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Implicit in many information retrieval models is a logic. These logics are hardly ever formalised. This paper formalises a
non-classical logic underlying information retrieval. It shows how a particular conditional logic is the ‘right’ logic to do
Information Retrieval. Its relationship to existing retrieval mechanisms is investigated. The semantics of the logic are
expressed in probability theory, and evaluated through a possible-world analysis, thus establishing an intensional logic.
In doing so, we motivate a new principle, the logical uncertainty principle, which gives a measure of the uncertainty

associated with an inference.
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1. INTRODUCTION

This paper is to be seen as describing a new theoretical
framework for investigating information retrieval. For
some years now, I have felt the need to describe such a
framework. It is especially important if one wants to
develop information retrieval beyond the mere keyword
approach. In the closing pages of my earlier book on the
subject I said the following: ‘It has never been assumed
that a retrieval system should attempt to ‘understand’
the content of a document. Most Information Retrieval
systems at the moment merely aim at a bibliographic
search. Documents are deemed to be relevant on the
basis of a superficial description. I do not suggest that it
is going to be a simple matter to program a computer to
understand documents. What is suggested is that some
attempt should be made to construct something like a
naive model, using more than just keywords, of the
content of each document in the system. The more
sophisticated question-answering systems do something
very similar. They have a model of their universe of
discourse and can answer questions about it, and can
incorporate new facts and rules as they become
available.”?

When I wrote the above passage, I had no idea that
progress in that direction was going to be so slow. The
main obstacles appeared to be an adequate computable
model of meaning, and its use in information retrieval
operations. It was argued that even if we had an
appropriate semantics for text, and it could be computed
efficiently, we still would not know how to use it to
retrieve documents in response to requests.

I would now like to counter this objection by saying
that the use of semantics comes via an appropriate logic.
I am not alone in thinking this; Cooper, in his book on
logico-linguistics, would probably make the same claim.2
Such a logic would be based on a formal semantics for
text. The semantics would provide a limited representation
of the meaning of any text but it would not be the
meaning. A logic would then be interpretable in that

Editor’s Note: It may be thought that the publication of this paper
is premature, in that the presentation of the proposed logic is not
supported by rigorous mathematical argument. The purpose of
publishing now is, however, to provoke reaction to a completely new
direction for research in Information Retrieval. Responses will be
especially welcome.
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semantics. It leaves me to say how such a logic can help
in the retrieval of relevant documents. To understand
this, one must think of documents as sets of sentences
which are interpreted in the semantics, and think of
queries as sentences too, the latter usually a single
sentence. The single primitive operation to aid retrieval
is then one of uncertain implication. In the extreme case,
it would be logical implication, which through its
interpretation in the formal semantics is logical conse-
quence. That is, a document is retrieved if it logically
implies the request. However, as we all know, documents
rarely imply requests, there is always a measure of
uncertainty associated with such an implication. And so
a notion of probable, or approximate, implication is
needed where a plausible inference instead of a strict
inference is made, and the plausibility quantified through
some measure. Modelling the information retrieval
process in this way goes beyond the keyword approach,
and specifies, once and for all, what relationship between
a document and a request is to hold to compute probable
relevance. The importance of this new way of looking at
Information Retrieval derives from the realisation that
with such a framework, Information Retrieval can
advance with new developments in formal semantics for
text. Starting with a keyword analysis which is a
primitive semantics, we can go on to use our logic no
matter how sophisticated our semantics is. At all times,
we are attempting to infer requests (treated as sentences)
from statements in the documents. The inference is
possible because we have an interpretation of sentences
in a document, we define this interpretation and can
increase its complexity at will.

