Automatic Specialisation of Standard Designs

W. F. CLOCKSIN

Computer Laboratory, University of Cambridge, Corn Exchange Street, Cambridge CB2 30G

We introduce a technique, called specialisation, for automatically performing a certain class of optimisation in
hierarchically specified designs composed of standard modules. Modules are subject to specialisation when they provide
JSacilities that are not used in a design. This situation is not uncommon in ‘gate array’ and ‘standard cell’ designs used
in VLSI circuits. New definitions of modules are collected in a library as they are constructed so that detailed processing
need not be repeated when the same specialisation is required elsewhere in a design. The technique has been implemented
in Prolog. For explanatory purposes the technique has been applied here to specialising ‘standard cell’ specifications,

but the technique is generally applicable for rewriting arbitrary specifications written as collections of Horn clauses.

Received November 1985

1. INTRODUCTION

The use of standard cells! has increased the convenience
of designing VLSI circuits. However, circuits constructed
from standard cells generally contain more components
(transistors) than purpose-built circuitry for two reasons.

@® The need to present a standard interface. It is
necessary to provide internal glue circuitry which is
matched on the other side of an interface by more
internal glue circuitry.

@ The need for a standard cell library to provide a
manageably small number of general-purpose cells.
Suppliers of standard cell libraries cannot predict in
advance the precise functionality required by the
designer. A consequence is that some of the
functionality of general-purpose cells is not required
in a design, causing ‘over-designed’ circuits to be
produced.

The abstraction boundaries provided by the standard
cell approach exist for the convenience of the designer.
However, once the circuit is out of the designer’s control,
it is desirable to automatically redesign the circuit to
more easily meet constraints imposed by technology.
Such redesign would involve removing redundant
circuitry that exists because of the two reasons given
above, and may result in redefining abstraction boun-
daries within a circuit. We describe a program, called the
Specialiser, that removes redundant components by
automatically generating more specialised designs when
given a design defined in terms of general-purpose
modules. When applied to digital circuit design, this
technique can be seen as a compromise between the
ultimate goal of silicon compilation and the need to use
existing methodologies similar to standard cells. It is
important to note that the purpose of the Specialiser is
not to perform layout or to optimise layout. Specialisation
is carried out at the level of module connectivity and
hierarchy, not at the geometric level.

It is understandable that specialisation has not been
considered for previous digital technologies such as SSI
and MSI chips, because even if specialisations can be
identified, it is impossible to implement them owing to
robust packaging: it is impossible to break chips apart.
Consequently, previous methods for simplifying circuits
have involved well-known techniques such as Boolean

optimisation and strength reduction in an attempt to
reduce chip count. However, the definitions of standard
cells can be manipulated by software, and more
sophisticated methods such as the Specialiser become
relevant. When applied to digital circuits, the class of
components removed by the Specialiser is disjoint to that
removed by the well-known simplification techniques.
The Specialiser will not remove parts along a datapath
having an output that is used elsewhere in a circuit. The
reason for this more conservative approach is to prevent
the violation of designed-in timing constraints owing to
propagation delay through critical paths. Instead, the
Specialiser deals with over-general design which does not
contribute to the final outputs of the circuit.

The Specialiser works by selectivity ignoring abstrac-
tion boundaries imposed by the standard module
definitions and by the hierarchical specification of the
design, automatically designing new module definitions
where required. We observe in digital designs that much
redundant circuitry can be identified by tracing unused
outputs back through the circuit. Although this tracing
is a simple operation that produces a specialised circuit
from one constructed from general-purpose cells, this
operation when performed manually is often tedious and
error-prone as the designer can become lost in the
complexity of large circuits.

This technique can be computationally complex, but in
our implementation efficiency is achieved by exploiting
the hierarchical nature of the design specification to
suppress unnecessary detail. Moreover, the computations
required to specialise a given type of module in a given
way are performed only once. The new definition is
stored in a library to be used again when required. Thus
the work done in specialising a complete design is linear
in the number of types of module in its design, rather
than linear in the number of primitive components (in the
case of digital design, transistors).

