A UNIX-based System for Software Configuration Management

D. MACKAY, G. BALL, M. CROWE, M. HUGHES, D. JENKINS anDp C. NICOL*

Software Tools Research Group, Paisley College of Technology

This paper describes an approach to a project management which is sufficiently flexible to allow development
methodologies and objectives to vary from one project to another. Enhancements to the Unix C library are described
which allow all the usual Unix tools to support hierarchical file attributes, version control and controlled access, by using
this new library. Some additional utilities are provided to assist in project management. These have privileged access
rights, and their use is subject to restrictions imposed by a project schema.

Received August 1984

1. INTRODUCTION

Software configuration management (SCM) is concerned
with the control of changes to each of the many items
generated during the life cycle of a software product.!: 2
A large amount of information is produced during
development which must be carefully identified and
protected from unauthorised change, otherwise the
product will rapidly become uncontrollable. Configura-
tion management is a vital activity which must be
performed throughout the life cycle from project
initiation to release and evolution.

SCM is, without adequate computer-aided support, a
laborious and time-consuming task which is often
neglected by software developers. However, recently
interest has been aroused in software tools to assist the
activities of configuration management. The Department
of Trade and Industry STARTS guide lists a number of
currently available tools which offer support in this area.?
The STARTS guide lists thirteen functional requirements
for configuration management tools, but is unable to
identify any system which meets all of these require-
ments.

It is essential to any successful approach to SCM that
no software tool violates any constraints imposed. How-
ever, there are a number of competing methodologies for
software development, each of which has its own SCM
procedures, and at first sight it would appear that a new
software toolset is required for each new methodology,
however tentative.

This paper suggests an approach to SCM which
enables the popular software toolset provided in the
UNIX operating system to support a variety of SCM
procedures. A number of features common to many
SCM systems are identified, and supported in the UNix
C library, in such a way as to provide an SCM-oriented
file system with versions and controlled access. The UNix
toolset is then re-linked to use this library in place of the
standard C library. These tools then will respect the
procedures specified on a per-project basis by the project
schema, which also controls the use of some privileged
SCM utilities. The resulting environment is called the
Project Development Environment (PDE).

This work forms part of a three-year project begun in
September 1983, funded by the Science and Engineering
Research Council.

* Contact: Dr M. K. Crowe, Paisley College of Technology, High
Street, Paisley PA1 2BE.

2. CONFIGURATION MANAGEMENT
UNDER UNIX

UNIX is a general-purpose operating system in widespread
use, particularly in the academic and research
communities.? The file system is hierarchical, allowing
users to create directories containing files and possibly
other directories. Many of the UNIx commands can
operate recursively, allowing entire subtrees to be listed,
copied or deleted. The result is a flexible and convenient
system in which to develop software. However, UNIX is
deficient in support of SCM, failing to meet the
requirements given, for example, by McDermid and
Ripken.® In particular:

(1) It is not possible to have several versions of files
other than by making copies with different names.

(2) Relationships between files cannot be recorded
except by using ad hoc methods.

(3) The access control mechanism is not sufficient. For
example, to permit a user to delete a file from a directory,
it is necessary to grant permission allowing any file in
that directory to be deleted.

The PDE system, developed at Paisley College,
extends UNix by providing a set of tools and an
enhancement to the file system to overcome these
problems.® In order to meet the demand for SCM, a
number of tools, such as the Source Code Control and
Revision Control Systems, have been provided under
UnNix.” 8

The Source Code Control System is a tool for storing
and controlling changes to text files.” In SCCS all
versions of a file are stored as one file by recording only
the differences between successive versions. Versions are
protected from unauthorised access and modification.
SCCS has been widely and successfully used by many
projects. However, it has a number of disadvantages, as
follows.

(1) When a version is required it must be extracted
from the archive, and the resulting file is no longer under
the control of SCCS.

(2) It is not possible to identify configurations of files
(i.e. hierarchies) and place these under the control of
SCCS.

(3) It is not possible to have a default version other
than the most recent.

