Programming a Bounded Buffer using the Object and Path
Expression Constructs of Path Pascal

R. D. DOWSING anD R. ELLIOTT*

School of Information Systems, University of East Anglia, Norwich NR4 7TJ

We present a number of examples of the programming of a bounded bufffer using the object and path expression
constructs of the language Path Pascal, taking these examples as the basis for an examination of the methods of use of
Ppath expressions as a means of specifying synchronisation requirements for concurrent processes. We compare objects
and path expressions with monitors and conditions, and consider the derivation of path expressions and of informal
correctness demonstrations for them. Also considered is the strategy of ‘ distributing’ the synchronisation requirements
for a structured object to its components, and its effects on concurrency of access to the object, on its indeterminacy of

behaviour, and on implementation costs.

Received February 1985

1. INTRODUCTION

It may plausibly be claimed that the central questions in
the design of multi-process programs and of multipro-
gramming languages turn on the problem of disciplined
synchronisation and resource sharing among a set of
asynchronous concurrent processes. One of the simplest
and most commonly considered multiprogramming
tasks is that of programming a bounded buffer for use as
a means of communication between distinct ‘producer’
and ‘consumer’ processes executing concurrently. In the
following we present and discuss a number of possible
ways of programming such a buffer, using for the most
part the object and associated path expression constructs
of the multiprogramming language Path Pascal,’:3 but
using also, for the purposes of comparison, the ‘monitor’
construct and the associated ‘condition’ variables
described by Hoare.?

2. PATH PASCAL

Path Pascal'-? is a multiprogramming language based on
Pascal but with extensions for the definition and use of
processes and objects. Processes may be declared, like
procedures and functions, as program units; an individual
instance of a process thus declared may then be both
created and initiated by a statement which is syntactically
indistinguishable from a procedure call. Processes
created by these means run in parallel with each other
and with the main program itself. A Path Pascal object
is comparable to the monitor described by Hoare? in that
it is an encapsulated shared data structure with an
associated set of operations (entry routines in Path
Pascal) which provide the only permissible means of
access to the structure by the surrounding processes.
However, whereas synchronisation between operations
on a monitor is achieved by a general mutual exclusion
discipline together with primitive signal and wait
operations on special condition variables, in Path Pascal
all synchronisation constraints on an object’s operations
are specified by the so-called path expression associated
with the object, which mentions the operations by name
but which is textually separate from the code defining

* To whom correspondence should be addressed.

them. A path expression can express constraints on, inter
alia, the order in which operations are performed and the
degree of concurrency among operation performances.
The following section describes path expressions in
greater detail, but we summarise here the distinctive
features of the method of specifying synchronisation
constraints with path expressions.

(1) It emphasises in the program code a separation
between the functionality of an operation and the
synchronisation constraints on that operation.

(2) It permits the definition of synchronisation
disciplines which, in some respects, are more liberal than
those permitted by the monitor: in particular, it is
possible for several operation performances by processes
on a single object to proceed concurrently.

(3) It provides a natural means of expressing synchro-

nisation constraints arising from the need to maintain the
integerity of shared resources and data.
In Path Pascal the object is a category of type, like the
array or record, and thus object variables may be created
statically using ordinary variable declarations, or
dynamically, using the new allocation routine. For
information on Path Pascal not covered in this or in the
following section, the interested reader is referred to Ref.
1 or 3.

3. PATH EXPRESSIONS

We present in this section an informal outline of the
syntax and semantics of path declarations in Path Pascal,
which we refer to throughout as path expressions. Our
treatment is somewhat novel, being based throughout on
the (intuitively appealing but formally undefined)
concept of operations associated with an object, whereas
the semantics given for path expressions in Refs. 1 and
3 are defined operationally, in terms of semaphores. We
restrict the discussion here to those features of path
expressions of which use is made in the sequel.