2. DESIGN SPECIFICATION

The input to the Specialiser is a design specification. We
use Prolog? as a specification language in a manner
described elsewhere.? The specification technique is
similar to that used by others.2 ® When applied to digital
circuits, the specification language is not restricted to

THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986 495

¥20¢2 I4dy 60 Uo 1senb Aq 2G2926/56+/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

W. F. CLOCKSIN

combinatorial circuits, and may also be used for dlrectly
executing specifications of synchronous sequential cir-
cuits and circuits containing components that exhibit
bidirectionality, such as pass-transistors. The output of
the Specialiser is also a design specification, so the Special-
iser may be seen as a source-to-source program
transformation.

A design is composed of a set of modules and
connections between modules. With each module is
associated a set of ports between which connections are
specified, which may be used for input and output.
Modules can be composed hlerarchlcally, by which
means modules are specified in terms of other module
specifications. At the bottom of the hierarchy are found
primitive elements, which depend on the technology
being used. In this paper we shall consider cases where
digital logic gates are considered primitive, and where p-
and n-transistors are considered primitive.

Refer to Fig. 1. A design is presented as a set of Horn
clauses shown here in Edinburgh Prolog syntax. A
module having n ports is represented as a predicate of
arity n. A module may be specified as a Horn clause in
which the head of the clause represents the module to be
defined, and the body of the clause is a composition of
submodules defining the module. The submodules
comprising a given module are composed with the
comma connective. Ports within a given design that share
a unique common connection are represented by a
unique like-named varlable The ‘:—’ operator is
re-interpreted to mean ‘is defined by’. The order of the
modules in the body of the clause is not important.

A : Half adder |

E — s
B :

| M1 ;

i Do~

(a) The half adder is specified as the formula:
halfadd(A,B,S,C) :- xor(A,B,S), nand(A,B,T), not(T,C).

(b) The adder/subtractor is specified as the formula:
addsub(A,B,C,AS,S,C0) :-
halfadd(B,C,T1,T2),
halfadd(A,T1,S,2),
xor(A,AS,T3),
and(T1,T3,T4),or(T2,T4,CO).
Fig. 1

496 THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986

For example, in Fig. 1(a), the halfadd module is
composed of three gates with connections named by
variables as shown. The variable T defines the hidden
connection between the output of the nand gate and the
input of the inverter. In Fig. 1(b), two instances of the
half-adder are used to define a full 1-bit adder/subtractor,
a circuit which either adds or subtracts depending on the
state of the AS input. Note the use of void variable 2 to
represent the unused carry-out from the first half-adder.

In this example, we have considered the logic gates to
be primitive, and they can be defined (again using Prolog)
in terms of their Boolean truth tables. For example,
the two-input exclusive-or gate is represented as xor
(A,B,C) having inputs A and B, and output ¢,and is
defined by the clauses

xor(0,0,0).
xor(0,0,1).
xor(1,0,1).
xor(1,1,0).

If it is necessary to specify the input and outputs of this
module, then the additional unit clause

direction(xor(A,B,C),[A,B], [C])

May be used to project the arguments into a list of inputs
and a list of outputs respectively.

3. DESIGN SPECIALISATION

A module can be specialised if it contains at least one =
unused output. The trivial case of specialisation is when S 3
the unused output is the only output of the module. InS
this case, the entire module can be removed from the =
desxgn with impunity. Removal of the module may result 2 o
in the disconnection of outputs from other modules, 3 3
which can be specialised in turn. Specialisation thus &
becomes a tree search rooted in each unused output of
a module, and propagating back through the inputs to &
the module. The tree search propagates though the O 0
design, inspecting only those parts of the design on a ©
direct path to the unused output.

