A Structure-directed Total Correctness Proof Rule

for Recursive Procedure Calls

P. PANDYA* anD M. JOSEPH

Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

Recursive procedures have been extensively used for a long time, yet it was only in 1977 that Sokolowski gave a proof
rule for the total correctness of recursive procedure calls. Unfortunately, even for simple programs his rule requires the
use of complex predicates that encode information about the depth of recursion. Thus the rule can be very difficult to use
Jor practical programs. In this paper we propose a new rule for this purpose. This rule makes use of the structure of the
recursion which is discovered by carrying out an interval analysis of the procedure call graph in the proof. Proofs using
this rule are simpler to carry out, and it is shown that Sokolowski’s rule is in fact a special case of the new rule.

Received March 1985

1.0 INTRODUCTION

In the past fifteen years, proof rules have been defined for
almost every program construct and several methodol-
ogies based on these proof rules have been proposed for
program development.! There is evidence that program-
mers in industry are beginning to use such formalisms in
the design and verification of their programs. Hence it is
crucial to examine these rules for their convenience of use.
In this paper, we discuss the pragmatics of proving the
properties of one fairly common program feature: the use
of mutually recursive procedure calls.

Harel* has classified program proof techniques as
either data-directed or syntax-directed. A data-directed
technique uses reasoning (like induction) about the state
of the data manipulated by the program; the structure of
the control flow of the program is not directly used in the
proof. In syntax-directed techniques, programs are
looked upon as composed of syntactic entities, such as the
while or if constructs, and assertions are attached to these
entities at well-defined points. Rules® are given to
compose the proofs of component entities into the proof
of the whole program.

Syntax-directed methods offer many advantages. The
complexity of the proof is reduced, as a program may be
broken into syntactic components whose separate proofs
can be combined to give the proof for the whole program.
Thus the proof technique is compositional. Proofs follow
the structure of the program, and are usually easy to
understand ; moreover, such proofs and programs can be
developed hand in hand.4?

An important characteristic of a program proof is the
extent to which it makes use of abstractions, i.e. the
degree to which assertions used in the proof disregard
those aspects of the working of the program which do not
affect the property being proved. Abstraction is difficult
to characterise formally, and therefore has hardly been
studied; but it is an important pragmatic consideration.
Proof rules can differ in their capacity to admit
abstraction. For example, there are two well-known
forms of the total correctness proof rule for while loops2,
one requiring the value of the bound function to decrease
by exactly 1 and the other only requiring the value to
decrease (by an arbitrary amount), on each iteration.
Both rules are consistent and arithmetically complete.

* To whom correspondence should be addressed.

But the first forces the programmer to encode information
about the number of iterations into the loop invariant.
For many programs this can be extremely inconvenient,
and the second rule is generally preferred for use in the
proofs of real programs.

Sokolowski® has given a proof rule for the total
correctness of recursive procedure calls. By Harel’s classi-
fication this rule would be described as data-directed.
As shown later, this rule can be difficult to use in practice
because of its dependence on details of the depth of
recursion. This results in the use of predicates that are
often complex and non-intuitive, even for simple
programs. Since recursion plays a significant role in
sequential programs as diverse as compilers and
mathematical software, we have been investigating other
techniques for proving the total correctness of recursive
procedure calls. This paper describes a structure-directed
rule for this purpose. The proof involves showing that no
cycle in the procedure call graph can cause infinite
recursion. By carrying out interval analysis of the
procedure call graph, it is possible to identify a set of
procedures that ‘cover’ all the cycles in the call graph. We
call such a set a header set. The new rule is based on
induction over the number of calls to procedures in the
header set and thus does not require analysis of the depth
of recursion. Proofs using this rule are relatively simple
to carry out. Moreover, it can be shown that
Sokolowski’s rule is a special case of the new rule.

2.0 TOTAL CORRECTNESS PROOF RULES
FOR RECURSIVE PROCEDURE CALLS

A procedure P is said to be directly recursive if in its body
it contains calls to itself, and indirectly recursive if there
exist procedures P,, P,, ..., P, (n > 1) such that each
P;, 1 <i < n, contains a call to P, and P, has a call to
P,. An activation of a recursive procedure may give rise
to an arbitrarily long activation sequence at run-timer,
even infinitely long if the recursion does not terminate.
Procedure P is said to terminate with respect to a given
precondition if any activation of P satisfying its
precondition results in only a finite activation sequence.

