
either a terminate alternative or an acknowledgement of
termination.

Theorem 5.1

Given a proof {p}Pr{q} with global invariant GI, Pr is
deadlock-free (relative to p) if, for every potential
deadlock formula PDF, 1(PDF A GI) holds.

Proof. See Mearns.*?

Before illustrating the use of this theorem, we define,
for any given program, the assertion ALLEND to be that
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assertion which is true iff all tasks in the program have
terminated or are capable of executing a terminate
alternative. (ALLEND is formally defined in Ref. 42.)
ALLEND may only appear in a proof outline as an
implicit guard on a terminate alternative, or as part of a
task’s post-assertion. Since ALLEND is clearly global,
this definition appears to violate the rule that assertions
in a task’s proof outline may only refer to that task’s local
variables. However, this rule is only formulated because,
in general, one task cannot make assumptions about
another task’s variables — but, in the case of a terminate
alternative, the semantics of Ada guarantee that a
terminate alternative will only be executed if ALLEND
(and any explicit guard) is true.

As an example of the use of theorem 5.1, and the need
for ALLEND, consider the set partition of section 4. For
a potential deadlock formula, PDF, that corresponds to
SMALL] terminated or waiting to execute a call to
LARGE1, and LARGE! waiting at an accept or selective
wait statement, 1(PDF A GI) clearly holds, e.g.

post(SMALL1) A pre(BL4) A GI
=>hS=2AhL=3AhS=hL
= > false,

and similarly for LARGE1 terminated and SMALL1
waiting to execute BS1, BS2 or BS4. However,
pre(BS3) A post(LARGE1) A GI does not immediately
lead to a contradiction, although, clearly, such a situation
cannot occur in practice. In order to handle this case, it
is necessary to strengthen pre(terminate) and
post(LARGE]1) top (9 A ALLEND}; this does not affect
the partial correctness proof given in section 4. Since
pre(BS3) clearly implies 1ALLEND, we have

pre(BS3) A post(LARGE1) = > false,

and we may conclude that the set partition program is
deadlock-free.

We briefly discuss two other aspects of the proof
system.

(i) Failure. The above treatment of deadlock deals
with program failure due to a TASKING_ERROR. We
may handle program failure caused by PROGRAM_
ERROR (when due to all alternatives in a selective wait
being closed) by adding

p=>bB,V ... Vb,,,)

to the premise of RS5.

(ii) Non-terminating programs. Some concurrent pro-
grams, e.g. (components of) operating systems, are not
designed to terminate. We have stressed that our system
is only for reasoning about partial correctness. However,
we claim that the system may also be used to verify certain
properties of deadlock-free programs that contain tasks
of the form:

begin

loop

S;

end loop;
end;
If all tasks cooperate, then we may conclude that, if and
when statement S is executed, then post(S) is true. (See

lemma 5.3.10 in Ref. 42.) However, the proof system
cannot deduce whether S will, or will not, eventually
execute.

6. SOUNDNESS AND RELATIVE
COMPLETENESS

A proof system for a programming language should be
sound, i.e. every formula that may be derived using the
system is true in some sense, and relatively complete, i.e.
every formula that is true in some sense may be derived
using the system. (These definitions are somewhat naive,
but will suffice for the purposes of this section; further
discussion and references may be found in Apt.! Note that
in order to prove that a proof system possesses these
qualities, it is necessary to have a formal definition or
semantics of the programming language in question.

The proof that our proof system is sound and relatively
complete, together with the semantics used, is given in the
thesis of Mearns.*> The proof is based on the formal
justification for the AFdR CSP proof system as given by
Apt,? which in turn follows the general line of reasoning
behind the corresponding results in the thesis of Owicki.4®
The main difference is in the style of semantics used: both
Apt and Owicki give an operational semantics in terms
of a state transition relation, whereas Mearns’ thesis
employs a denotational semantics. (In the denotational
semantics approach, language constructs are considered
to denote familiar mathematical objects; an operational
semantics views the meaning of a language construct in
terms of the changes that it would induce in some
hypothetical machine.)

