The Use of Termination Indicators in Computer Progiamming

M. C.ER

Department of Computer Science, University of Western Australia, Nedlands, WA 6009, Australia

A simple programming technique called the termination-indicator technique is introduced. The basic idea is to use
variables as termination indicators in multi-exit loops in order to simplify termination conditions of loops. Numerous
examples are given illustrating elegant, efficient and structured solutions that benefit from this technique. Comparative
results show that the termination-indicator technique is superior and more versatile than other programming techniques

using cand/cor, sentinel and state-variables.

Received August 1984

1. INTRODUCTION

In a series of letters to the editor,!® various authors
quibbled about a simple programming problem which
was first reported by Knuth” and subsequently cited by
Arblaster, Sime and Green.® The programming problem
is to do with searching and updating of arrays: given an
array g[1..N] with distinct values stored in a[l . .ml],
where m < N, the purpose is to record the number of
times in an array b[1. . N] those distinct values have been
looked up in array a[1. . m]. If x is already present in afi],
1 < i < m, the value b[i] will be incremented by 1; if x is
not foundin a[l . . m], x will be stored in a[m + 1] provided
m < N, and b[m+-1] is assigned a 1 with the search range
1. .m being increased by 1. Atkinson® summarises the
situations and presents his own solution to this searching-
and-updating problem using state-variables.

What comes as a surprise is not the ignorance of some
authors®?® who did not read Knuth’s paper’ and thus
repeated what he had said, but rather the fact that their
programs? 3 did not work for some extreme cases, such
as empty or full array, and the clumsiness of some
solutions.!-* Atkinson’s summary and discussion seem to
have exhausted all possible programming solutions to this
simple problem of searching and updating. But surpris-
ingly, there is still a simple and efficient programming
solution to this problem, which has not been discovered
by others at all. In this paper we discuss such a solution,
and we call the programming technique we shall use the
termination-indicator technique, as it has something to do
with the use of termination indicators.

2. THE TERMINATION-INDICATOR
TECHNIQUE

The discussions in a series of letters'*® leading to Ref. 9
show that, in order to avoid the use of goto-statement,
one is forced to choose one of the structured solutions
using cand/cor, sentinel, or state-variable, each of which
hasitsown limitations. We now introduce the termination-
indicator technique which has none of the limitations,
and the resulting algorithms are considerably cleaner and
more transparent.

The central idea of the termination-indicator technique
is to use auxiliary variables to serve as termination
indicators. These termination indicators are normally
initialised to values that will yield the worst-case
performance of algorithms. During the course of

execution of a program, termination indicators may be

set to places where one of the termination conditions of

loops is satisfied. In this way, the condition that
terminates a multi-exit loop can be retained in the
associated termination indicators. This argument applies
to both single and nested loops.

An application of the termination-indicator technique
to the searching-and-updating problem is shown in Fig.
1.

i.=1;
t:=m+1; {t is a termination indicator}
while i # ¢ do
if ali] # x then i: =i+1 else ¢: = i;
if 1 < m then b[1]: = b[£]+ 1
else if 1 < N then begin
m:=t;aft]: =x; b[f]: =1
end
else error

Figure 1. An efficient algorithm for the searching-and-updating
problem using a termination indicator ¢.

In this algorithm, the termination indicator ¢ is initialised
to m+1 to provide the worst-case condition of searching
the array when x is absent from a[l..m]. During the
search, ¢ is positioned at the element containing x if it
exists; otherwise # is left intact. Thus from the position
where ¢ points to, we can tell whether x is present in
a[l..m], or x is not found in a[l . . m] but this segment
can be extended, or the array is full. Unlike other
solutions® that specifically test for array full, our solution
detects array full as a natural by-product. Note further
that our algorithm handles both empty and full arrays
correctly. Regarding the efficiency of our algorithm, it
makes two tests per cycle of loop, and runs at a
comparable speed as the algorithm using cand /cor, but
does not depend on the special facility of cand /cor. Also
it does not depend on the use of sentinel and hence the
full capacity of array q[1..N] can be utilised. The code
is compact and transparent and is definitely shorter than
Atkinson’s solution.

3. LINEAR SEARCH OF A LINKED LIST

Suppose thearraya[l . . N]of the searching-and-updating
problem is replaced by a linked list. With the following
declarations:

430 THE COMPUTER JOURNAL, VOL. 29, NO. 5, 1986

¥20Z I4dy 01 uo 1senb Aq 661981/0£H/G/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

THE USE OF TERMINATION INDICATORS IN COMPUTER PROGRAMMING

ptrperson = Aperson;

person = record
ss:integer;
next:ptrperson
end;

var p, first:ptrperson;

a linear search algorithm for searching a linked list may
be given as shown in Fig. 2.

p.=first,;
while (p () nil) and (p*.s5s) x) do p: = pt.next

Figure 2. A linear search algorithm for a linked list.

