Implementations of the CSP Notation for Concurrent Systems

M.ELIZABETH C. HULL

Department of Computing Science, University of Ulster at Jordanstown, Shore Road, Newtownabbey, Co. Antrim, BT37 0Q B, Northern Ireland

In his paper ¢ Communicating sequential processes’, C. A. R. Hoare introduced a concept for the design of concurrent
systems. His proposal was intended as a notation and little consideration was given by Hoare to subsequent
implementation. Much discussion has taken place concerning associated problems, and recommendations for

enhancement have been put forward.

This paper surveys the languages which have resulted from his proposal and discusses three of these languages.

Received February 1985

1. INTRODUCTION

In ‘Communicating sequential processes’ (CSP),! Hoare
outlines an approach to program design by presenting a
notation for processes executing concurrently, and
communicating directly by means of input and output
commands. However, the emphasis in the paper is very
much on notation, and little consideration is given to
subsequent implementation.

Previous papers have attempted to highlight some of
the problem areas associated with CSP, and to propose
solutions. This paper will deal with these issues in detail.
However, before progressing to that stage, Section 2
gives an overview of the CSP notation. Section 3
considers the proposals for enhancement ranging from
problems of nondeterminism and synchronisation and
the introduction of communication channels to the
consideration of output guards. Section 4 discusses the
proposed implementations and how they have incorpor-
ated the proposals already discussed. Finally, Section 5
summarizes the major issues and comments on the way
forward.

2. OVERVIEW OF CSP

CSP is a notation for programming concurrent systems.
Central to it are input and output commands as basic
primitives, and the concept of Dijkstra’s guarded
commands.? A CSP program is a fixed number of parallel
processes, each of which consists of a series of sequential
statements.

The input command takes the following format
{source) ? {variable)
where source is the name of a process and variable will
store the result of the input, for example
producer ? item

If the source process is terminated the input fails,
otherwise the communicating process waits until the
source process is ready. In order for the input not to fail
the value must match and is assigned to the variable.

The output command takes the following format
{destination) ! {expression)
where destination is the name of a process and expression
gives the value to be output, for example
consumer ! item

If the destination process is terminated the output
fails, otherwise the communicating process waits until
the destination process is ready. The expression is then
evaluated and its value transmitted. In order for the

output not to fail the value must match the variable to
which it is assigned.

The rules for matching structures are twofold:

(i) any simple variable will match any value of its own

type;

(ii) if the variable is structured then

(a) the tags are the same, and

(b) the variable lists are the same length, and

(¢) each variable must match its counterpart value.
In a CSP program, the processes of the parallel command
execute concurrently with one another. The parallel
command terminates when all its constituent processes
have terminated.

To complete the overview, the use of guarded
commands must be considered for controlling nondeter-
minism. The alternative and repetitive commands are
based on this concept. A guard is an evaluation of a
boolean expression. If the guard succeeds, i.e. if the
boolean expression is true, then the statement is
executed. If the boolean expression is false the guard
fails. An extension of this is represented in CSP by the
alternative command, which consists of a number of
guarded commands, exactly one of which is to be
executed, e.g.

[guard,> — {statement,)
< guard,) — {statement,)

[O<guard,) — {statement,)

A repetitive command is simply an alternative command
repeatedly executed

* [Kalternative command)]

Two examples will be used throughout this paper to
illustrate various points. The first is the well-known
problem of the producer and consumer acting on a
common buffer. The outline structure for this problem in
CSP is as follows
producer_consumer :

[producer:: {produces item for input to buffer}
//

buffer:: {holds array of items}

/!

consumer:. {receives item and uses it}

1

Three processes are required playing the role of the
producer, the buffer and the consumer respectively.