It is important to realise that the above approach is
similar to the one adopted in database querying and
question-answering. It is similar in that in all cases the
answer is obtained through a process of logical satis-
faction, i.e. looking at a common interpretation for
premises and consequent. It is different in that in the case
of Information Retrieval a request is typically a closed
sentence (i.e. contains no variable) and the relationship
computed between a document (the premises) and the
request (the consequent) is paramount; i.e. if the
relationship is sufficiently strong, the document is
retrieved. In the case of Data Base Management Systems,
a request is typically an open sentence (contains
variables), the semantics giving an instantiation of the
request, which is an answer.
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2. CLASSICAL INFORMATION
RETRIEVAL

To begin with, I would like to say what Information
Retrieval is. Let us assume that there is a large store of
documents on a variety of topics. A user of such a store
will have a need to know certain things, things that he
does not know at present. He therefore expresses his
information need in the form of a request for
information. Information Retrieval is concerned with
retrieving those documents that are likely to be relevant
to his information need as expressed by his request. It is
likely that such a retrieval process will be iterated, since
a request is only an imperfect expression of an
information need, and the documents retrieved at one
point may help in improving the request used in the next
iteration. It is important to realise that certain words in
the above description are used carefully to avoid
misunderstanding the idea of information retrieval.

Let us spell out the way in which the description is to
be interpreted. A request for information is translated
into a request for documents. The documents are
assumed to contain the information, therefore the
information is only retrieved indirectly. A request is an
imperfect expression of a user’s information need; only
a user will be able to tell whether a document contains
the information he is seeking. If it does contain the
information sought then the document is considered
relevant to the user’s information need. This implies that
documents are not relevant to a request; that is, identical
requests submitted by two different users can be satisfied
in different ways, one document may be relevant to one
user and not to the other. Relevance is here connected
firmly to ‘aboutness’, a document is not relevant because
of its colour or shape. It is relevant because it is about
the information sought.

In specifying a model for information retrieval, a small
number of entities and concepts need to be defined.
Superficially, this would appear to be a simple matter.
The entities and concepts are document, request,
property of a document and relevance. Anyone can give
commonsense definitions of these; unfortunately, what is
required is a formal definition so that an Information
Retrieval system can be formally specified and therefore
implemented on a computer.

Let us take a document as a set of sentences.
Therefore, when a document is considered for retrieval,
the sentences in the document are considered individually
or perhaps jointly. In considering them, one is looking
for a relationship between them and the request. Such a
relationship needs to be computable if the Information
Retrieval system is a computer-based one. If we take a
request to be a sentence then the relationship to be
computed is one between a set of sentences and a single
sentence. This relationship must be such that it enables
one to use it to determine whether a document is likely
to be relevant or not. I use ‘likely’ because we are
assuming that relevance is user-dependent and a request
is an imperfect expression of an information need.

From a system’s point of view, the computation of the
relationship between document and request is central.
How is one to specify this relationship? There are several
ways of doing this, and each one has implications for
how one represents a document and a query. Ideally, one
would like this representation to be separated from the

relationship computation; of course, this has proved to
be almost impossible. In what follows, I propose that the
right representation is given by a formal semantics for
text (perhaps a Montague-style semantics, see Ref. 3).
The detailed specification of a semantics will be the
subject of a later paper. The relationship between a
document and a request will be formalised as a logical
implication to which a measure of uncertainty is
attached. To motivate this ‘implication’ I shall give three
examples in which standard Information Retrieval
models are re-expressed in terms of uncertain
implication.

2.1. Boolean retrieval

It is assumed that documents are represented by index
terms, or keywords, and that requests are logical
combinations (using AND, OR, NOT) of these terms. A
document is deemed likely to be relevant, and hence
retrieved, if the index terms in the document satisfy the
logical expression in the request. For example:

D, ={4, B}
D, ={B, C} A, B, C:index terms
D,={4, B, C}

Q=AANBA ~C
D, : retrieved because D, is true implies Q is true
D,, D;: not retrieved.

The index terms are, in fact, the semantics, and indexing
is seen as mapping a piece of text into its formal
semantics. Formally, an index term is true for a
document if it occurs in the set representing the
document.

Notice the use of the closed world assumption here, that
the absence of an index term in a document is assumed
to imply that it is false for that document. The example
makes clear that the relation computed between D and
Q is one of logical implication. This is a simple set-up and
commonly used in practice. Unfortunately, it does not
model the uncertainty of relevance.