The Revision Control System,’ a more recent tool, is
similar to SCCS but offers some improved facilities. Both
of these systems are useful tools for managing revisions
to text files. However, recent surveys have shown them

THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986 527

¥20Z I4dy 01 uo 1senb Aq ¥6292G//25/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

D. MACKAY, G. BALL, M. CROWE, M. HUGHES, D. JENKINS AND C. NICOL

to be inadequate for comprehensive configuration
management.3

3. THE PROJECT DEVELOPMENT
ENVIRONMENT

The Project Development Environment (PDE) has been
developed by the Software Tools Research Group at
Paisley College with SERC funding.® The system
supports the idea of a project schema which allows
management to control and restrict operations on the
hierarchies under their control. The PDE’s facilities are
provided at the system call interface, which allows the
existing UNIX tools to be integrated with the PDE, in
most cases without modification. No change is required
to the UNIX kernel.

In the following discussion the term object refers to an
ordinary UNIX file or a directory.

3.1 Attributes

In Unix the directory objects provide a mapping between
file names and file objects. A file name is one of the
attributes of a file object. In addition each file object also
has a number of other attributes. These attributes are
recorded with the file name and include: the owner of the
file, access permissions and the last access time.

The PDE extends the facilities of UNIx by allowing
users to associate additional attributes with files subject
to per-project SCM requirements. Functions are pro-
vided, in a similar way to UNIx system calls to set an attri-
bute of a file, obtain the value of an attribute, obtain all
the attributes of a file, and delete an attribute. Many of
these functions are also available at command level as
utility programs. The user may access attributes using a
utility, ATT, provided by the PDE or by using a modified
version of the command interpreter, the shell. A utility,
FINDATTR, is provided to search part of the file
hierarchy for a given attribute.

For the purposes of defining the SCM requirements of
the project for an object it is desirable that some
requirements are inherited by the sub-objects of an
object. Thus an object is said to have property X if X is
an attribute of the object or one of its ancestors.
Properties are used by the controlled access mechanism,
and in controlling the use of some privileged SCM
utilities. The collection of attributes and properties for a
project is referred to in this paper as a project schema,
although the relationship with a database schema is
somewhat tenuous.

A small set of attributes known as hardwired attributes
are built in to the system for specific uses. These are as
follows.

ACCESS
This attribute augments the access controls provided
by UNIX, and is the basis of the controlled access
facilities, described later.
ADMINISTRATOR
The name of the maintainer of the project schema.
ARCHIVED
For objects archived by the ARV program, this
attribute contains the name of the user who archived
the object, and the data and time of the operation.

528 THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986

SYS_LOG
Also used by the controlled access facilities, this
attribute specifies the name of a file in which to place
log messages.

PRE_(tool name)

POST_(tool name)
Used in the selection of pre- and post-execution
programs.

3.2 Privileged SCM Utilities

The privileged utilities allow users to make controlled
changes to controlled objects. They have three phases of
operation: pre-execution, and post-execution.

The pre-execution phase checks that the requested
operation is permited, with respect to the project schema.
The post-execution phase records the successful comple-
tion of the utility. This may involve setting one or more
attributes, making a log entry, or sending mail to some
user. It may also take appropriate action if the utility fails
to complete successfully, such as restoring the previous
state of the system: this is possible since the actions of the
privileged utility are known to the pre-execution
program.

The functions of the pre- and post-execution phases
reflect the particular configuration management pro-
cedures being followed in the development of a project.
Since these functions may vary from project to project
they are not coded as part of the tools themselves.

The actions to be performed are defined by pre-
execution and post-execution programs which are
specified by the project schema. These programs will
usually be written as command scripts.

There are five privileged utilities as follows.

(1) ATT: update the attributes of an object.

(2) MKYV: make a version of an object.

(3) DEV: establish a version as the default version of
that object.

(4) REV: place an object under control.

(5) ARYV: archive/restore a version.

It is intended that project administrators will extend
the facilities of the basic environment by adapting the pre-
and post-execution programs and adding more specialised
tools, according to their requirements.

3.3 Version Control

In Unix it is only possible to have several versions of a
file by creating copies with different names. There is no
way of recording relationships between these copies.

The version control facilities of the PDE have the
following features.

(1) Several versions may simultaneously be available
as members of a family of versions under one name.
Individual versions may be selected by appending a
version identifier to the family name.

(2) A default version is available which is assumed if
no identifier is given. This need not be the most recent
version.

(3) Entire hierarchies can exist as a family of versions,
not just individual files. This is an important advance on
SCCS and RCS.

(4) No fixed version numbering or naming scheme is
enforced.