Assume that thereis a set of procedures S = {P,, ..., P}
closed upon mutual calls, i.e. these procedures do not call
any procedure not belonging to S. The procedures are
defined by

THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986 531

34-2

¥20Z I4dy 01 uo 1senb Aq £0£9ZG/1£5/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

P. PANDYA AND M. JOSEPH

{Pre: q,}
{Post: r,}

proc P;: B, (call P, ..., call P,) end;

{Pre: q,)
{post: r,}

proc P,,: B, (call P, ..., call P,) end;

Where B, is the body of procedure P; which may contain
calls to procedures P,, ..., P,. Sokolowski’s rule can be
defined as follows.

Definition
valid-call (Procset, depth) A
V;:P;eProcset: {q; (depth)} call P; {r;}

Rule I (Sokolowski)
Vk, P, €S,
H{qx(0)} By {ry}
valid-call (S, i) H{qy (i+ 1)} B, {r,} (induction step)
3i > 0: valid-call (S, i)

The intuition behind this rule has been described by Apt.®

(1) A computation is said to be (r, i)-deep if at any time
no more than i calls can be active in its execution, and
if it terminates in a state satisfying r.

(ii) If any execution of the statement S starting in a
state satisfying q(i) is (r, i)-deep then {q(i)} S {r} holds.

(iii) If execution of any procedure P; e Procset starting
in a state satisfying q; (depth) is (r;, depth) deep then
valid-call (Procset, depth) holds.

(iv) Assuming valid-call (S, i), we must establish
valid-call (S, i+ 1). This is done by proving {q, (i + 1)} By
{ry} for all P, €S (induction step).

(v) We also need to show valid-call(S, 0) ie. a
procedure P; starting in a state satisfying q;(0) does not
make any procedure calls (base step). The conclusion of
the rule then follows by induction.

Rule 1 requires the properties of all mutually recursive
procedures to be derived from the same recursion depth
counter. Sokolowski has proved the validity and
completeness of this rule, and Apt? has given a complete
proof system which includes this rule.

Rule 1 is based on induction over the depth of
recursion. Essentially, we have to define a well-founded
order over the state whose value decreases for each
procedure call. The well-founded order is defined by
predicates q,(i) relating the state and the recursion depth
counter 1.

Application of Rule 1 requires assertions that encode
information about the depth of recursion to be attached
to all the procedures, disregarding the structure of the
flow of control between them, so Rule 1 is a data-directed
rule (for a similar reason, Floyd’s system® for the proof
of flow-chart programs has also been described by Harel
as data-directed). The structure of the control flow
between procedures cannot explicitly be used in the proof
and needs to be encoded into the definition of the
predicates q(i). These can then become quite complex.

Consider the following example of a program for
multiplying two numbers a and b with the result
contained in variable z.

(base step)

532 THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986

P:z+x*y =axb/\abx,y>0
{pre: P}
{post: z = axb}
procedure PRODUCT;
begin
if
even(y) = call EVENPRODUCT;
(]
Odd(y) = call ODDPRODUCT;
fi

end;
{pre: P /\ odd(y)}
{post: z = a*b}
procedure ODDPRODUCT;
begin
y.z2:=y—1,z+x;
call EVENPRODUCT
end;
{pre: P /\ even(y)}
{post: z = axb}
procedure EVENPRODUCT;
begin
if
y = 0= skip;
1
y#0=>xy:=2+x, y div 2;
call PRODUCT
fi
end;

In order to prove the total correctness of this program
using Rule 1, we must find predicates qp(i), qg(i) and q,(i),
the preconditions to the procedures PRODUCT,
EVENPRODUCT and ODDPRODUCT, which relate
the state to the recursion depth counter i. The predicates
must be such that with every successive procedure call the
value of i decreases.

Unfortunately, the necessary predicates are quite
difficult to discover, as finding them involves an analysis
of the depth of recursion. One way of proceeding is to
define a function f(y) to represent the depth of recursion
for a given value of y. However, this function turns out
to be quite complex, and we could only find a recursive
formulation for it and had even then to use an
approximate estimate of the depth of recursion! We give
below an annotated version of the program PRODUCT
using predicates q,(i), qg(i) and qq(i) which are defined
using f(y). The proof of the program can be reconstructed
from this using Rule 1. (The reader is invited to
appreciate the complexity of the proof by finding better
predicates!).