2.2. Co-ordination Level Matching

Just as in the example of Boolean retrieval above,
documents are assumed to consist of sets of index terms,
but requests are now also sets of index terms. The
relationship between a document and a request is now
computed in terms of the index terms they have in
common. The likelihood of relevance is taken to be
directly proportional to the number of index terms
shared. For example, D,, D,, D, as before,

0 =4, B, C}:
nD,nQ)=2
n(D,n Q) =2
nD;,nQ)=3

where n( ) = number in set.

This relationship can be described in terms of the
probability of a logical implication, so that n(D n Q) is
proportional to the probability of D — Q. What is a
probability of D — Q? This depends first on how one
interprets ‘ — . It is not to be interpreted as the material
implication D o Q, which is the usual truth-functional
connective, only false when D is true and Q is false.
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Intuitively, whatever the precise meaning of ‘-, it is
easy to understand that D — Q, or that D-»Q.

The problem is that when D+ Q we might still want
to retrieve D because of its likelihood of relevance. To
model this uncertainty of relevance, we use uncertainty
of implication. If we assume P(D — Q) = P(Q| D), then
with D and Q as sets we have:

P(@nD) n(@nD)
P(D) n(D)

Treating n(D) as constant, we get the relationship that
P(D — Q) is proportional to the level of co-ordination.

P(D~ Q)=

2.3. Probabilistic Retrieval

In this example, documents are also represented by sets
of index terms, and so are queries. However, this time the
relationship between them is calculated by including
estimates of the likelihood that a shared term indicates
relevance. The emphasis is on somehow finding out how
index terms discriminate between relevant and non-
relevant documents. For example, a user might indicate
that an index term is a good discriminator, i.e. it occurs
far more frequently in relevant than in non-relevant
documents. Such information for a number of terms is
then pooled to estimate the probability of relevance of a
particular document.

Consider a document represented by D that has not
been retrieved before, its probability of relevance being
given by P(rel | D). This probability is assumed to be well
formed in the sense that ‘rel’ and ‘D’ are events or
propositions for which the relationship of probability
holds. Unfortunately, this is not so; ‘rel’ is neither a
proposition nor an event. Relevance is only given after
the event of retrieval, and is a function of the user.
Therefore, relevance can be used to conditionalise
probabilities, but it cannot be given equal status with
documents and requests, which are known before a
retrieval operation.

Now, although ‘D’ appears as a simple event in
P(rel| D) its interpretation is far from simple. In the
standard probability model we assume D to be a
vector-valued random variable,! where its distribution is
given by a mixture of two distributions, namely

P(D) = P(D |rel) P(rel)+ P(D | nrel) P(nrel)
(nrel = not-relevant).

To compute P(rel | D) we use Bayes’ Theorem:

P(D | rel) P(rel)
P(D)

In this computation the relationship between a document
description and a request is given only indirectly. The
request is used to start the iterative process in evaluating
P(rel| D). On the first cycle, one needs an estimate of
P(D |rel), which can be obtained by using the request to
retrieve some documents and assessing them for
relevance. Another way of putting this is that P is revised
to a different probability function P, in the light of
information about relevance, and that

P(D|rel) = Prer(D).

Putting it this way makes it clear that two users with
differing ideas of relevance but submitting the same
request can expect to get different probabilities of

P(rel| D) =

relevance, i.e. user 1 would get P, (D) and user 2 P2, (D).
This simply means that the probability function P can be
revised in two different ways. But what about the case of
the same relevance judgements but different requests, e.g.
g, and ¢,? As it stands, the probabilistic model does not
deal with it directly. A recent attempt to deal with it can
be found in (Ref. 4). A

I would like to propose the following way of dealing
with both cases; different relevance judgements and
different requests.

Instead of calculating P(D) or P, (D), 1 propose
P(s — q) or P.,(s—gq). Here s is a description of a
document (for example, a set of sentences) and g a
description of a request. s — g is a logical implication and
P(s — g) is a measure of its uncertainty. In doing this, we
have done two things: (1) separated the process of
revising probabilities from the logic; and (2) separated
the treatment of relevance from the treatment of
documents and requests.

The general picture we now have is that the probability
of relevance is given by the probability that g follows
from 5. However, this latter probability is a function of
what the user already knows. His knowledge is expressed
through relevance judgements and quantified through
revision of the P to P,,,.