There is, as yet, no firm consensus of opinion as to how
best formally to define concurrent language constructs.
The ‘official’ formal definition of Ada?® takes a
denotational approach, but does not give the full
semantics of the tasking constructs. In Mearns’ thesis,*?
the semantics is based on the theory of processes, or
objects constructed from sets of sequences, as developed
by de Bakker and Zucker.1®

7. RELATED WORK

In this section, we compare our proof system with that
of Gerth and de Roever?? (hereafter referred to by GdR),
which is the only other Ada tasking proof system known
to us. Like our system, GDR is based on the AFdR CSP
proof method.® The most significant difference is that an
accept statement of the form

< accept E(...)do S;; > S; < S,;end; >

is bracketed as shown, where S, and S, contain no IO
commands, and that a ‘canonical’ proof outline for
accept statement bodies is required in local proofs. Our
communication and formation rules (R6 and R7) are
replaced by a single ‘rendezvous’ rule, which permits the
cooperation conditions for matching entry calls/accept
statements to be verified. The premises of the rendezvous
rule seek to establish that, after the start of a rendezvous
involving an accept statement of the above form,
pre(S)[*] and GI and pre(‘entrycall’) hold, where [*]
indicates substitution of actual for formal parameters;
similarly, before the end of the rendezvous, post(S)[*] and
GI and pre(‘entrycall’) are assumed. With certain
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restrictions on the parameters, pre(S) and post(S) may
be taken from the local proof, and S not considered
further in the rendezvous rule premises.

The obvious advantage of their approach is that nested
IO commands are handled directly: an accept statement
can always be bracketed as above, because S, and S,, in
general, need only contain an assignment to an auxiliary
variable; hence, nested bracketed sections never occur in
their system. The provision of a canonical proof outline
for an accept body also saves some work if two or more
calls match that accept, but the amount of verification
saved is probably not as much as might appear at first
sight, since the proofs of cooperation for a given accept
in our system are likely, in practice, to be quite similar
to each other. We also feel that our bracketing maintains
the idea of a rendezvous as a single unity more than their
bracketing does, although, of course, theirs emphasises
that a rendezvous consists of two inter-task communica-
tions. (Hence, the Ada rendezvous may easily be
modelled in CSP). When producing Ref. 11 we were
convinced that nested IO commands would very rarely be
used in practical examples, since the first calling task is
certain to be delayed until all the inner rendezvous have
been completed; however, some situations can be
modelled rather elegantly with nested accept statements —
consider the following example (due to J. R. Abrial):

task body marriage_agency is

begin
accept man (m: in ...; wife: out ...) do
accept woman (w: in ...; husband: out ...) do
if introduce (m, w) = fall_in_love
then wife : = w; husband : = m;
else wife : = no_luck; husband: = no_good;
end if;
end;
end;
end;
Of course, this example could have been written with
woman accepted before man, or even with both cases as
alternatives of a selective wait!

GdR also formalises the notion of ‘calling chains’ that
may arise with nested IO commands, and treats general
safety properties, including freedom from deadlock.
Termination and absence of failure is discussed.
Soundness and relative completeness of the system are
indicated by Gerth:?! the method adopted is to translate
the Ada subset considered into (an extension of) CSP, and
then to show that a proof of an Ada program in the GAR
system implies the existence of a proof of the translated
program in the AFdR system, and vice versa. Since the
AFdR system is sound and relatively complete, then so
is the GdR system.

8. CONCLUSIONS

An axiomatic proof system for reasoning about the basic
Ada tasking constructs has been presented. The system
covers the partial correctness and freedom from deadlock
of concurrent Ada programs, and has been proved sound
and relatively complete against a denotational semantics.

The justification of our proof system has demonstrated
that an earlier version, which was apparently correct, was
actually unsound. We suggest that no proof system

should ever be used in practice until it has been formally
justified. Of course, in the absence of a full official formal
definition of Ada, there is no guarantee that our
semantics corresponds with the intentions of the authors
of the Ada Language Reference Manual (LRM), or that
it will agree with a particular compiler writer’s
interpretation; however, this is an argument for the more
widespread use of formal definitions, rather than for the
rejection of proof systems. Our semantics appears to
agree closely with other formal interpretations of the
LRM chapter on tasking, for example see Lovengreen, 36
Li.3

Subject to the above photograph, we hope that this
work will be of practical use in the production of reliable
Ada software. Our system has the usual advantages and
disadvantages of formal proof systems, the use of which
seems to generate some emotional heat, particularly
amongst their detractors (see, for example, Merrill*® for
a discussion of this topic). However, for concurrent Ada
programs, some of which will very likely have disastrous
consequences should they fail to function as expected, we
do not accept that having the option of using a proof
system such as ours can be anything but beneficial. We
fully endorse the approach of Gries?* to the subject of
formal program development: ‘Use theory to provide
insight; use common sense and intuition where it is
suitable, but fall back on the formal theory for support
when difficulties and complexities arise.’