The basic operations of an object are its entry routines,
that is its externally accessible procedures, functions, and
processes. Composite operations of two kinds, selective
and sequential, may be specified for an object, defined in
terms of its basic operations and of other composite
operations associated with it. Given operations, basic or

THE COMPUTER JOURNAL, VOL. 29, NO. 5, 1986 423

¥202 I4dy 60 U0 1senb Aq G61981/€ZH/G/62/2101e/|ulwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

R. D. DOWSING AND R. ELLIOTT

composite, p,, P,,..., Pm, associated with the object, then
the construct
P1s Pas -5 Pm

specifies a selective composite operation associated with
the object, while the construct

P1sD2s-3Pm

specifies a sequential composite operation associated with
the object. Thus all composite operations are ultimately
constructed from the object’s basic operations. In
complex cases. ‘;’ (regarded as an operator) binds more
tightly than *, (similarly regarded): parentheses may be
used in the usual way to override these priorities, or may
be introduced simply to make them explicit. Thus, for
example, the construct

P1:D2 D3

specifies a selective operation with a sequential compo-
nent, namely

(P15 P2): s
rather than specifying a sequential operation with a
selective component, for the specification of which the
use of parentheses would be mandatory:

P15 (P2, P3)-

Any operation p, basic or composite, possibly itself a
component of some composite operation, may have
specified a concurrency constraint associated with it,
indicated by a bracketing of the form

K:(p),

where K is some positive integer constant.

A path expression consists of an operation specification,
possibly including embedded concurrency constraint
specifications, enclosed in the brackets

path ... end.

Path Pascal requires each object type specification to
include a path expression, which is required to mention
each of the object’s basic operations (entry routines) at
least once.

The semantics of path expressions are based on the
notion of a performance of a composite operation. For
a selective operation

pl’p2s 1pm

each performance of any component operation p;
(i=1,2, ..., m) constitutes a single performance of the
whole composite operation. A performance of the
sequential operation

P1:P2s - Pm

consists of a complete performance of p,, followed by a
corresponding complete performance of p,, and so on, the
whole sequential operation performance being completed
with the completion of the corresponding performance of
Pm- In this context, for any positive integer n, the nth
performances — according to the temporal ordering from
the time of the object’s creation — of each of the
component operations p,, p,, ..., P,, are considered to
correspond to each other (but to no other performance of
any of these operations).

There are two kinds of synchronisation constraint
which an object’s path expression may impose on the
performance by processes of its operations; as follows,

424 THE COMPUTER JOURNAL, VOL. 29, NO. 5, 1986

(1) Sequencing Constraints. If operations p;, p; are
immediately successive component operations of some
sequential composite operation specified in the path
expression, that is, if the path expression includes the
fragment

e DisPj s

then each performance of p; is constrained to start after
completion of the corresponding performance of p;. (In
other words, each performance of an operation which is
a component of some sequential operation can only
occur as a legitimate part of some performance of that
sequential operation. Thus constraints of this kind may
be regarded as being implicit in the notion of a sequential
composite operation.)

(2) Concurrency Constraints. If the path expression
includes the specification of an operation p which has an
associated concurrency constraint specification

K:(p),

Then at most K performances of the operation p may be
simultaneously in progress at any given moment.

If the initiation of an attempted performance of one of
the object’s basic operations would give rise to the
violation of a constraint of either of the above
kinds — whether the constraint in question applies
directly to the basic operation itself or to some composite
operation of which it is a component — then the initiation
of the attempted performance is delayed until the
avoidance of all such violations can be guaranteed.

3. VERSIONS OF THE BOUNDED BUFFER

We first present the different versions of the program
code for the bounded buffer without comment, after
which we discuss their design and behaviour.

The program fragments which follow are all assumed
to be located in an environment in which the following
are defined:

— a positive integer constant N, representing the number
of ‘slots’ in the buffer;

— a type element, taken to be the type of the individual
data passing through the buffer;

— a subrange type range with the definition:

range = 1..N.

Each version defines a type called bounded buffer.
Version 1 is coded in a Pascal-like language with
monitors and conditions; all the others are coded in Path
Pascal.