500 THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986

20z I4dy 60 U0 1senb Aq 19292G/005/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

IMPLEMENTATIONS OF CSP NOTATION FOR CONCURRENT SYSTEMS

The other example which will be used in this paper is
that of a simple batch operating system. An absurdly
simple view of such a system might be three processes
executing in parallel. A cardreader process reads cards
from the reader and sends the card image to the execute
process which performs the computation. The execute
process then passes the generated output line to the
lineprinter process for output to the printer. The overall
structure is as follows:

operating_system::

[cardreader:: {read card from reader and pass image to
execute process}

/1

execute:: {accepts images, performs computation and

passes generated output to lineprinter
process}

// ,

lineprinter:: {takes images from execute process and

prints line on printer}
]
Communication between a pair of processes occurs by
means of input/output commands. One process names
the other from which it is prepared to receive input and
the other names the first as its destination process for
output

buffer::

[....; consumer ! content(i)]
consumer::

[.... buffer ?item;]

These operations take place simultaneously, having the
effect of the input and output commands described
above.

The facilities of CSP are demonstrated in the following
CSP solutions to the examples being considered.

Example 1. Producers and consumers problem
producer_consumer: :
[producer::
*[{generate item} — buffer ! item]

buffer::
[content: (0. .n-1) item;

incount, outcount: integer;

incount: = 0; outcount: = 0,

*[incount < outcount+n; producer ? content
(incount mod n) — incount: = incount + 1

[Joutcount < incount; consumer ? request() —
consumer | content(outcount mod n);
outcount: = outcount + 1

]
//
consumer::

*[buffer ! request(); buffer ? item; {use item})
]

Example 2. A simple operating system
operating_system::
[cardreader
*[{read a card from reader} — execute ! card)

execute::
*[cardreader ? card — {process card and generate
line} lineprinter ! line

]
//
lineprinter :
*[execute ? line — {print line on printer}]

]

3. PROPOSED ENHANCEMENTS
3.1 Communication Channels

The main features of CSP concerned with communication
are as follows.

(i) Communication between processes is achieved by
means of input/output commands. This is the central
feature to the CSP notation.

(i) To communicate, a process must name a destina-
tion process explicitly.

(iii) Processes do not share data, but do have their
own local data structures.

Silberschatz? has proposed an alternative to the
explicit naming approach. His proposal is that a process
should name a port through which communication
would take place. Each process would declare local port
names:

send, receive : port;

The process which declares these ports is designated as
the owner of the ports. A process which does not own a
port may use it as follows:

use (send, receive);

In general a port has only one owner and several users.

If two processes wish to communicate they must be
connected by a common port, the latter being owned by
one of the processes. In Silberschatz’s proposal input/
output commands are used for communication as in CSP,
the only difference being that port names are substituted
for process names:

receive ? {target variable)

send | {expression)

We can see this more clearly by considering the problem
of the producers and consumers.
producer::
use request;
*[{generate item} — request ! item]
//
buffer::

request : port;

content : (0. .n—1) item;

incount, outcount : integer;

incount: = 0; outcount: = (;
*[incount < outcount +n; request ? content
(incount mod n) —
incount: = incount + 1
[Joutcount < incount; request ! content
(outcount mod n) —
outcount: = outcount + 1

]
//
consumer ::

use request;

*[request ? item — {use item}]

The process buffer is the owner of the channel request,
which is used by the producer and consumer processes
for communication.

As a further example we can consider the problem of
the simple batch operating system.

THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986 501

20z I4dy 60 U0 1senb Aq 19292G/005/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

M.ELIZABETH C. HULL

cardreader::
cardimage: port;
*[{read a card from reader} — cardimage ! card)

execute::
use cardimage, lineimage;
*[cardimage ? card — {process card and generate line}
lineimage ! line
]
//
lineprinter::

lineimage : port;

*[lineimage ? line — { print line on printer})

In this case the execute process uses two ports cardimage
and lineimage owned by the processes cardreader and
lineprinter respectively.

The introduction of ports suggests that there is an
alternative to the direct naming concept, i.e. that every
input and output command must name its source and
destination process explicitly. Instead processes commu-
nicate through ports which are named. This can be
further extended to allow arrays of ports to be declared,
distributed as necessary over several processes.

3.2 Synchronisation and nondeterminism

In a CSP program activities are synchronised by means
of inter-process communication. Implicit synchronis-
ation restricts parallelism, as the source process cannot
send a communication until the destination process is
ready to accept it, which in turn leads to a degradation
in performance. To overcome this synchronisation, the
need to buffer output from a process has been suggested.*
This leads to the formation of input/output ports which
have already been discussed in the previous section and
facilitates asynchronous communication.