Our earlier paper!! included tentative proposals for
dealing with the Ada ‘real-time’ constructs. We have not
pursued these ideas any further in this paper, since our
semantics do not extend to these constructs. To our
knowledge little work has been done to date in this area,
although recently some interesting results have been
achieved by Shyamasundar et al.,*® where a denotational
semantics has been produced for a CSP-like language
with real-time facilities. As yet, a proof system for such
is not available.

We conclude by noting that the most tedious part of
using the proof system is checking the cooperation
conditions. Apt! indicates how to reduce the number of
cooperation checks needed when verifying a CSP
program, by first performing a ‘static analysis’ of the
program. The basic idea is to consider all possible
sequences of communications that can occur if Boolean
guards are not interpreted. This identifies matching
bracketed sections that can never, in fact, be synchronised,
and which need not be considered in the proof. The
analysis may also be used to determine possible con-
figurations that are deadlocked. Taylor®! independen-
tly presents a general-purpose algorithm for performing
a similar static analysis of concurrent programs (exem-
plified by Ada). We expect that these results could readily
be adapted to our proof system.
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APPENDIX A. PROGRAM PROOF
SYSTEMS

In this appendix we briefly review program proof systems
in general, thereby placing our proof system in a wider
context. Specific comparison with another Ada tasking
proof system (Gerth and de Roever)?? was given in
section 7. Note that we do not claim our system is a
method for developing Ada tasking programs; neither do
we review work concerned with the automation of
program verification.

The seminal paper for research into verifying the
behaviour of computer programs is Floyd,?® which intro-
duces inductive or intermediate assertions (predicates)
that are associated with every stage in the flow of control
through a program. An assertion characterises the
relation between program variables at that point in the
program’s execution; assertions for adjacent stages are
themselves related according to whether an assignment or
a test takes place; programs are usually represented as
directed graphs. See Manna®’ for a full description.

Probably the best-known approach to program
verification is the axiomatic method of Hoare,2¢ which
gives a proof system for reasoning about triples {p}S{q},
where p, q are assertions (over program variables) and S
is (the text of) a program. The intuitive meaning of
{p}S{q} is: if p holds before execution of S, and S
terminates, then g holds. The proof system consists of
axioms and rules of inference for program statements and
combinations of statements. Hoare logic has been used
for a large variety of programming languages: see Apt!- 3
for an extensive survey of published results concerning
sequential and non-deterministic constructs.

Recall from section 6 that proof systems should be
sound (every provable formula is true with respect to some
semantics) and relatively complete (every true formula,
with respect to that semantics, is provable). Clarke!?
identifies certain language constructs (e.g. recursive
procedures with procedure parameters and static scope of
identifiers) for which it is impossible to obtain a sound
and complete Hoare system. However, axioms and rules
for the most common sequential language constructs are
all proved sound and complete against a denotational
semantics by de Bakker.!5

A proof system may deal with partial correctness of a
program (if assertion p holds initially, then assertion g
holds if the program terminates) or total correctness (if
p holds initially, then ¢ holds finally and the program
terminates). In the paper?® of Floyd, termination of a
program is proved by showing that each step decreases
the value of some expression, whose values are members
of a well-founded set (a partially ordered set that contains
no infinite decreasing sequence). The same basic idea may
be applied to Hoarse systems. In general, total cor-
rectness of a program may be shown either in two steps
(by using a partial correctness system plus a method of
proving termination) or in one step (by using a total
correctness system whose rules are formulated to take
possible non-termination into account). Following
Burstall,? Manna and Waldinger4! propose intermittent
assertions which may be associated with points in a
program text; such an assertion is true at some time (not
necessarily always) when control reaches its correspond-
ing point. So ‘sometime ¢ at end’ means ‘eventually
control will reach the end of the program and ¢ will hold”;

if this assertion is true, and ¢ is the desired post-condition,
then the program is totally correct. Gries?? disputes the
claim in Ref. 41 that intermittent assertions are more
‘natural’ than invariant ones; however, the use of
temporal logic (a formalism for abstract reasoning about
time, and by which intermittent assertions can be
formalised) in total correctness systems is growing more
widespread, particularly where concurrency is involved.