Version 1 (after Hoare?)

bounded_buffer =
monitor
var
buf: array [range] of element;
inp, outp: range; nn: 0..N;
nonfull, nonempty: condition;
procedure append (x: element);

begin
if nn = N then nonfull .wait;
buf [inp]: = x;

inp:=inpmod N+1; nn:=nn+1;
nonempty .send
end;

¥202 I4dy 60 U0 1senb Aq G61981/€ZH/G/62/2101e/|ulwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

PROGRAMMING A BOUNDED BUFFER USING PATH PASCAL

procedure remove (var x: element);
begin
if nn = 0 then nonempty . wait;
x:= buf [outp];
outp:=outpmod N+1; nn:=nn—1;
nonfull . send
end;
begin {initialisation}
inp:=1;outp:=1;nn:=0
end

Version 2

bounded-buffer =
object
path N: (append; remove) end;
var
buf: array [range] of element;
inp, outp: range;
entry procedure append (x: element);

begin
buf [inp]: = x;
inp:= inp mod N+ 1
end;
entry procedure remove (var x: element);
begin

x:= buf [outp];

outp:= outp mod N+ 1

end;
init;

begin inp:= 1; outp:= 1 end
end

Version 3 (after Kolstad & Campbell!- 3)

— as Version 2, but with the path expression (‘path
...end’) replaced with:

path N: (1: (append); 1: (remove)) end

Version 4

We make use of an auxiliary type shared_index, with the
definition:
shared-index =
object
path 1: (next_ind) end;
var
i: range;
entry function next_ind: range;
begin
next_ind:= i,
ir=imod N+1
end;
init;
begin i:= 1 end
end
The main definition is then as follows:
bounded_buffer =
object
path N: (append; remove) end;
var
buf: array [range] of element,;
inp, outp: shared_index

entry procedure append (x: element);
begin
buf [inp .next_ind]: = x
end;
entry procedure remove (var x: element),
begin
x:= buf [outp .next_ind|
end;
{no explicit initialisation required in this version}
end

Version 5

We use auxiliary types shared_index. as defined for
Version 4, and single_slot, with the definition:
single_slot =

object

path 1: (store; fetch) end;

var

value: element;
entry procedure store (x: element);

begin
value:= x
end;
entry procedure fetch (var x: element);
begin
x:= value
end;
end
The main definition is then as follows:
bounded_buffer =
object

path append, remove end;
{i.e no restriction at this level}

var
buf: array [range] of single-siot;
inp, outp: shared_index;

entry procedure append (x: element);
begin
buf [inp .next_ind]. store (x)
end;

entry procedure remove (var x: element);
begin
buf [outp .next_ind).fetch (x)
end;

end

4. DISCUSSION OF DIFFERENT
VERSIONS OF THE BOUNDED BUFFER

Version 1

Version 1, using the monitor construct, is in essence the
same as that presented by Hoare.? It is noteworthy that
it is not possible to give for Version 1 an ‘equivalent’
coding in terms of the Path Pascal object, since even in
this simple case the monitor regime, involving relaxation
of the mutual exclusion rule for processes waiting on
condition variables, gives rise to a synchronisation
discipline whose dynamic complexity is too great for it to
be expressed in terms of path expressions.

Version 2

The most straightforward Path Pascal coding for the
buffer, suitable for use in an environment in which there

THE COMPUTER JOURNAL, VOL. 29, NO. 5, 1986 425

¥202 I4dy 60 U0 1senb Aq G61981/€ZH/G/62/2101e/|ulwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

R. D. DOWSING AND R. ELLIOTT

is a single producer and a single consumer process, and
which may be considered to be as close as Path Pascal
allows to the previous version, is given as Version 2.
Comparison of these first two versions highlights the two
most striking differences between programming with the
object/path expression constructs and programming
with the monitor/condition constructs.

(1) The use of the object/path expression constructs
admits the possibility of both producer and consumer
processes being simultaneously active within the buffer
object: an append operation accessing one slot of the
buffer and a remove operation accessing a different slot
are allowed to proceed concurrently with one another,
with neither imposing any delay on the other. The
performance of a buffer operation by a process is only
delayed when this is required for the maintenance of the
buffer’s overall functional integrity, that is, for the
producer when the buffer is full or for the consumer when
it is empty. The mutual exclusion rule for a monitor on
the other hand means that even when they are accessing
separate buffer slots, an append and a remove operation
must be forced to proceed in strict, temporally
non-overlaping sequence, achieved by delaying one or
other operation, if necessary.