P:z+x*y =axb/\a,bx,y =0
let f(y) = 2+f(y div 2)+y mod 2; f(0) = 2;
{qe(): P /\ f(y) < i}
{post: z = a*b}
procedure PRODUCT;
begin
if
even(y) =
{P/\ even(y) /\ f(y) < i} '
{P /\ even(y) /\ (2+f(y div 2)+y mode 2 < i)}
{P /\even(y) /\ (f(y div 2)+1 <i—1)}...
qri—1)
call EVENPRODUCT;
(]

¥20Z I4dy 01 uo 1senb Aq £0£9ZG/1£5/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

A TOTAL CORRECTNESS PROOF RULE FOR RECURSIVE PROCEDURE CALLS

Odd(y) =
{P/\ odd(y) /\ 2+f(y div 2)+y mod 2 < i)}
{P /\ odd(y) /\ 2+ f(ydiv2) <i—1)}...q0(i—1)
call ODDPRODUCT;
fi
end;
{90(1): P /\ odd(y) /\ (f(y div 2)+2 < i)}
{post: z = a*b}
procedure ODDPRODUCT;
begin
{P/\odd(y) /\ (f((y—1) div 2)+1 <i—1)}
...(asodd(y)=>ydiv2=(y—1)div2)
y,z:=y—1,z4+x;
{P/\even(y) /\ (f(y div 2)+1 <i—1)}...qg(i—1)
call EVENPRODUCT
end;
{qe(): P /\even(y) /\ (f(y div 2)+1 < i)}
{post: z = a*b}
procedure EVENPRODUCT;

begin
if
y = 0= skip;
(]
y#0=

{P/\f(y div2) <i—1}
X,y: = 2*x, y div 2;
{P/\f(y) <i—1}...qp(i—1)
call PRODUCT
fi
end;

Using Rule 1 we can conclude

{3i > 0: qp(i)} call PRODUCT {z = a*b}
This simplifies to

{P} call PRODUCT {z = axb}.

It is fairly clear that this proof has a measure of
artificiality and that the predicates q;(i) offer little insight
into the structure of the program. A reader going through
this proof is not likely to appreciate easily why the
program terminates. And this is despite the fact that there
is a very simple and natural argument for its termination.
For the program PRODUCT, calls go cyclically either
PRODUCT - ODDPRODUCT — EVENPRODUCT
- PRODUCT or PRODUCT — EVENPRODUCT —
PRODUCT. In either case, proving the termination
of PRODUCT is sufficient to prove the termination of
the recursion.

On each successive call to the procedure PRODUCT
the value of y becomes y div 2. Thus we can argue that
the procedure PRODUCT terminates because on each
successive call to PRODUCT, the value of y decreases,
and if a call to PRODUCT is made with y = 0 then no
further recursive call to PRODUCT is made. It is possible
to give a simple total correctness proof based on the above
argument using induction over the number of calls to
PRODUCT active at any instant. Unfortunately, Rule 1
does not allow such induction.

2.1. A structure-directed rule for the total correctness of
recursive procedure calls

For most programs with recursive procedure calls, we can
select a subset of procedures whose termination implies
the termination of the recursion. Such a set is called a

header set. Clearly, the selection of the header set depends
upon the structure of recursion. Often, there is an easily
expressible, natural relationship between the state
changes and the calls to the procedures in the header set
that can be used to give a simple proof of total
correctness.

We shall analyse the static structure of recursion in a
program by constructing its call graph. Let {P,, ..., P}
be the set of procedures in a program. The call graph G
of the program is constructed as follows.

The main body and each procedure P,..P, is
represented by a node of the graph. If there is a call from
procedure P; to procedure P;, add a directed edge from
the node P; to the node P;. Further, add directed edges
from the main node to all the procedures called by the
main body. The main node has no incoming arc and is
called the initial node of the graph.

A procedure P is nonrecursive if no cycle of G passes
through its node. It is directly recursive if the only cycle
passing through its node is a self-loop. A set of
procedures S = {P,, ..., P,} is mutually recursive if for all
P;, P; €S there is a cycle in G passing through the nodes
of P; and P;.