The search through the design must also take account <
of hierarchical structure. Consider first primitive modules,
where specialisation results in no change in the hierarchy.
For primitive modules having all outputs unused, the
trivial case holds, and the module can be removed. For
primitive modules having at least one used output no
change can be made, and the search terminates. Now
consider non-primitives. If all outputs of a non-primitive
module are unused, then the trivial case again holds, and
the module is removed. However, given a non-primitive
module in which some but not all outputs are unused, it
may be necessary to recursively descend the hierarchy
into the module definition to determine whether any
submodules sourcing the unused outputs can be removed
from the definition of the module. Removing submodules
may have the effect of rendering redundant some of the
inputs to the module, and the search proceeds from there
after emerging from the recursion. But, before the search
continues, it is necessary to redefine the modified module
as a specialised version of the original module. In our
implemented system, redefined modules are placed in a
‘library’ from which they can be accessed in case another
module of the same specialisation is found elsewhere in

00/woo°dnoolwepeoe//:sdiy Woly papeojumoq

20z Iudy 60 Uo ysenb Aq

AUTOMATIC SPECIALISATION OF STANDARD DESIGNS

Al S1 AS B2 A2 S2

C Bl Al S1 AS B2 A2 S2

Adder/ i
subtractor —

wooTl

Adder/
subtractor

M2

.....................

M1 : i
i

....................

The two-bit adder/subtractor is specified as:
twobit(Al,Bl1,A2,B2,C,AS,S1,S2) :-
addsub(Al1,Bl1,C,AS,S1,T),
addsub(A2,B2,T,AS,S2,2).
Fig. 2

1
]
1
1
]
]
]
|
]
]
'
|
|

(@) The generated specification for the resulting
specialised module is:

g0041(A,B,C) :- xor(A,B,C).

__

(b) The generated specification for the resulting specialised

module is:

g0065(A,B,C,S)
Fig. 3

:- g0041(B,C,T), g0041(A,T,S).

the circuit. If an attempt is made to specialise a module
having a given pattern of unused outputs, the library is
first scanned for a definition which, if found, immediately
replaces the module under consideration.

Applying this technique to digital circuits can be
demonstrated by means of an example shown in Fig. 2.
Consider the two-bit adder/subtractor twobi t which is
defined using the modules shown in Fig. 1. The carry
output of the last stage of twobit is unused. Given the
top-level goal of specialising twobit, the Specialiser
proceeds as follows.

(1) Inspect the modules of twobit, findingaddsub
M2 with an unused output. Recursively enter the defini-
tion of addsub with the goal of specialising it.

The generated specification for the resulting
specialised two-bit adder/subtractor is:
twobit(Al,Bl1,A2,B2,C,AS,S1,S2) :-

addsub(Al,B1,C,AS,S1,T),

g0065(A2,B2,AS,S2).
Fig. 4

(2) Thefollowing modules are removed fromaddsub:
the or-gate M1, the and-gate M2, and the xor-gate M3.
The half-adder M4 now has a disconnected carry
output, so recursively enter the definition of halfadd
with the goal of specialising it.

(3) Thefollowingmodulesare removed fromhal fadd
Ma4: inverter M1 and nand-gate M2. No other module
with unused outputs remains in halfadd, so now
preparations are made to return to the next higher level
of the circuit hierarchy. The specialised half-adder is
added to the library with a generated unique name, in
this case G0041 (see Fig. 3(a)). Module halfadd M4 is
now replaced by module G0041.

(4) The one remaining module in addsub having an
unused outputishal faddMS5. Because a half-adder with
an unused carry output exists in the library as module
G0041, a copy of G0041 replaceshal faddM5. No other
module with unused outputs remains inaddsub,so now
preparations are made to return the next higher level of
the circuit hierarchy. The specialised adder/subtractor is
added to the library with a generated unique name, in
this case G0065 (see Fig. 3(b)). Module addsub M2 in
twobit is now replaced by module G0065.

(5) Propagation continues along the AS input of
addsub M2, but search terminates because the AS line
sources a used input (ASofaddsubM|1). No other mod-
ule with unused outputs remains in twobit, so now
control returns to the top level of the circuit hierarchy.