The constructs available in CSP for selection may be
criticised for forcing the programmer to use non-
deterministic constructs to express deterministic behav-
iour. That is, the programmer cannot control the selection
in an alternative command but instead relies on the
fairness of the implementation. It must be said, however,
that the constructs are useful when the programmer
cannot determine the order in which concurrent
processes will be ready to execute or the programmer is
not concerned about the order in which certain actions
are performed.

It is recognised that the introduction of boolean
variables into the guard is not the answer,> and
suggestions have therefore been made to allow nonde-
terminism to take place only between equal priority
guards.

3.3 Output guards

In CSP output commands may not appear in guards.
Bernstein® and others have given reasons in opposition
to this idea. Many examples can be given of processes
which must execute an output statement, and since it
cannot appear as part of a guard it must wait until a
corresponding input statement is executed. This can lead
to unnecessary delay for a process. Another example is
the all too frequent, awkward structure of a ‘double’

output/input command. For example, in the producer
consumer problem:

buffer ! request(); buffer ? item
where the request () signal informs the buffer process that
the consumer process is ready to receive another item.
In the buffer process itself there is the following
statement :

outcount < incount ; consumer ? request() —

consumer ! content (outcount mod in);

outcount: = outcount + 1
Neither it nor the previous statements would be
necessary if the following was permitted:

outcount < incount ; consumer \ content

(outcount mod in) — outcount: = outcount + 1
Thus the output guard avoids the need for the request()
signal in the consumer process.

Buckley and Silberschatz® concur with this approach
and propose an implementation for such a construct.
They have identified four criteria which influence the
efficiency of an implementation of an alternative
command with input/output. These are:

(i) only a small number of processes should be
involved in synchronising two processes which wish to
communicate;

(i) the information required by processes for a
decision to be made about communication should be
minimal;

(iii) there should be a time limit on how long two
processes take to establish communication;

(iv) the message overhead between processes to
establish communication should be small.

Buckley and Silberschatz present an algorithm support-
ing this argument.

4. THE IMPLEMENTATIONS

This section considers three separate implementations
which have been directly influenced by CSP. It is not
intended that the following sections should give a
complete description of the languages, but rather an
overview, with a clear explanation of how much has been
influenced by CSP and, more importantly, how each has
taken into account the proposed enhancements for
implementation already discussed in the previous
section. Two of the languages considered come from the
academic community and the third is a commercially
available language.

4.1 A communicating sequential process language

T.J. Roper and C.J. Barter from the University of
Adelaide developed a language described in ‘A com-
municating sequential process language and implementa-
tion” (COSPOL).” This language is strongly influenced
by CSP and includes the parallel command, process
communication by messages and the use of Dijkstra’s
guarded commands for controlling non-determinism.
However, in the area of process communication this
proposal differs significantly. Messages are selected for
input, by a process, on their ‘construction’. Most
significantly, the sending process plays no part in the
message reception. Indeed communication is built on the
concept of a port, an input port being associated with

502 THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986

20z I4dy 60 U0 1senb Aq 19292G/005/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

IMPLEMENTATIONS OF CSP NOTATION FOR CONCURRENT SYSTEMS

more than one output port. Automatic buffering of
messages is assumed rather than the synchronous
communication in CSP.

A program consists of a parallel command which is a
number of communicating sequential processes. The
command list specifies sequential execution of its
constituent commands and, apart from those associated
with message passing, they take a similar form to those
in CSP. The messages consist of a constructor applied to
a set of slots. They are received by input commands,
being specified by the notation of message construction.
A process executing an output command need not wait
until the message sent is received before continuing — a
process outputs a message of construction to a process
label. In this sense the concept of process naming is
supported.