Definition

Let S={P,,...,P,} be the set of procedures in a
program. [S1,S2] is said to be a termination partition of
S, iff

(1) S=S1uS2

(2) Every cycle in the call graph of the program passes

through at least one node whose associated
procedure is contained in S1. The set S1 is called
a header set.

Given S, which is a subset of the procedures of a
program, an activation of procedure P; by a procedure
call from P; is called an activation internal to S if both
P; and P; are in S. The termination partition [S1,S2] has
the property that no activation of P; in S2 satisfying
{PreP;} results in an infinite sequence of activations
internal to S2 (since all cycles pass through the nodes of
S1).

An activation of P; may still result in an infinite
activation sequence if there are calls to procedures in S1
in the bodies of the procedures of S2. For example let
S = {P,Q,R,S} have a termination partition [{P},{Q,R,S}];
the activation sequence (P-Q-R-S) does not violate the
definition of the termination partition and yet is infinite.

Thus, proving the termination of the procedures of a
program reduces to showing that there can be only a finite
number of recursive activations of the procedures in the
header set. (Naturally, we assume that the proof of
termination of all the loops in the program has been
established using some total correctness rule,” so that
loops do not cause nontermination.) This is achieved by
the procedure call proof Rule 2.

Rule 2

If [S1,S2] is a termination partition of S,
for all P, €S,
valid-call(S2,0) —{q,(0)} B, {r,}
valid-call(S1,i), valid-call(S2,i+1)
{q(i+1)} By {r,} (induction step)
Ji > 0: valid-call(S,i)

(base step)

THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986 533

¥20Z I4dy 01 uo 1senb Aq £0£9ZG/1£5/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

P. PANDYA AND M. JOSEPH

By analogy with the explanation for Sokolowski’s rule,
the intuition behind this rule can be explained as follows.

() A computation is ([S1,S2],r,i)-deep if at any time no
more than i calls of procedures in S1 are active in its
execution and if it terminates in a state satisfying r. No
limit is placed on the activation of the procedures in S2.

(ii) If any execution of the statement S starting in a
state satisfying q(i) is ([S1,S2],r,i)-deep, then {q(i)} S {r}
holds.

(iii) If execution of any procedure P, e Procset starting
in a state satisfying q;(depth) is ([SI, SZ] 1;,i)-deep then
valid-call(Procset,depth) holds.

(iv) The rule is based on induction over the number of
calls to procedures in the header set. Thus each call to a
procedure in S1 increases the induction depth while a call
to a procedure in S2 does not do so. Hence, assuming
valid-call(S1,i) and valid-call (S2,i+ 1), we must establish
valid-call (S,i+1). This can be shown by proving
{qx(i+ 1)} B, {r, } for all procedures P, € S (induction step).

(v) We must also prove valid-call(S,0) assuming
vahd-call(S2 0); i.e. any execution of a procedure P;
starting in a state satisfying q;(0) terminates w1thout
making calls to the procedures of the header set (base
step). The conclusion of the rule follows by induction.

This rule is based on induction over the number of calls
to the procedures in the header set that are active at any
instant. It admits simpler proofs than Rule 1 as it allows
the well-founded order over the state to be defined such
that it decreases only on calls to the procedures in the
header set, and not necessarily on calls to other
procedures (this condition is weaker than the one
required by Rule 1). Thus it is possible to exploit any
natural relationship between the state changes and the
calls to header procedures. No such relationship may
exist between the state changes and calls to all the
procedures. Usually, a program has many termination
partitions and the programmer may choose one that gives
the simplest proof. It is our claim that such a proof then
closely mirrors a programmer’s informal reasoning.

Result

If we select the termination partition of S to be [S,Null]
then Rule 2 reduces to Sokolowski’s rule.

Using Rule 2, we now give a proof of the program
PRODUCT. Fig. 1 gives the call graph for the program.
An obvious termination partition is [[PRODUCT} ,
{EVENPRODUCT,ODDPRODUCT}]. The proof for
the procedure PRODUCT can easily be constructed from
the following annotated program, using Rule 2.

Product

Odd-product

Even-product

Figure 1.