(2) The use of an object with a path expression
effectively ensures the maintenance in the program code
of a clear distinction between, on the one hand, the
functionality of the object’s operations, that is the
specific manipulations they perform on the associated
data, and on the other hand the synchronisation
discipline imposed on these operations. Using these
constructs, each operation may be coded exactly as if it
were located in a single-process von Neumann program,
that is with reference solely to the required data
manipulations; the necessary synchronisation restrictions
are then expressed separately in the object’s path
expression. Use of the monitor construct, however,
requires not only the declaration of special ‘condition’
data and possibly other control data (such as nn, the
count of currently filled slots in Version 1), but also that
code performing appropriate manipulations on these
extra data be embedded at appropriate points in the code
of the monitor operations. (The other side of this
coin — which we mention, but do not discuss further — is
that the monitor construct allows the expression of more
complex, dynamically varying synchronisation require-
ments in the code of its operations: in Path Pascal such
requirements can only be expressed by the declaration —
internally to the object under consideration — of further
objects with suitable path expressions.)

The path expression of Version 2 may be derived
informally by considering the most basic requirements
for the buffer’s functional integrity in the context of an
abstract view both of its internal structure and of its
external relationships. That is, we characterise its
internal structure simply by saying that the buffer has a
fixed number of slots (N), each capable of holding a single
value, all such values being of the same type (element),
while we characterise its external relationships simply by
saying that it is accessible by a single producer and a
single consumer, of which the former may append to it a
sequence of values of the appropriate type, while the
latter may remove from it a similarly characterised
sequence. Then the most basic requirement for the
buffer’s functional integrity is that precisely the same

values should eventually be removed, as have, earlier,
been appended. (Strictly, we should say ‘the same
instances of values’ rather than just ‘ the same values’, to
cover the case where a particular value occurs several
times.) Thus, ignoring both the orderings of the input
and output value sequences, and also the details of the
buffer’s internal workings, such as the strategy for the
placement of individual values in particular slots, we can
immediately identify two essential constraints on the
history of the buffer’s interactions with the processes
outside it.

(1) Avoidance of buffer ‘underflow’: a value can
never properly be removed without having previously
been appended.

(2) Avoidance of buffer ‘overflow’: at any given time
the buffer can hold at most N values, that is, no more
than N values can properly have been appended without
also having becn removed.

Spelling this out more explicitly in terms of the
synchronisation of remove and append operations, we
have the following requirements:

(1) Each remove operation can only be initiated after
completion of a ‘corresponding’ append operation.

(2) The number of initiated append operations (taken

over the lifetime of the buffer to date) must never exceed
by more than N the number of completed remove
operations.
The sequencing constraint expressed by the fragment
‘append; remove’ of the path expression in Version 2 is
evidently equivalent to requirement (1), while the
enclosing resource constraint ‘N: (...)’ is evidently
equivalent to requirement (2).

The preceding discussion shows how consideration of
the buffer’s behaviour requirements even in a very
abstract form may suggest the appropriate form for the
associated path expression. Strictly, however, this
discussion shows only that the path expression in Version
2 expresses conditions necessary for the buffer’s correct
functioning, but we have not yet shown that these
conditions are also sufficient for this purpose. To do this,
it is sufficient to demonstrate that the values appended
and those removed correspond, not merely as unordered
sets, but also as (temporally ordered) sequences. To be
more specific, it is sufficient to show that, for any positive
integer n, the nth value appended to the buffer is
identical to the nth value removed from it. To do this, the
internal workings of the buffer must be considered in
greater detail than hitherto: In particular, it is necessary
to show that the buffer is used cyclically by both
producer and consumer, that is, that both the nth append
and the nth remove operation act exclusively on the
(((n—1) mod N)+ 1)th slot of the internal array buf. It is
important at this stage to note that we can speak
unambiguously here of the nth values appended and
removed, since we have assumed that there is only one
producer and only one consumer, and hence at most one
performance of each operation can possibly be in
progress at any given moment. On the basis of this, and
of the further observation that the index inp is (after
initialisation) manipulated only by the append operation,
and from a conventional analysis of the code of that
operation (and of the initialisation routine) it can be seen
fairly easily, by a simple induction, that the nth value
appended isindeed deposited in the (n— 1) mod N)+ 1)th
slot, as required. A similar argument with regard to the