By convention, the top-level circuit is not added to the
library, so the final result is the circuit shown in Fig. 4.

4. EXAMPLES

The Specialiser has been tested on a variety of small
modules in the domain of digital design. For each
module in a circuit, the Specialiser needs to know the
direction (whether input or output) of each port. For
testing the Specialiser it is sufficient to manually specify
a unit clause for predicate direction (see above).
However, there are circumstances where is it preferable
to decide directions automatically by flow analysis. This
is especially useful in CMOS transistors, for which the
sources and drain ports can be used as either inputs or
outputs interchangeably. A program that decides

THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986 497

32

cPJ 29

¥20¢2 I4dy 60 Uo 1senb Aq 2G2926/56+/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

W. F. CLOCKSIN

(a) The CMOS inverter is specified as:

inv(A,B) :- ntrans(A,0,B), ptrans(A,l,B)

(b) The RAM cell is specified as:

ram(A,B,L,NL) :-
ntrans(L,A,T1),
inv(T1,T2),
inv(T2,B),

ntrans(NL,B,Tl).
Fig. 5

directions for modules within Horn clause circuit
specifications has been written® and can be used to
pre-process circuits given to the Specialiser.

Fig. 5 shows the specification of a dynamic memory
cell® together with a specification of the inverter used by
the memory cell. An 8-bit register was specified in a
circuit, of which only 5 bits were used. The Specialiser
correctly generated the specification of a 5-bit register.
Fig. 6(a) shows a circuit for generating the sixteen
functions of two inputs. The function generator was used
in a circuit in which only the second to fourth functions
were used. The Specialiser correctly generated a
specification of the function generator shown in
Fig. 6(b).

Fig. 7 shows part of a full adder constructed with
CMOS transistors. The associated carrygenerator that
sources NCA is not shown. The interesting feature of this
circuit is the use of two transistors, M1 and M2, which
conduct in different directions depending on the inputs
to the adder. Therefore the direction of the transistors
cannot be determined, and as a consequence the direction
of transistors M3-M6 cannot be decided.’ Nevertheless,
the Specialiser is able to make specialisations of this
circuit, but transistors M1-M6 are never removed. For
example, if the SUM output were unused, then the only
action available is to remove the two transistors making
up the inverter at the last stage.

A B

D ey Eeaiad
D e
R AR

(a) The original function generator

Q1 Q; Qs
(b) The generated specialised function generator

Fig. 6

The portion of a CMOS full adder that computes the sum is specified as:

sumpart(A,B,C,NCA,SUM) :-
ptrans(NCA,T1,1),
ptrans(C,1,TS),
ptrans(B,T1,TS),
ptrans(A,T1,T2),
ptrans(NCA,TS,T2),
ptrans(T2,1,SUM),
ntrans(A,T2,T3),
ntrans(NCA,T2,T6),
ntrans(T2,SUM,0),
ntrans(B,T3,T6),
ntrans(NCA,T3,0),
ntrans(C,T6,0).

Fig. 7

498 THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986

¥20¢2 I4dy 60 Uo 1senb Aq 2G2926/56+/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

AUTOMATIC SPECIALISATION OF STANDARD DESIGNS

The specification resulting from merging two levels of the

model hierarchy:

g0065(A,B,C,S)
Fig. 8

:- xor(B,C,T), xor(A,T,S).

5. DISCUSSION

The proprietary design automation aid Chipsmith?
removes redundant circuitry at the mask and geometric
level. Whilst this may achieve a similar effect as
Specialisation applied to the particular domain of digital
design, the purpose of Specialisation is to rewrite the
circuit specification. Chipsmith does not rewrite the
specification. Thus the user will never know how removal
of redundant circuitry will change the original specifi-
cation, and he will not have the advantage of using a
modified specification for further processing (the
modified netlist may be obtained by using the EXPAND
command though). By contrast, the user of the
Specialiser will have automatically generated a minimal
set of new module specifications which can be examined,
placed in a library, and subjected to further processing.