534 THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986

{{qe(): P/\y <1}

{z = axb}
procedure PRODUCT;
begin
if even(y) = {P/\y < i/\even(y)}...qx(i)
call EVENPRODUCT;...(step A)
{z = axb}
[10dd(y) = {P/\y < i/\odd(y)}...qo(i)
call ODDPRODUCT;...(step B)
{z = axb}
fi
end;
{qo(): p/\y < i/\odd(y)}
{z = axb}
procedure ODDPRODUCT;
begin

y,z:=y—1,z+4x;

{P/\y <i/\even(y)}...qg(i)
call EVENPRODUCT...(step C)

{z = axb}
end
{qe(): p/\y <i/\even(y)}
{z = axb}
procedure EVENPRODUCT;
begin
ify=0={p/\y =0}
skip;
{z = axb}

[1y #0={p/\0 <y <i/\even(y)}
{P/\(y div2) <i—1}
X,y:= 2#x, y div 2;
{p/\y <i—1}...qp(i—1)
call PRODUCT...(step D)
{z = a*b}

fi

end;

Steps (A),(B) and (C) follow from the assumption
validcall(S2,i—1). Step (D) follows from the assumption
validcall(S1,i). (We leave it to the reader to verify this
annotated program.) Using Rule 2 we can conclude:

{3i < 0: P/\y < i} call PRODUCT {z = a*b}.

This simplifies to {P} call PRODUCT {z = a*b}.

It is instructive to compare this proof with the earlier
proof using Rule 1. For the program PRODUCT, the
relationship between the state and the number of
activations of PRODUCT i is given by y <i. No such
simple relationship exists between the state and the depth
of recursion. In the above proof we have abstracted
information from the full details of the state changes in
the program and focused attention only on how the state
changes on a call to the procedure PRODUCT. It is the
ability to allow such abstractions in proofs that makes
Rule 2 convenient to use.

2.2 Termination partitions

The termination partition of a set of procedures can be
found by analysing the call graph. Broadly, the method
involves identifying the loops (intervals) within the call
graph, working outwards from the innermost loops.
Techniques for interval analysis of flow graphs have been
extensively used in compilers for loop-optimisation.®

¥20Z I4dy 01 uo 1senb Aq £0£9ZG/1£5/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

A TOTAL CORRECTNESS PROOF RULE FOR RECURSIVE PROCEDURE CALLS

Definitions

For a call graph G having the initial node n,
(a) for any node n of the graph G, the interval with
header n, denoted by I(n), is defined as:

(1) nisin I(n);

(2) if m # ng and all the predecessors of m are in
I(n), then m is in I(n);

(3) only nodes that satisfy (1) and (2) are in I(n).

(b) the interval partition P(G) of the call graph G is
defined as:

(1) I(ng) is in P(G);

(2) Ifn has a predecessor in an interval of P(G) but
n is not in any interval of P(G) then I(n) is in
P(G);

(3) only nodes that satisfy (1) and (2) are in I(n).

(c) Eachinterval of P(G) can be collapsed into a single
node to give the reduced graph I(G). If G has an edge
n — m, and n and m are in different intervals of G (m will
necessarily be an interval header), then I(G) has an edge
from the interval containing n to the interval containing
m. The initial node of I(G) is the interval containing n.

(d) A graph is called reducible if by a sequence of
reductions it can be reduced to a single node.

(e) An hset is a set with one of its elements designated
as the head element.

Using the notation I°(G) =G, I¥G) = I(I*"Y(G)),
with each node of the graph I (G) we associate an hset
of procedures:

(i) If n is in I9(G) then hset(n) = {P}, where node n
represents the procedure P in the call graph G.

(i) LetS = n,, ..., np be an interval of I¥"(G) with the
header node n, and let m be a node in I¥(G) such that
m = I(S); then

hset(m) = U, <i < p:hset(n;)
head(m) = head(n,).

An interval has the property that all its cycles pass
through the header node. This leads to the following
method for the construction of a termination partition.
Construct the call graph G of the program;

S1:= {head(n)|node n has a self-loop in G};
loop
for each interval I(n) in P(G) do
if I(n) contains a cycle then S1:= S1 U {head(n)}
end for;
if reducible(G) then G: = I(G)
else exit-loop
end loop;
if G is not a single node then
for each node n in G do S1:= S1 U {head(n)}
end for;
end if;

Example

Consider a parser for recognising an assignment
statement of a Pascal-S program. Typically such a parser
would be a part of the Pascal-S compiler. The statement
may contain Pascal-like array and record references and
is defined by the grammar below.