3. A CONDITIONAL LOGIC FOR
INFORMATION RETRIEVAL

In re-expressing the three well-known retrieval models,
Boolean, Co-ordination and Probabilistic, as examples
of computation of logical implication, I have made the
case (in part) that the fundamental retrieval operation is
one of logical implication. This logical implication is not
one of material implication, the usual truth-functional
connective 4 > B, which is true in all cases except when
A is true and B is false. To illustrate the difference
between our earlier implication 4 — B and 4 > B let me
give a simple example. First, let us assume that the
probability of a conditional of the form ‘If A4 is true then
B’ is a conditional probability. Now consider a die and
two events, 4 the event ‘a number less than 3 will be
rolled’ and B the event ‘an even number will be rolled’.
Then for the two ‘implications’ we get:

P(ANB)_1/6 1

PA=B="py 2762
P(4 > B)= P(Av B)=§

This shows that by interpreting the probability of a
conditional as a conditional probability rather than the
probability of a material implication we get widely
differing results. Of course, I would maintain that the
conditional probability interpretation in the context of
Information Retrieval is the right one.

There is another major reason why a conditional must
not be identified with the material implication in logic.
When using probabilistic inference, we want to ensure
that the following soundness criterion holds.® It is
impossible for the premises of an inference to be
probable while its conclusion is improbable. To illustrate
a violation of this, we take the well-known inference
given ~ 4 we can infer 4 > B. [Remember that we can
logically infer a consequent from an antecedent,
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whenever interpretations making the antecedent true also
make the consequent true.] In our example, whenever
~ A s true, A will be false and hence 4 > B will be true,
independent of B’s truth value.

If we identified 4 - B with 4 > B, then such an
inference could easily violate the soundness criterion. It
is easy to show situations (see diagram below) where
P(~ A)is large and P(4 — B) = P(B| A) (probability of
consequent) is small. In other words, although ‘ ~ 4
infer A o B’ is valid ‘ ~ 4 infer 4 — B’ should not be,
if we take the probabilistic soundness criterion seriously.

1

|

|’ P(~ A) large
; P(B| 4) -0
|

A conditional logic will, therefore, in general, be different
from a classical logic.® It is my contention that such a
conditional logic (and there are several formulations) is
the correct one for information retrieval.

I
|
|
|
I
|

[

4. HOW DO WE EVALUATE P(s - ¢)?

First, let us consider the case without probabilities. To
analyse this case, we will need to introduce possible-world
semantics. An intuitive understanding of a possible world
is that it is a complete specification of how things are, or
might be, down to the finest semantically relevant
details.” For our purposes, we will identify documents
with possible worlds. This will raise problems of finiteness
and structure which we will ignore for the moment.

Let s be a partial description of a document — this
might be a set of sentences, or just a single index term —
q being a request. In deciding whether to retrieve a
document we would need to evaluate s — q, that is,
whether s — g is true or not. If s is true in a document
d then s — g is true providing q is true. If s is not true in
a document then we go to the nearest document &' to d
in which it is true and consider whether ¢ is true. If qis
true in &’ then s — g is true in d, otherwise it is false.

To give a simple example, s might be an index term,
g the same or a different index term. If s = ¢, s — g is true
follows trivially for those documents in which ¢ occurs.
The more interesting case is when s # q. In this case, to
establish s — ¢ in d find the nearest document @ in which
s occurs and check for the occurrence of g. It is important
to realise that because of the primitive nature of the
semantics an example such as s = FORTRAN, ¢ =
PROGRAMMING LANGUAGE for which s — g is
directly true in a more complex semantics, can only be
handled indirectly.

The above process illustrates what is now widely
known as the Ramsey test .8 It might be summarised as
follows:

To evaluate a conditional, first hypothetically make
the minimal revision of your stock of beliefs required
to assume the antecedent. Then evaluate the accept-
ability of the consequent on the basis of this revised
body of beliefs.

Note that the meaning of a conditional is not
truth-functional under the above interpretation, i.e. its
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truth does not simply depend on the truth valuation of s
and g in one world. It has become an intensional notion.