The program MKYV is used to make a new version of

Q

3

¥20Z I4dy 01 uo 1senb Aq ¥6292G//25/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

A UNIX-BASED SYSTEM FOR SOFTWARE CONFIGURATION MANAGEMENT

an object. The object may be a simple file or a
configuration object consisting of a directory and its
sub-objects. MKV takes two arguments: the name of the
object and the identifier of the new version to be created.
When MKYV is initially applied to an object it initialises
the version family for the object.

The user may archive versions using the ARV
program, which employs RCS to create and maintain the
necessary difference files.® The ARV program works on
both configuration objects and simple files and may be
used to unarchive any object which was previously
archived.

3.4 Controlled Access

UNix provides read, write and execute (or search)
permissions for files and directories. The PDE augments
these basic facilities by providing a controlled access
mechanism implemented by the use of the ACCESS
property. Five additional types are provided.

(1) Append to file, or create entry for a directory.

(2) Overwrite file, or delete entry for a directory.

(3) Delete object.

(4) Alter object attributes.

(5) Change default version.

The ACCESS property has a value consisting of a
five-character string each of which is one of the
following: y, allow access; n, disallow access; 1, allow,
but log access.

The PDE provides a program, REV, which may be
used to place an object under control. REV achieves this
by changing the ownership of the object, changing the
UNix file protection modes and setting the ACCESS
attribute such that all types of access are disallowed. The
pre-execution program for REV will normally consult
the attributes of the object to check that it conforms to
the schema.

4. IMPLEMENTATION

It was considered extremely important that the process
of adapting the standard UNix toolset for the PDE
should be as straightforward as possible. This was
achieved by implementing the facilities of version
selection and attribute management by a set of low-level
subroutines known as the PDE kernel, which are called
from the system call subroutines in the C library. This
kernel provides version selection and attribute manage-
ment.

The attribute management routines are available to all
UNIx programs as standard library routines. The
activities of version selection are hidden from the user,
but form part of the more general function which maps
a PDE object name on to that of the corresponding Unix
file or directory.

When within the PDE, the mapping function will be
invoked every time an object is accessed via one of the
UNIx system calls, for example those which are used to
open, close, rename and delete files and directories. The
existing system calls have been modified to do this, but
take no action if the request is made from outside the
PDE may refer to PDE objects in the same way as more
traditional UNix programs refer to files and directories.
Moreover, most existing UNIX programs may be
integrated with the PDE simply by incorporating the

modified system calls in place of the existing ones. This
is accomplished by re-linking the programs with the new
C library containing the modified system calls.

The PDE kernel functions make use of a table
associated with each directory, and stored as a hidden file
in the directory. This table contains, for each sub-object,
the attributes of the object, along with version
information. It augments the information about an
object which is held in the UNix directory. The mapping
table is locked during PDE updates, and a system of
timestamps prevents conflicting updates. Updates occur
during system calls such as CREAT or UNLINK and are
carried out by the PDE kernel. If an object has versions,
an extra UNIX directory is inserted which is invisible to
the user. The actual UNix path names of PDE objects
consist of anonymous digit strings selected by the PDE
kernel.

This table can be compared to the Common Apse
Interface Set!® notion of a node as a carrier of infor-
mation about an object. CAIS provides specifications
for a set of Ada packages designed to promote
portability of Ada development tools, and other
programs using the APSE. An earlier paper!! has shown
how the PDE could support this interface. An Ada
interface has been provided to the existing facilities and
is described in.1?

Experience with the current implementation has not
shown any appreciable slowing down of the system.
However, there is obviously some overhead associated
with version selection, and any program that needs the
PDE kernel is appreciably larger in size. A tempting
development would be to incorporate the PDE kernel
into UNIX by creating a new layer in the operating
system.

5. EXAMPLE

The following command scripts are examples of pre- and
post-execution programs for REV, the tool which places
an object under strict change control.

4# Pre-execution for REV.
Check for the existence of certain attributes,
signalling failure if not present.

if attr —n $1 TESTED
then
echo ‘Object not tested, cannot control’
exit 0
fi
if attr —n $1 CONTROLLABLE
then
echo ‘Object not controllable’
exit 0
fi
exit 1
4 Post-execution for REV.
Set an attribute and make log entry.
att $1 CONTROLLED
echo —n $1 ‘controlled on’: > [usr/pde/log
date > [usr/pde/log

The schema for a project is specified by giving the pre-
and post-execution programs for a project, and simply
setting these in the attribute list of a given object
(probably a directory), along with the name of the

THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986 529

34

CcPJ 29

¥20Z I4dy 01 uo 1senb Aq ¥6292G//25/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

D. MACKAY, G. BALL, M. CROWE, M. HUGHES, D. JENKINS AND C. NICOL

ADMINISTRATOR. A high-level language for speci-
fying the schema, so that the pre- and post-execution
programs are generated automatically, is an interesting
possibility that has not yet been tackled.