To illustrate the language COSPOL, consider a
solution to the producers and consumers problem:
[producer_consumer::

[producer::

message send (item:char);
*[{generate item_in} — buffer ! send (item ~ item_in))

//

buffer::

const n = 10;
var in, out:integer;
message send (item:char);
request (from:ref);
receive (item:char);
in: =0; out: =0;
*[in < out+n; ? send —»
content (in mod n): = send.item
[lJout < in; ? request —
request.from ! receive (item ~ content(out mod n));
out: = out+1

]
//
consumer :
message receive(item : char);
request (from : ref);
*[buffer ! request(); ? receive; {use receive.item}]

]

The communication interfaces between the producer,
buffer and consumer process are defined by the process
labels and the message constructions send, request and
receive — the input commands ?send and ?request in the
guards of the buffer process provide the two interfaces,
and the message slots are used to pass value parameters.
The destination for the receive message is dynamically
determined, and hence the buffer process is independent
of the processes with which it communicates.

In summary, the state of COSPOL is as follows.

(i) It has made some movement towards the ideas of
port communication and the buffering of messages.

(i) The alternative command provides the sole
method for command selection.

(iii) No attempt has been made to introduce output
commands in guards.

(iv) Following the conventions of Pascal, type and
constant definitions have been introduced, together with
the declaration of ordinary variables.

(v) Standard input and output processes represented
by Pascal-like text files have been introduced.
The implementation was written in Pascal for the DEC

VAX-11/780 running under VMS, and has proved a very
satisfactory base on which to develop CSP-like
programs.

4.2 CSP/80

CSP/80® was also developed by academics, who wished
to develop a language based on CSP. Like COSPOL it
differs significantly from its parent.

A program consists of a number of separately
compiled processes which communicate with each other
using unidirectional channels. A channel connects two
ports, one in each process. Input and output statements
reference a port which is typed. When such statements
are executed the process is suspended until its partner
process executes the corresponding command. Synchron-
isation of processes therefore takes place. As in CSP,
CSP/80 has two non-deterministic constructs, the
alternative and repetitive commands. One of the main
differences is that CSP/80 supports the use of output
commands as part of a guard, however only one of a pair
of input/output commands may appear in a guard when
the ports are connected by the same channel.

To illustrate the language CSP/80, consider a solution
to the producers and consumers problem. This shows
quite clearly the declaration of a port to be guarded, and
that the linker can verify that only one end of such a
channel is guarded.
process producer::
output char port send,
char ch;

*[{generate ch} — ! send = ch;

end process

process buffer::

guarded input char port send;

guarded output char port receive;

const n = 10;

int in;

int out;

char content|n];

in=out =0;

*[in < out+n; ? content [in mod n) = send — in+ + ;
[Jout < n; ! receive = content [out mod n] — out+ + ;
]

end process

process consumer::

input char port receive;

char ch;

*[true — ? ch = receive; {use item})

end process

/* linker instructions */

char channel from produce.send to buffer . send,

char channel from buffer . receive to consumer . receive;

In summary, the state of CSP/80 is as follows.

(i) It has introduced the idea of ports proposed by
Silberschatz.

(i) It supports integer, character scalars and array
types, and this is currently being extended to any type
supported by the language C.

(iii) It is strongly typed, hence the introduction of
ports.

(iv) It supports modularity and the development of
libraries of processes.

THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986 503

20z I4dy 60 U0 1senb Aq 19292G/005/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

M.ELIZABETH C.HULL

(v) It has introduced the use of output commands in
guards.

(vi) Alternative and repetitive commands are the two
non-deterministic constructs.
The implementation was written in the C language for
the DEC PDP-11/45 running under UNIX.

4.3 Occam

Occam?® is the language developed by Inmos Ltd, based
on the concepts of concurrency and communication, and
designed for the professional programmer. It thus
develops the single idea of CSP, that for concurrent
systems one must define independent entities operating in
parallel with communication between such entities. In
Occam a process represents such an activity and a
channel forms the basic communication link between
two processes. This is an unbuffered structure which
allows information to pass in one direction only -
processes communicate with each other by sending and
receiving messages via a channel. A sending process may
have to hang up until a receiving process is ready and vice
versa; that is, a receiving process can read from a channel
which is full and a sending process can send a message
when a channel is empty.

Apart from processes, the basic mechanisms are
sequential, parallel and alternate statements together
with the WHILE construction for looping. Deterministic
choice is provided in Occam by means of the IF
construction. Occam is untyped, a value being one word
regardless of its meaning.

Occam is also intended as a design tool. Consider the
example of a single operating system outlined earlier in
this paper.