For Hoare systems, Harel?® give a single rule for the
total correctness of while loops. He also shows that the
resulting proof system is sound and complete in an
arithmetical interpretation, i.e. one whose domain
includes the natural numbers, the standard Peano
functions and the ability to decide if a given symbol
represents a natural number or not. (There is no
non-trivial Hoare system for total correctness that is
sound in all interpretations.! Harel’s proof system is
derived from dynamic logic, which is similar to temporal
logic in that its augments the classical ‘static’ predicate
calculus operators with additional primitives. These latter
primitives enable expression of assertions such as
[alp — ‘property p holds at the end of all possible
executions of the program a’ or < a > p — ‘property p
holds at the end of some possible execution of program
a’. Dynamic logic may also be seen as an extension of
infinitary logic, which is first-order logic that permits
countable disjunctions and conjunctions of formulae. A
similar idea is exploited in algorithmic logic (see
Salwicki*® for references).

Dijkstra'® introduces, for a language construct S, a
predicate transformer, which is a rule describing how to
derive the weakest pre-condition that guarantees a given
post-condition and termination of S. Other researchers
have studied his rules, particularly those dealing with the
total correctness of (bounded) non-deterministic con-
structs: see Harel,?> for example, where dynamic logic is
used to define a semantic model, and Back,® where the
predicate transformers are expressed in an infinitary
logic. Flon and Suzuki'® present a total correctness proof
system for parallel programs in terms of predicate
transformers, after recognising that a parallel program
has an equivalent non-deterministic form. They show the
system is sound and relatively complete by demonstrating
that their predicate transformers (i.e. weakest pre-
conditions) are, in a semantic model, extremum fixed
points of continuous functions over predicates; soundness
and relative completeness then follow directly from two
general metatheorems concerning predicate transformers
and proof rules.

We now consider proof systems that do not involve the
transformation of programs, and which are designed
explicitly for parallel languages. A pioneering paper is
Owicki and Gries.*” Processes executing concurrently and
sharing global variables are first considered in isolation,
and Hoare logic used to deduce a post-condition for each
process; provided the individual proofs are proved to be
‘interference-free’ (execution of one process does not
invalidate the proof of another process), then the
post-conditions may be combined to give the overall
effect of the concurrent program. Freedom from
deadlock is also provable in their system. A similar
approach, using cooperation tests for combining proof
outlines, is used in the AFdR CSP proof system,®
introduced in section 2, and in the CSP proof system of
Levin and Gries.®* In CSP, processes-do not share
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variables, but Levin and Gries permit shared auxiliary
variables (rather than using a global invariant as in the
AFdR system); thus their approach requires a sequential
proof for each process, a ‘satisfaction’ proof (which is
similar to showing cooperation in AFdR) and a
non-interference proof similar to that in the Owicki and
Gries approach.

Other proof systems for CSP are those of Misra and
Chandy** and Zhou and Hoare,>* which both utilise the
notion of a trace, or record of values communicated to
or from a process. In Ref. 44 assertions are primarily over
traces, which may be used as auxiliary variables, if
necessary, there is no explicit concept of an auxiliary
variable or a global invariant. (Cf. Clint,'* who states that
some form of auxiliary or history variable is indispensable
for proofs of certain types of program; in particular,
those that accept messages from an outer environment.)
In Ref. 54 processes are semantically defined in terms of
traces, and the proof rules shown to be sound against
this model. Both Refs 44 and 54 permit the formal
development of networks of processes, but do not deal
(directly) with deadlock freedom. Misra and Chandy
claim that freedom from deadlock may be shown by
combining the proof system with earlier work by the same
authors; Hoare?® extends the work in Ref. 54 to a total
correctness system in which the absence of deadlock may
be proven, and Zhou*? shows that this system is
consistent with an operational model. Zhou, in Ref. 53,
also develops a similar notion to predicate transformers
for communicating processes — the weakest environment,
we, such that a process P satisfies an assertion R iff we
(P, R) is true.