426 THE COMPUTER JOURNAL, VOL. 29, NO. 5, 1986

¥202 I4dy 60 U0 1senb Aq G61981/€ZH/G/62/2101e/|ulwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

PROGRAMMING A BOUNDED BUFFER USING PATH PASCAL

index outp and the remove operation establishes the
corresponding result for this latter operation. Having
thus shown that the nth append and the nth remove both
operate on the same slot of the buffer, we are in a position
to show that the path expression associated with the
buffer guarantees that these operations stand in the
necessary relationship to each other in the context of the
buffer’s overall history. Specifically, it is necessary to
show that both the following are guaranteed to hold.

(1) The nth append is necessarily completed before
initiation of the nth remove is permitted.

(2) Given (1), no other operation on the
(n—1) mod N)+ 1)th slot of the buffer can intervene
between the performance of the nth append and the
performance of the nth remove: that is, the nth remove is
necessarily completed before the initiation of the next
append —i.e. the (n+N)th append overall - which
operates on this slot.

These two constraints are precisely those defined by
the sequencing and concurrency constraints in the path
expression of Version 2: ‘append; remove’ (1), and ‘N:
(...)’ (2). Thus we complete the informal demonstration
of the adequacy of Version 2 for the buffer’s functional
integrity.

We showed earlier that the constraints imposed by the
path expression are certainly necessary to the buffer’s
functional integrity as well as sufficient, and thus we have
effectively shown also that the buffer in Version 2 is
efficient, in the sense that it imposes no unnecessary delay
on the processes using it. This in turn implies that it is
deadlock-free, but we pursue such issues no further.

We have thus seen that we can only establish the
integrity of operation of the buffer in Version 2 — that is
establish that values are neither lost nor spuriously
generated within it — by means of a detailed consideration
of the possible history of performances of its operations,
by which means, we may note in passing, we establish
also the correspondence between the order in which
values are appended and that in which they are removed.
We observed earlier that the use of the object/path
expression constructs promotes a reflection in program
code of a separation of concerns, namely the concerns,
on the one hand, of the functionality of operations and,
on the other, of their synchronisation. However, our
detailed consideration of the process of establishing
correctness in this — very simple — case of the cyclic buffer
indicates that this separation is at best a mixed blessing,
since the required correctness can be established only by
consideration of the concerns of functionality and
synchronisation, not separately, but explicitly in conjunc-
tion with one another. Indeed, it might be argued that,
not only from the point of view of proving correctness,
but even from that of intuitive understanding, the
monitor/signal version, where the count of values
currently held in the buffer — referred to as nn in Version
1 — appears as an explicitly declared variable, explicitly
manipulated in the code of the buffer operations, is
actually preferable to the object/path expression version,
where such data are represented in the semaphores — or
some other suitable mechanism — used to implement the
path expression, but which are hidden from the
programmer’s view.

Version 3

If the bounded buffer is located in an environment in
which either the number of (concurrently executing)
producer processes, or the number of consumer
processes, is greater than 1, then the buffer of Version 2
isinadequate: as we have seen, the correctness of Version
2 depends on the assumption that there is a single
producer, and a single consumer, and hence that at most
1 append operation and at most 1 remove operation on
the buffer are in progress at any given time. If however
we explicitly impose constraints on the buffer operations
append and remove, ensuring that at any given time at
most one producer and at most one consumer can be
engaged in each operation, then we re-establish the only
one of the assumptions for Version 2 which is violated by
the introduction of additional producers and consumers.
Thus we see that, for an environment in which there may
be several producers and several consumers, a satisfactory
coding for the buffer is given by Version 3, where mutual
exclusion and hence strict sequencing are imposed on
performances of the append operation, and likewise on
performances of the remove operation, by applying to
each the concurrency constraint:

1:(...).