There are further differences between Chipsmith and
Specialisation. Chipsmith needs to know input/output
specifications. Specialisation does not, because this is
provided by another specification-rewriting program.s
Chipsmith does not exploit the modular decomposition
of circuits to aid in removing redundant components. In
Chipsmith, the whole circuit has to be flattened before
circuitry can be removed. This is not the case with
Specialisation, in which the circuit hierarchy is searched,
and any effects of removing modules are propagated
throughout the structure. This is much less computa-
tionally complex than searching a flattened circuit.

Two consequences of using the Specialiser are as
follows. First, the technique ignores the timing effects of
removing components of a circuit. In some cases,
propagation times are calculated carefully by the
designer so that the circuit meets a set of temporal
constraints. Removing unused components from the

REFERENCES

1. R. F. Ayres, VSLI: Silicon Compilation and the Art of
Automatic Microchip Design. Prentice-Hall, Englewood
Cliffs, N.J. (1983).

2. J. W. Batten, Prolog : Its Potential for Hardware Description
and Verification. Department of Computation, University
of Manchester Institute for Science and Technology
(UMIST) (1983).

3. W. F. Clocksin, Logic Programming and the Specification of
Circuits. Technical report, Computer Laboratory, Univer-
sity of Cambridge (1985).

4. W.F. Clocksin and C. S. Mellish, Programming in Prolog.
Springer-Verlag, Heidelberg (1981).

circuit may cause the temporal constraints to be violated
in subtle ways. Unused components obviously will not be
on a datapath for which propagation delay along the
path will be relevant. However, unused components may
consume power and dissipate heat, and may thus affect
propagation delays of physically neighbouring circuitry
when removed. Such higher-order effects on design are
not taken into account by the specialisation technique
reported here.

The second consequence is that the library into which
specialised module definitions are stored contains no
information about the physical layout of the module.
This is due to the specification language for modules,
which represents only connectivity and functional
constraints, and not geometric constraints. After a circuit
has been specialised, therefore, it is necessary to use some
other method to generate the layout of each module
added to the library. The extent to which layout
generation can be performed automatically is an active
area of research.

The Specialiser can also be used in a less sophisticated
application, choosing modules from a very large cell
library. In this application, the designer is familiar with,
say, a dozen popular modules, but complete cell layout
information for perhaps hundreds of specialised variants
is stored in a library. The Specialiser replaces a given
module in a circuit only if the desired variant can be
found in the library. Otherwise, the module is not
changed.

Another area yet to be explored is the automatic
modification of the hierarchical structure of the circuit.
For example, the specialised circuit G0065 shown in Fig.
3 could well be defined as shown in Fig. 8, merging two
levels of the hierarchy. A library entry for the somewhat
singular module G0041 would thus not be required.
Likewise, in Fig. 4, the definition of G0065 is small
enough that the two exclusive-or gates may as well be
substituted into the circuit. This situation could be
detected by either of several heuristics.

@ The contents of very small modules would be
substituted directly into a circuit (macro expansion).

@® A generated specialised module found to be
functionally equivalent to an existing module in the
library would not be placed in the library, but the
existing library module would be used instead. This
is the case with module M0041, which is functionally
equivalent to the library entry for an exclusive-or
gate.

Acknowledgements

I thank Mike Gordon, Inder Dhingra, Donald Gaubatz
and Miriam Leeser for advice.

5. W. F. Clocksinand M. E. Leeser, Automaticdetermination
of signal flow through MOS transistor circuits. Integration
4, 53-63 (1986).

6. A. Fusaoka, H. Seki and T. Takahashi, Description and
reasoning of VLSI circuit in temporal logic. New
Generation Computing 2, 79-90 (1984).

7. Anon., Chipsmith Brochure. Lattice Logic, 9 Wemyss
Place, Edinburgh (1984).

8. D. Svanazs and E.J. Aas, Test generation through logic
programming. Integration 2, 49-67 (1984).

THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986 499

32-2

¥20¢2 I4dy 60 Uo 1senb Aq 2G2926/56+/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