Lamport3% 31,32 studies proof systems for shared
variable parallel languages. In Ref. 30 he introduces the
terms safety and liveness to refer to properties of
multiprocess programs. A safety property states that
something (bad) will not happen, and a liveness property
states that something (good) will happen. Partial
correctness and absence from deadlock are generally
taken to be safety properties (that do not depend on
whether execution is fair or not), whilst termination and
eventual execution of a statement (absence of livelock) are
liveness properties (that do depend on fairness). In Ref.
30 processes are represented as graphs with assertions
attached to arcs. Safety properties are proved using a
similar idea to Ref. 47; to prove liveness it is necessary
to find suitable assertions such that, if a process’s ‘ token’
(indicating where local control resides at any time) does
not eventually move from an arc, then a contradiction
arises. Unfortunately, proofs of liveness properties are
very hard to construct in this system. In Ref. 31 Lamport
eschews assertions in favour of two relations — ‘ precedes’
and ‘can influence’ - between non-atomic operations,
and uses axioms for these relations to prove a mutual
exclusion algorithm correct; in Ref. 32 he reverts to
assertions, that may include ‘location counters’ (e.g.
‘after S” if control resides after statement .S), and gives
rules for proving safety properties; and in Owicki and
Lamport?® the underlying ideas on liveness in Ref. 30 are
combined with a formal treatment of location counters
(using temporal logic). In Ref. 33 Lamport provides a
good overview of his use of temporal logic in program
specification and verification.

The best-known exponents of temporal logic (for
program verification) are Manna and Pnueli, who

interpret temporal formulae over infinite, linear and
discrete sequences of states. In Ref. 38 they consider
concurrent programs that communicate via shared
variables. A semantic model of interleaved atomic actions
is defined, and various safety and liveness properties of
programs are expressed using the formalism of temporal
logic and the concept of location counters. In Ref. 39 they
present a proof system for proving these properties of
parallel programs. It consists of three parts:
(i) ‘pure’ temporal logic axioms and rules,

(if) domain axioms (that axiomatise the data types on
which the program operates),

(iii) program axioms (that may be considered as giving
the ‘temporal semantics’ of the programming language).
In Ref. 40 the program axioms are generalised to
‘interface’ with any concurrent programming language
through the concepts of atomic transitions, justice and
fairness. By defining these concepts for a given language,
a relatively complete proof system is easily obtained. The
method is exemplified with a shared variable language
and CSP. Recently, compositional (and hence syntax-
directed) proof systems have been developed in the
temporal framework. The papers® 1° of Barringer et al.
demonstrate, in a general style, how compositional
temporal proof systems can be obtained for parallel
languages based on shared variables and message-based
communication mechanisms.

We do not comment on the relative merits, or
otherwise, of these concurrent proof systems. An
extensive survey and comparison of non-temporal
approaches is given by Barringer.® As with the semantics
of concurrency, there is as yet no consensus as to the best
method of verifying parallel programs, although it is
generally true that processes communicating via shared
variables are more difficult to reason about than pro-
cesses that utilise explicit message-passing commands.

APPENDIX B. CRITIQUE OF THE
ORIGINAL SYSTEM

As mentioned in the introduction, our original proof
system!! was published before it was proved to be sound
and (relatively) complete. The justification for this was
that it was firmly based on the AFdR system, for which
the proofs of soundness and completeness (by Apt?) did
not appear until later; it was anticipated that these proofs
could easily be adapted to show that our original system?!
was sound and relatively complete. Essentially, it is, but
the paper does have a number of informal statements
open to misinterpretation, omissions and errors that can
lead to inconsistency. Three examples follow.

(i) (Due to Rob Gerth.)) Given the following

annotated task bodies:
task body 71 is task body 772 is

begin h:integer: = 0;
{true} begin
<T2.E;> {h =0}
end; {true} < accept E do
h:=1;{h=1}
< T3.E1); >
h:=0;{h=0}
end; >
end; {h = 0}

task body 73 is
y:integer;
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begin
{true}
< accept E (x: in integer) do
x=0y:=x;{y=0}
end; >
end; (y = 0}

we may take GI£h=0 and ‘prove’ that {true}
TlparT2parT3 {y = 0}, which is obviously incorrect. It
was intended that such an example would require that
GI2h=0vVv h=1, but this intention is not stated
formally.

(ii) The ‘communication out rule’ of [11] is

{Q}s{R}

{0}
T.E(x) | accept E (y: out...) do s; end;

{R A x=)f}

where ‘ yf means the final value of a formal parameter y
prior to reaching the end of the accept statement’. As well
as being clumsy, the rule omits a necessary condition for
soundness, namely FV(R) N x = @.

This omission may be exemplified by the two task
bodies:

task body 7'l is task body 72 is

x:integer: =0; begin
begin {true}
{x =0} < accept E (y: out integer) do
< T2.E(x); > y:=1;
end; end; >
x=0Ax=1} end; {true}
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