(STATEMENT):: = (ASSIGNMENT}
(ASSIGNMENT):: = (IDENTIFIER> |
TOR)] ":=" (EXPRESSION>
(EXPRESSIONY:: = (SIMPLE_EXPR> { ('>''{'I'=")
(SIMPLE_EXPR>}
(SIMPLE_EXPR)::= [+ -]
('+’I'="'OR’) CTERM) }
(TERM)::= (FACTOR){ ('*|/AND’) (FACTOR)

(SELEC-
(TERM) {

}

(FACTOR)::= NUMBER | '({EXPRESSIONYY |
(IDENTIFIER) [(SELECTORY] | (IDENTI-
FIER) ['(' (EXPRESSION {’,'(EXPRESSION)}
Y 1| ‘not’ (FACTOR)

(SELECTOR)::= (/IDENTIFIER | ‘['(EXPRES-
SIONLIST)’]) { "/IDENTIFIER | [/{EXPRES-
SIONLIST)] }

(EXPRESSIONLIST)::= (EXPRESSION>» {0
(EXPRESSION} g

A simple recursive descent parser for recognising theg’

(0]

assignment statement would consist of one procedure for®
each nonterminal, with mutually recursive calls. We giveZ'
an outline of the procedures of the parser. We shall noti
give the bodies for these well-known procedures, but theTJ
interested reader is referred to Wirth.1°

procedure STATEMENT

procedure SELECTOR

procedure EXPRESSION_LIST
procedure EXPRESSION

procedure SIMPLE_EXPRESSION

procedure TERM
procedure FACTOR

procedure ASSIGNMENT_STATEMENT

The call graph of this parser is given in Fig. 2. The ﬁgure
also shows the interval analysis of the call graph g1v1ng o
the followmg obvious termination partition

o1pe/|ulwoo/wod dno-oIWwapede)/:s

= {expression, factor}
= {assignment,selector,simple-expression, term,
functioncall}

€0€9¢G/1€9/9/6¢C

The termination of the parser is established by noting that z
on each successive call to the procedure EXPRESSION@
or FACTOR, the length of the remaining mput string to §
be parsed decreases (and the input string is of finite - S
length). This argument can be directly formalised usmg 2
Rule 2 with the predicate {i < scannedlen}, where i is the 3 >
number of activations of the procedures EXPRESSION <.
and FACTOR and scannedlen is the length of input string ™
processed by the parser (including the look-ahead). We ®
shall not give the complete proof.

3.0 DISCUSSION

Programmers tend to use proof rules informally, so it is
important that formal proofs mirror the informal
reasoning closely. Proofs with complex and non-intuitive
predicates are thus generally unsatisfactory. In some
cases, the need for such proofs can point to the inelegance
of language constructs. However, it can also point to the
inadequacy of a proof rule in permitting abstraction.
Recursion is certainly not an inelegant construct, and
its widespread use stresses the need for a sound an simple
means of reasoning about correctness and termination.
For many recursive programs, our structure-directed

THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986 535

P. PANDYA AND M. JOSEPH

Statement
Assignment

]
'
1
1

Expression

~~_
~—~o
~
-~
~
-~

Simple-expression

Call graph G and its interval partition

-~
S~
-~
~~o
~
-~
-~
~

Statement

1(G)

¢ Statement
]
]
]
1
|
]
]
1
1

1
5 Expression

1*(G)

Figure 2.

approach yields simple and intuitively natural proofs.
The method does involve the overhead of interval
analysis, but most cases of recursion found in practice
have quite simple structures, and the termination
partitions for such programs are fairly obvious. Ideally,
the termination partition for a set of recursive procedures
should evolve along with their design.

It should be noted that Rule 2 uses simple induction,
i.e. for proving {q(i+ 1)} call P {r} we assume {q(i)} call
P {r}. Sometimes it is more convenient to use generalised
induction, i.e. we may instead assume V;:0 <j <i:{q()}
call P {r}. Rule 2 can thus be modified to the following
rule.