Realising that the and operator may not be implemented
as the cand operator in some Pascal compilers, Jensen and
Wirth!® suggest two alternative solutions as shown in
Fig. 3.

p:=first; b: = true;
while (p () nil) and b do

if pt.ss = x then b: = false else p: = pt . next;
if b then {x absent} else {x found}

(@)
p:=first,
while p (> nil do
begin
if pt.ss = x then goto 13;
p:=pt.next
end
®

Figure 3. Two alternative solutions that avoid the use of cand in
a linear search algorithm for a linked list.

These two alternative solutions are not as elegant as one
would wish. It turns out that the termination-indicator
technique can help in this linked-list problem as shown
in Fig. 4.

p:=first;
t: =nil; {termination indicator}
while p # ¢ do
if pt.ss # x then p: = pt .next else t: =p;
if ¢ = nil then {x absent} else {x found}

Figure 4. A linear search algorithm for a linked list using a
termination indicator ¢.

The resulting algorithm using a termination indicator ¢
is more pleasing than Jensen and Wirth’s solutions and
also more efficient than the algorithm shown in Fig. 3 (a).

4. SEARCHING AND UPDATING A HASH
TABLE

If the searching-and-updating problem is modified so that
the array a[l. .m] is organised as a hash table, Knuth’
presents a hashing-and-linear-reprobing algorithm using
a goto-statement as shown in Fig. 5.

i: = h(x); {hashing}
while a[i] # 0 do
begin
if a[i] = x then goto found fi;
ii=i—1;
ifi=0theni:=m fi

end
notfound: ali]: = x;
bli]: =0;
found: b[i]: = b[i]+1;

Figure 5. Knuth’s hashing-and-linear-reprobing algorithm.

To rewrite this algorithm as a structured program, the
sentinel technique does not work any more since there is
no place to store a sentinel element. Anyhow, Knuth?
comes out with two improved solutions, both requiring
the use of goto-statements. One of his solutions is shown
in Fig. 6.

i:=h(x);
while a[i] # x do
begin
if a[i] = O then
alil: = x;
bli]: =0;
goto found
fi;

ii=i—1;
ifi=0theni:=mfi
end;
Sfound: bli]: = b[i]+1

Figure 6. Knuth’s improved version of the hashing-and-linear-
reprobing algorithm.

His solutions do not take hash-table full into considera-
tion, and will be trapped in non-terminating loops when
this odd event occurs. To take this factor into account,
each of his solutions perhaps has to maintain a counter,
keeping track of the number of entries of the hash table
that are occupied.

Applying the termination-indicator technique to derive
a hashing-and-linear-reprobing algorithm, we come out
with a simple solution as shown in Fig. 7. Our algorithm
handles the case of hash-table full correctly and need not
specifically test for the occurrence of this odd event.

i:=h(x);
t: =imod m+ 1; {termination indicator}
while i # ¢ do

if ali] =xor a[i] =0

thenr: =i
else begin
ii=i—1;
ifi=0theni:=m
end;
ifa[f] = x

then b[1]: = b[1]+1
else if a[t] =0

then begin
alf]: = x;
blr]: =1

end else {hash-table full}

Figure 7. A hashing-and-linear-reprobing algorithm using the
termination-indicator technique.

THE COMPUTER JOURNAL, VOL. 29, NO. 5, 1986 431

¥20Z I4dy 01 uo 1senb Aq 661981/0£H/G/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

M.C.ER

5. INSERTION SORT

A sorting algorithm that utilises the linear search as a
subprocess is the insertion sort. The termination-indicator
technique can also be applied to sorting by insertion as
shown in Fig. 8. Here we assume that an array a[l . . N]
is to be sorted into an ascending order.

ii=2;
while i < N do begin
Ji=1i; x:=dlil];
t: = 1; {termination indicator}
while j # ¢ do
ifa[j—1]<x

then 1. =
else begin
aljl: =alj—1];
Ji=j—1
end;
at]: = x;
it=i+1

end

Figure 8. Sorting by insertion using a termination indicator.

Comparing with Dromey’s insertion sort algorithm,
we see that his algorithm requires one additional pass
during a pre-sort phase to find the smallest element in the
array and assign it to a[1] in order to prevent the subscript
from being out of bound during the sort phase. In
contrast, our algorithm requires no such pre-sort phase
at all.