In document retrieval we are often faced with the
situation where s — ¢ is assumed false because s does not
logically imply ¢g. That is, assuming the truth of the
sentences (index terms) in a document we cannot arrive
at g. Boolean retrieval is an excellent example: given a
truth valuation for the terms describing a document, we
retrieve those documents which imply g (make g true for
that valuation). What is suggested here is that a given
document should be revised in a minimal way that makes
s true. If, after that revision, g is true, then s — g is true
and d should be retrieved. There are a number of ways
of making this revision. One could restrict the revision to
selecting a nearest document in which s is true, in which
case no interaction from the user would be required. Or,
one could involve the user in expanding the information
contained in the document under consideration. Or,
finally, one could do document expansion automatically
using information already stored in the system. We will
return to this notion of minimal revision when we attempt
to formalise it.

Turning now to the probabilistic case, to evaluate
P(s — g), we revise the probability function P to P’ in a
minimal way, so that P’(s) = 1. We then have that:

P(s > q) = P'(g).

An example of such a revision is to make P(s - q) =
P(q|s). In the case of Boolean semantics, where x, y are
index terms and v a truth valuation:

0 0
0w = {5 o=
we get
Px—x)=1

P(y — x) = P(x|y).

In other words, a query consisting of the index term x is
related to a document containing y by P(x|y). If we
restrict our worlds to documents already present, then we
can interpret this as:

n(xAy)

n(y)

the frequency of the co-occurrence of x and y divided by
the frequency of y.

Of course, documents and queries are far more
complex than is assumed above. It is not clear yet how
one deals with arbitrary complex documents and queries.
Generalising from the simple index-term approach we
would need to specify a formal semantics in which
documents and queries would be interpreted. To evaluate
s —>q would require a change in the interpretation
function so that s would be true under the new
interpretation, and s — g true, if g was true as well.

S. LOGIC OF UNCERTAINTY

In evaluating the truth of y — x or evaluating P(y — x),
we are dependent on a notion of nearness (closeness)
between worlds or documents. It is interesting to examine
this in a little more detail. Remember our prime concern
is to establish that ‘y — x’, or that y — x, with sufficiently
large probability. If for the current document y+ x, we
look at the effect of changing/revising our current world
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and look at y — x in the revised world. These changes are
to be made in a minimal way.

There is another way of looking at this revision process
which may be more appropriate in the Information
Retrieval context. I would like to generalise the Ramsey
test and state a new, Logical Uncertainty Principle.

Given any two sentences x and y; a measure of the
uncertainty of y — x relative to a given data set is
determined by the minimal extent to which we have to
add information to the data set, to establish the truth
of y - x.

This is a slight generalisation of the foregoing. It denies
that one can assess y — x with certainty if one has to
revise the data set. It says nothing about how
‘uncertainty’ or ‘minimal’ might be quantified. It
specifically relativises truth to a given data set. The
semantics of the data have been left unspecified too.
Nearness has been replaced by a measure of information.

Conventionally, uncertainty has been measured in
information-theoretic terms. I will do the same. If we
restrict ourselves to documents, and identify ‘data set’
with ‘document’, then we require an information meas-
ure to make the above principle precise. Formulating
this, given any two documents w,, w, we define
conditional information measures I(w,|w,) and
I(w,|w,), which give the information contained in w,
about w, and vice versa. Notice that I(.|.) is not
symmetric, although one could define a symmetric
mutual information:

I(w,:w,) = Iw,)—1I(w, | w,) = I(wy) — I(wy | wy).

The details are not important. What is important is that
I(.].) can be used as a nearness measure, and that it can
be defined algorithmically without recourse to random
variables.® How is this done? Essentially, the conditional
information measure I(w,|w,) is defined to be the
smallest program needed to calculate w, from a minimal
program for w,. Now we have a nearness measure in
terms of the information contained in one object about
another. Given a document w, to find the nearest
document in which a sentence is true we find that « for
which I(x| w) is a minimum, subject to the sentence being
true in . In an intuitive sense this is the least revision of
the given document, i.e. requires the smallest program to
calculate a.

Of course, the principle does not specify that further
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