Rule 3

for all k, P, €S,
valid-call(S2,0) - {q,(0)} By {r,} (base step)
V;: 0 <j <i: valid-call (S,j), valid-call(S2,i+1) -
{qi(i+1)} By {r,} (induction step)
3i > 0: valid-call (S,i)

Although Rule 3 (and Rule 2) is for parameterless
procedures, it can be used for procedures with
parameters. There have been many proposals for proof
rules for procedure calls with parameters, disallowing
recursion. These rules specify how actual parameters
must be substituted for the formal parameters in the pre-
and postconditions of the procedure bodies to obtain the
pre- and postconditions of the call; e.g. the Gries/Levin
rule!! allows value-result and variable parameters along
with global variable references, with the restriction that
actual variable parameters and global variables are
disjoint. We shall call such rules the parameter
substitution rules.!?

In total correctness proofs, the preconditions to the

REFERENCES

1. D. Gries, The Science of Programming. Springer-Verlag,
Heidelberg (1981).

2. D. Harel, Proving the correctness of regular deterministic
programs:a unifyingsurvey usingdynamiclogic. Theoretical
Computer Science 12 (1), 61-79 (1980).

536 THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986

procedures q(i) contain, besides the formal parameters,
the induction depth counter i as a free variable. Rule 2
specifies how the variable i must be substituted by i— 1
or i in q(i) to obtain the precondition of the call. Thus
the parameter substitution rules and Rule 2 act on disjoint
sets of variables (provided procedure parameters are
disallowed) and hence are orthogonal. So Rule 2 can be
used with any parameter substitution rule to prove the
total correctness of procedures with parameters.

A major advantage of syntax-directed proof rules is
that they lead to compositional proof systems. Unfortun-
ately, total correctness proofrules for recursive procedures
cannot be syntax-directed because there are no syntactic
constructs restricting the dependencies between procedure
calls. In fact, such rules cannot even be modular, because
a change in any procedure may require the entire proof
to be reconstructed (e.g. for a call graph which is
complete). Our rules attempt to preserve some of the
advantages of a syntax-directed rule because they allow
attention to be focused on some procedures (i.e. those in
the header set) rather than all the procedures. Hence,
changes in non-header procedures will not affect the
termination properties of the proof.

We have not dealt with the issues of validity and
completeness of our proof rule. Since Sokolowski’s
complete rule is a special case of our rule, we expect our
proof rule also to be complete (when used in conjunction
with the other axioms given by Apt).

It seems possible to apply similar structural analysis
techniques to proofs of deadlock freedom and termination
of data-flow and distributed programs.

Acknowledgement

The authors thank Kamal Lodaya and S. Mahadevan for
their helpful comments.

3. C. A. R. Hoare, An axiomatic basis for computer program-
ming. Communications of the ACM 12 (10), 576-583 (1969).

4. E. W. Dijkstra, 4 Discipline of Programming. Prentice-Hall,
Englewood Cliffs, New Jersey

5. S. Sokolowski, Total correctness for procedures. Proc. 6th

¥20Z I4dy 01 uo 1senb Aq £0£9ZG/1£5/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

A TOTAL CORRECTNESS PROOF RULE FOR RECURSIVE PROCEDURE CALLS

Symp. on the Mathematical Foundations of Computer
Science, LNCS 53, 475-492, Springer-Verlag, Heidelberg
(1977).

. K. R. Apt, ‘Ten years of Hoare’s logic: survey — part 1.
ACM Transations on Programming Languages and Systems
3 (4), 431-483 (1981).

. Z. Manna and A. Pneuli, Axiomatic approach to total
correctness of programs. Acta Informatica 3 (3), 243-263
(1974).

. R. W. Floyd, ‘Assigning meanings to programs. In Pro-
ceedings of the AMS Symposium on Applied Mathematics
19, 19-31. American Mathematical Society, Providence,
R.I. (1967).

9. A. V. AhoandJ. D. Ullman, Principles of Compiler Design.
Addison Wesley, London (1977).

10. N. Wirth, Pascal-S: a subset and its implementation. In
Pascal - The Language and its Implementation, edited by
D. W. Barron, pp. 199-260. J. Wiley, Chichester (1981).

11. D. Gries and G. Levin, Assignment and procedure call
proof rules. ACM Transactions on Programming Languages
and Systems 2 (4), 564-579 (1980).

12 S. A. Cook, Soundness and completeness of an axiom
system for program verification. SIAM Journal on
Computing 7 (1), 70-90 (1978).

THE COMPUTER JOURNAL, VOL. 29, NO. 6, 1986 537

¥20Z I4dy 01 uo 1senb Aq £0£9ZG/1£5/9/62/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