It is crucial to the PDE concept that all normal
software development tasks proceed using the standard
UNIx toolset, which will operate normally except for the
object-naming conventions and version selection. Apart
from the shell, and some file-oriented utilities such as rm
and Is, no change to Unix utilities is required.

The small set of privileged SCM utilities provided may
be extended if required, through use of the PDE system
calls. A privileged SCM utility would run in ‘setuid-root’
mode, though the pre- and post-execution programs
would not. For reasons of space, it is not possible to print
the source text of any of the privileged utilities described
above (which are written in Pascal). But the following C
source of a function to get a property may be of interest.
It uses two of the PDE system calls, PDE_pname and
PDE_gattr.

include {pde/attr.h)

char *
get_property(p_name,o_name)
char *p_name, *o_name;

/* Return value of property {p_name) of object
{0_name) */

{
char *p_val;
char *fullname, *np;
int p_stat,

/* Calculate primary pathname of object */
if (!(fullname = PDE_pname(o_name))){
perror(o_name);
return (char *)0;

REFERENCES

1. E. H. Bersoff, V. D. Henderson and S. G. Siegel, Software
Configuration Management, Prentice-Hall, Englewood
Cliffs, N.J. (1981).

2. J. K. Buckle, Software Configuration Management, Mac-
millan, London (1982).

3. Department of Trade and Industry, Software Tools for
Application to Large Real Time Systems (STARTS).
H.M.S.0. (1984).

4. D. M. Ritchie and K. Thompson, The Unix Time Sharing
System. The Bell System Technical Journal 56 (6), 1904—
1929 (1978).

5. J. McDermid and K. Ripken, Life Cycle Support in the Ada
Environment. Cambridge University Press (1984).

6. D. Mackay, The Project Development Environment:
Specification, Software Tools Research Group — Internal
Report No. 6, Paisley College of Technology, Paisley,
Scotland (1984).

7. M. J. Rochkind, The source code control system. IEEE

530 THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986

p_stat = PDE_gattr(fullname,p_name,&p_val);
while (!(p_stat = = SET || p_stat = = VALUED)){
if (p_stat < 0){
/* error in calculation */
perror(o_name);
return (char *)0;

/* trim last component off name */
np = fullname + strlen(fullname);
while (*np!="/")
np—;
if ((np-1) = = fullname)
/* at start of name-property not set */
return (char *)0;
np =’\0’; / mark new end of name */
p_stat = PDE gattr(fullname,p_name,&p_val);
}

/* property must be set if we get here */
return ((p_stat = = VALUED)p—val:(char *)0);
}

6. CONCLUSIONS

An extension to UNIx has been described which provides
better configuration management facilities in a flexible
way. These facilities are provided at system call level,
allowing the existing tools to benefit from their
advantages.

The system as described above is under evaluation at
two sites, and is available to other participants in the
Alvey Programme. Continuing development work on the
PDE will be concerned with providing typing of file
attributes, a project schema definition language, and
further investigations into the implementation of the
CALIS specifications. In addition, a comparative study is
being made of the PDE and other configuration man-
agement tools.

Transactions on Software Engineering SE-1 (4), 364-370
(1975).

8. W.F. Tichy, Design implementation and evaluation of
a revision control system. Proceedings of the 6th Inter-
national Conference on Software Engineering, IEEE, Tokyo
(1982).

9. M. Hughes, Arv — an online archiver for the PDE, Software
Tools Research Group — Internal Report No. 5, Paisley
College of Technology, Paisley, Scotland (1984).

10. US. Department of Defense and KIT/KITIA CAIS
Working Group for the Ada Joint Program Office, Draft
Specification of the Common APSE Interface Set, Version
1.2, CAIS (1984).

11. M. K. Crowe et al. Supporting the CAIS from UNix. Ada
UK News 5 (1), 48-50 (1984).

12. D. Mackay, Providing an Ada interface to the PDE,
Software Tools Research Group, Paisley College of
Technology, Paisley, Scotland (1985).

¥20Z I4dy 01 uo 1senb Aq ¥6292G//25/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