6. BUBBLE SORT

As a way of illustrating the flexibility of the termination-
indicator technique, we further apply it to the bubble sort.
It is well known that if there is no exchange of elements
taking place during a pass of the bubble sort, subsequent
passes will not move any element of an array of all, and
indeed the bubble sort can be terminated at this stage. The
use of a state-variable sorted to detect any exchanges
taking place duringa passas seenin Ref. 11isa well-known
trick. But the problem is that this state-variable must be
tested, together with other conditions, every time round
the loop in order to exit from the loop when the
termination condition is met. With the use of termination
variable, such redundant test can be avoided as shown in
Fig. 9. We assume that the array a[0..N—1] is to be
sorted into an ascending order.

We may interpret the manipulation of termination
indicator tasfollows: itisinitialised toa 1 as the worst-case
condition to begin with; during the (N —i+ 1)th pass, we
hope that this would be the last pass of the bubble sort
by assigning the value of i to ¢; but as soon as we find
a pair of adjacent elements that are out of sequence, we

REFERENCES

1. 1. D. Hill, Jumping to some purpose (letter). The Computer
Journal 23, 94 (1980).

2. G. L. Robinson, Jumping to some purpose (letter). The
Computer Journal 23, 288 (1980).

3. M. Missala and P. Rudnicki, Jumping to some purpose
(letter). The Computer Journal 25, 286 (1982).

i:=N,;
t: = 1; {termination indicator}
while i > ¢ do begin
ir=i—1;j:=0;
t.=1i,
while j # i do begin
if a[j] > a[j+ 1] then begin
swapl(a[j], alj+1]);
t:=
end;
Ji=j+1
end
end

Figure 9. An application of the termination-indicator technique
to the bubble sort.

reset ¢ to the worst-case condition. As seen in Fig. 9, our
solution performs less tests than other solutions.!!

7. CONCLUSIONS

In this paper we have described at length the ter-
mination-indicator technique and its applications. The
termination-indicator technique stresses the use of
termination indicators and is most applicable to loops or
nested loops that have multi-exit conditions. As the
history of computer programming shows, the problem of
terminations of multi-exit loops has proved to be a mental
stumblingblock ;manyexperienced programmers!=3: 7, #-12
simply could not come out with simple, efficient and
structured solutions. Some authors? even used it as a lever
to argue against gotoless programming! Fortunately,
numerous programming examples in this paper show
that the problem can be trivially solved by using the
termination-indicator technique. Most surprisingly, ter-
mination conditions of all solutions are extremely
pleasing — normally consisting of a comparison of a
variable with a termination indicator. Perhaps more
importantly, this programming technique is language-
independent, as well as compiler-independent, and works
in many different contexts.

When a problem is tricky, people often look for new
programming constructs to accommodate specific
circumstances,’ but overlook the simplest programming
solution. A study of programming techniques is not less
important than an invention of programming constructs.
Surely, a structured solution afforded by a simple
programming technique is better than that cast in a
complex programming construct.

Acknowledgement

The author wishes to thank the referee for his helpful
comments, which improved the contents and presentation
of this paper.

4. J. Inglis, Jumping to some purpose (letter). The Computer
Journal 25, 495 (1982).

5. G. L. Robinson, Jumping to some purpose (letter). The
Computer Journal 26, 95 (1983).

6. 1. Mearns, Jumping to some purpose (letter). The Computer
Journal 26, 190 (1983).

432 THE COMPUTER JOURNAL, VOL. 29, NO. 5, 1986

¥20Z I4dy 01 uo 1senb Aq 661981/0£H/G/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

THE USE OF TERMINATION INDICATORS IN COMPUTER PROGRAMMING

7. D. E. Knuth, Structured programming with goto state-
ments. Computing Surveys 6, 261-301 (1974).

8. A. T. Arblaster, M. E. Sime and T. R. G. Green, Jumping
to some purpose. The Computer Journal 22, 105-109 (1979).

9. L. V. Atkinson, Jumping about and getting into a state. The
Computer Journal 27, 42-46 (1984).

28

10. K. Jensen and N. Wirth, Pascal — User Manual and Report.
Springer-Verlag, New York (1978).

11. R. G. Dromey, How to Solve it by Computer. Prentice-Hall,
London (1982).

12. C. K. Yuen, Further comments on the premature loop exit
problem. SIGPLAN Notices 19, 93-94 (1984).

THE COMPUTER JOURNAL, VOL. 29, NO. 5, 1986 433

cPJ 29

¥20Z I4dy 01 uo 1senb Aq 661981/0£H/G/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