Version 4

For the more complex environment in which the
numbers of producers and of consumers exceed one,
there is a possible alternative approach to that,
represented by Version 3, of minimal refinement of the
single producer/single consumer version. This alternative
approach involves the adoption of what might be
considered a more ‘fundamentalist’ attitude to the
problem of data protection in a multi-process environ-
ment. The principle embodied in this attitude is that any
variable located in an environment from which it is
potentially simultaneously accessible by more than one
process should be explicitly protected by making it into
an object with a suitable path expression to guarantee its
functional integrity. In the case of the bounded buffer,
the particular circumstance which renders Version 2 in-
adequate in the multi-producer, multi-consumer environ-
ment is the possibility of concurrent accesses to — and
hence possible corruption of — the index variables inp
and outp. Rather than avoid this danger by imposing
synchronisation restrictions on the operations which
access these variables, as in Version 3, we may choose
instead to make the variables themselves into objects,
whose path expressions constrain all accessing operations
on them to occur in strict linear sequence. Adopting this
approach leads us to Version 4. We should note however
that in terms of the interface between the buffer and its
environment, the semantics of the buffer of Version 4
differ from those of the buffer of Version 3. In Version
4 there is no ordering imposed by the buffer at the outer
level on the performance by processes of append
operations, or similarly on the performance of remove
operations. Thus, while with Version 3 — where we still
have these orderings —we can go on to say that the
sequences of values determined in each case are the same,
with Version 4 — where the existence of (total) orderings
is not guaranteed — it is not necessarily meaningful to
talk of any correspondence between them. Indeed, even

THE COMPUTER JOURNAL, VOL. 29, NO. 5, 1986 427

¥202 I4dy 60 U0 1senb Aq G61981/€ZH/G/62/2101e/|ulwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

R. D. DOWSING AND R. ELLIOTT

in the case where, for example, the actual pattern of use
of the buffer by the processes surrounding it gives rise to
strict orderings on the initiations of append and on the
completions of remove operations, there is nevertheless
no guarantee that the sequences of values determined by
these orderings will be equivalent. It is perfectly possible
that the relative speeds of —say-a pair of append
operations within the buffer may be such that the one
initiated first actually gains access to the inner object inp
later than the other. It is also perfectly possible that the
order in which append operations are initiated should
differ from that of their completion. Thus we see that,
relative to Version 3. Version 4 permits a greater degree
of concurrency of activity within the buffer, at the
expense of a (possibly harmless) degree of indeterminacy
in the ordering of values as they pass through it.

Version 5

With the previous version, we introduced the approach
of guaranteeing the integrity of operation of a structured
object by ensuring that we have suitable guarantees of
integrity for each of its components. We may push this
approach a stage further than in the previous version by
applying it to the individual elements of the array buf.
each of which may be regarded as a single-slot buffer
whose integrity of operation is fairly obviously character-
ised adequately by the path expression

path 1: (store; fetch) end

Thus we arrive at the buffer coding of Version 5, where
there is a ‘null’ path expression — that is, no synchronis-
ation constraint —at the outer level, and where the
integrity of operation of the whole depends entirely on
that expressed by the path expressions associated with
the component indices and individual buffer slots of the
larger object. Here of course, the degree of concurrency,
and the associated degree of indeterminacy of ordering,
of performances of the buffer operations are both greatly
increased with respect even to Version 4: ordering the
appends according to the times of their initiation, and
assuming further that this ordering is equivalent to that
of their gaining access to the index inp, it is possible — if
highly unlikely in most implementations — that the nth
append should gain access to the (((n—1) mod N)+ 1)th
slot after the (n+ N)th append, which also uses that slot.
Whether such increases in the degrees of concurrency and
of indeterminacy are matter of any consequence or not
is dependent on the buffer’s intended context of use,
rather than on any consideration of its own integrity.

In Version 3 we have a data structure for which the
accessing operations are subject to a relatively complex
set of functional integrity constraints, expressed by a
correspondingly complex path expression: in Version 5
these complex constraints have effectively been weakened
somewhat and ‘distributed’ to the atomic components of
the data structure, by encapsulating each component as
an object in its own right, with its own limited set of
accessing operations, constrained by a comparatively
simple path expression, which effectively expresses the
‘local’ functional integrity requirements. Although in
fact we have thus developed Version 5 from Version 3
here, it is possible to regard the former as being the more
primitive of the two, developed in two layers ‘top-down’
on the basis of the overall functional requirements:

Version 3 might then be regarded as a refinement or
optimisation of Version 5, motivated either by the
addition of further overall requirements, such as a
requirement to establish congruent orderings on the
input and output sequences, or by the desire to reduce the
overheads associated with the synchronisation, which are
considered in the following section.