Starting with a diagram of the subsystems that form
the operating system, the design appears to be a network
of boxes, representing the functions connected by
labelled lines, representing the interaction. A designer
can map this directly into an Occam program:
OPERATING SYSTEM

PAR

PROCESS-cardreader

PROCESS-execute

PROCESS-lineprinter
Next the meaning and form of the Occam processes can
be defined in logical terms:

chan cardimage, lineimage:

par
while true
seq
{read a card from cardreader}
cardimage ! card
while true
seq
cardimage ? card
{process card and generate line}
lineimage ! line
while true
seq

lineimage ? line
{print line on printer}

As a second example, consider the problem of the
producers and consumers. The following Occam program
results:
chan send, request, receive:
par

while true

var item:
seq
{generate item}
send ! item
while true
def n = 10:
var content[n], in, out:
seq
in:=0
out: =0
alt
in < out+n & send ? content [in mod n]
in: =in+1
out < in & request ? any
seq
receive | content [out mod n)
out: = out+1
while true
var item:
seq
request | any
receive ? item
{use item}
In summary, the state of Occam is as follows.
(i) Processes communicate via channels.

Operating_system
Card Line- =
Card Cardreader are- Execute ! Lineprinter Line >
image image —
Figure 1

504 THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986

20z I4dy 60 U0 1senb Aq 19292G/005/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

IMPLEMENTATIONS OF CSP NOTATION FOR CONCURRENT SYSTEMS

(i) Communication is synchronous—-it can only
occur when both the input and output processes are
ready.

(iii)) Non-determinism
command.

(iv) Deterministic choice is possible using the if
construction.

(v) Output commands are not permitted in guards.

(vi) It is untyped - a value being one word regardless
of its meaning,.

The Occam Evaluation Kit was available under the
UCSD P-system for such machines as the Apple, Sirius,
IBM PC, VAX-11/780 and the LSI-11/23. The Occam
Development System is currently available for the
VAX-11/780 under VMS.

S. CONCLUSION

This paper has considered the major enhancements
considered necessary to convert a notation proposal into

is introduced by the alt

REFERENCES

1. C. A. R. Hoare, Communicating sequential processes.
CACM 21 (8), 666-667 (1978).

2. E. W. Dijkstra, Guarded commands, nondeterminacy, and
formal derivation of programs. CACM 18 (8), 453-457
(1975).

2. A. Silberschatz, Port directed communication. The Com-
puter Journal 24 (1) 78-82 (1981).

4. R. E. Kieburtz and A. Silberschatz, Comments on ‘com-
municating sequential processes’. ACM TOPLAS 1 (2),
218-225 (1979).

5. A.J. Bernstein, Output guards and nondeterminism in
‘Communicating sequential processes’. ACM TOPLAS 2
(2), 234-238 (1980).

an acceptable implementation language. As can be seen
from the three languages studied, all the enhancements
(in some form) have been utilised, but not all in the one
language. The most striking feature must be the addition
of ports (or channels) for process communication and the
move away from synchronous communication to achieve
an acceptable implementation. The concept of determin-
istic choice is one which one feels should be explicit in a
programming language, and a certain movement in this
direction has been recognised. The introduction of output
guards has gained least favour.

The development of such implementations leads
directly to proposals for methodologies to support the
development of programs written in such languages. It is
claimed that Occam is a language for design as well as
implementation. However development tools, in general,
are required to support such progress.

6. G. N. Buckley and A. Silberschatz, An effective implemen-
tation for the generalised input—output construct of CSP,
ACM TOPLAS 5 (2), 223-235 (1983).

7. T.J. Roper and C. J. Barter, A communicating sequential
process language and implementation, Software — Practice
and Experience. 11, 1215-1234 (1981).

8. M. Jazayeri et al. CSP/80: a language for communicating
sequential processes. In Proc. Fall IEEE COMPCON 80,
pp- 736-740. IEEE, New York (1980).

9. Inmos Ltd, Occam Programming Manual. Prentice-Hall,
Englewood Cliffs, N.J. (1984).

THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986 505

20z I4dy 60 U0 1senb Aq 19292G/005/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