5. IMPLEMENTATION OF
SYNCHRONISATION

The implementation of the synchronisation constraints
expressed by an object’s path expression may be achieved
by attaching prologue and epilogue sequences of
semaphore operations to the code for the basic
operations (entry routines) of the object itself, as
described in detail in Ref. 3. For example, the path
expression of Version 3:

path N: (1: (append); 1: (remove)) end

can be implemented by attaching semaphore operations
to the code for the entry procedures append and remove
as follows:

P(S3) P(54)
P(S52) P(S1)
body of append body of remove
V(S1) V(S2)
V(S3) V(S4)

where in this case the semaphores and their initial values
are

S1 initially
S2 initially
S3 initially

0 —the ‘underflow’ semaphore;

N —the ‘overflow’ semaphore;

1 —the ‘mutual exclusion’ semaphore for
append,;

1 —the ‘mutual exclusion’ semaphore for
remove.

Thus a measure of the overheads incurred by the use of

a particular object or path expression is given by the

number of semaphores required to implement it. We give

in Table 1 below this measure for each of the Path Pascal

versions of the bounded buffer, which shows clearly the

profligacy in this respect of Version 5 for any but the

smallest values of N.

S$4 initially

Table 1. No. of semaphores required for bounded buffer

4 5

Version 1 2 3
2 4 4 2*N+42

No. of semaphores —

6. CONCLUSIONS

From the various versions of the bounded buffer object
a number of points emerge. Firstly, the object/path
expression discipline presents two advantages over the
monitor/signal discipline: path expressions often have a
natural and intuitively appealing derivation from simple
considerations of functional integrity, and their use
enforces a clear reflection in program code of the
separation of the concerns of synchronisation and of
functionality for an object’s operations. However, this
latter may possibly also be regarded as something of a
disadvantage, since in the consideration of program
correctness these concerns are often intimately linked

428 THE COMPUTER JOURNAL, VOL. 29, NO. 5, 1986

¥202 I4dy 60 U0 1senb Aq G61981/€ZH/G/62/2101e/|ulwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

PROGRAMMING A BOUNDED BUFFER USING PATH PASCAL

and must then necessarily be considered in conjunction
rather than separately.

The discussion of the later versions shows that there is
a spectrum of possible approaches to the programming
of a shared data structure. At one end of this spectrum,
all synchronisation constraints are expressed at the
outermost level, with the access to the individual
components programmed conventionally: at the other
end of the spectrum, the specification of synchronisation
constraints is distributed to the individual components,
which are then themselves treated as sharable objects
with controlled access. The earlier discussion shows that,
as we move across this spectrum, there is an increase in
the degree of concurrency of access at the outermost level
(but it should be appreciated that this will not normally
imply any significant increase in overall performance
levels), and anincrease also in the degree of indeterminacy

REFERENCES

1. R.B. Kolstad & R.H. Campbell, ‘Path Pascal user
manual,” ACM. Sigplan Notices 15 (9), 15-24 (1980).

2. C. A. R. Hoare,‘Monitors: an operating system structuring
concept’, CACM 17, 549-557 (1974).

of externally perceived behaviour (to a level which in
some contexts might be unacceptably anarchic), and an
increase finally in the implementation overheads associa-
ted with the synchronisation requirements.

Finally, the variety of possible approaches to what is,
from an intuitive point of view, a rather straightforward
problem, may be taken as bearing witness to the difficulty
of establishing a simple set of general design principles
for multiprogramming problems.

Acknowledgements

One of the authors (R. Elliott) acknowledges with
gratitude the support of a studentship awarded by the
SERC (UK). The treatment of path expressions in Path
Pascal is developed from work undertaken under an
earlier research grant, also awarded by the SERC.

3. R.B. Kolstad and R. H. Campbell, ‘Path Pascal user
manual’, Department of Computer Science, University of
Illinois at Champaign—-Urbana (1980).

THE COMPUTER JOURNAL, VOL. 29, NO. 5, 1986 429

¥202 I4dy 60 U0 1senb Aq G61981/€ZH/G/62/2101e/|ulwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

