The Analysis of Large Structural Systems

By R. K. Livesley

The paper describes a technique which the author has used for analysing structural frames on
EDSAC 2. The method is a general one which could be applied equally well to electrical net-

works.
matrices.

Introduction

General computer programs for the analysis of building
frames and bridge trusses have been available for several
years, and are now being used by many structural
engineering designers for their routine analytical work.
The methods on which these programs are based may
be divided into two general classes.

The first class may be termed methods of nodal
analysis. The displacements and rotations of the joints
of a structure are taken as the basic variables, and all
internal forces and moments expressed in terms of them.
The analysis is carried out by setting up and solving the
joint equilibrium equations, which relate the joint dis-
placements to the known applied loads. Experiments
with a program based on this approach were carried out
by J. M. Bennett in 1949 on EDSAC 1 (Bennett, 1953),
and a general analysis program was completed for the
Manchester University Computer a few years later by
the present author (Livesley 1953, 1954). Translations
of this program have been made for a number of other
machines.

The second class of methods may be called methods
of mesh analysis. The basic unknowns are a set of
redundant forces and moments, and the displacements
of the structure are written in terms of these. The
analysis is carried out by solving the equations of dis-
placement compatibility. These methods have been
developed and systematized by Argyris (Argyris, 1954),
and a general program has been developed for a Pegasus
computer (Hunt, 1956).

Whichever type of approach is used, it is natural to
employ matrix algebra in describing the analytical
procedure. In either case the central problem is the
solution of a set of linear algebraic equations built up
(preferably by the computer itself) from data describing
the physical details and geometry of the structure.

The size of structure which can be analysed by such
a program is usually determined by the capacity of the
routine for solving the equations. In the earlier programs
this routine was usually a standard library one, designed
for general use rather than for any specific application.
It was gradually realized, however, that the equations of
structural frames (like the equations of electrical and
finite-difference networks) have certain special properties
which can be used to speed up the solution process.
The matrices which arise are usually sparse, and in most
cases the non-zero elements tend to be grouped about the
leading diagonal.
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Its principal feature is a packing technique for the efficient storage of large banded

Various techniques have been suggested for the
analysis of large systems of equations which possess these
characteristics. In the ““‘method of tearing” (Kron, 1955)
the structure (or network) is treated as a number of
smaller systems connected together. Each of the
smaller systems is analysed separately in terms of the
boundary values at points which connect it to its neigh-
bours, and these boundary values are obtained subse-
quently by matching the various solutions. A simple
version of this method was incorporated in the
Manchester University structural analysis program
mentioned earlier.

The “method of tearing” has obvious affinities with
matrix partitioning, the main difference being that it is
described as a process applied to the system itself rather
than to the equations. From a computational point of
view the numerical consequences may be very much the
same. An example of the use of partitioning for a
particular type of ‘“‘banded” matrix has been given
recently by Wilson (Wilson, 1959).

Although valuable, the use of sub-systems leads to
complicated organizational programming in both the
assembly and the solution of the equations. The present
paper describes an alternative method of shortening the
solution time for certain types of structural problem
which the author has used successfully on EDSAC 2.

Synthesis of the Equations

Although the last-mentioned method was developed in
a program for the analysis of rigid-jointed plane frame-
works, it will be described here in more general
terms. For our purpose a structure is defined as an
assembly of nodes, or joints, at which loads can be
applied, connected by elements, or members, which
behave in a linear manner under load. We shall restrict
our attention to structures in which each member only
connects two joints—that is to say, to structures in
which the members can be represented diagramatically
by lines joining the joints. We shall assume that the
structure is sufficiently anchored to rigid supports to
prevent indeterminate rigid-body displacements.

The displaced form of the structure under load may
be defined in terms of the displacements of the joints.
Each joint will have a certain number of degrees of
freedom—=6 for a rigid-jointed space frame, 3 for a rigid-
jointed plane frame, etc., and with each degree of
freedom there will be associated a certain component of
displacement (rotation or translation) and a certain
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component of external load (moment or force). We
use the symbol D to denote the vector formed by all
the displacement components of a joint, and term it the
“displacement” of the joint. In the same way we use
the symbol F to denote the corresponding applied load
vector, and term it the “load” at the joint. We imagine
that these vectors are defined in a frame of reference
which is the same for all the joints of the structure. We
assume that the displacement of the end of each member
meeting at a given joint is equal to the displacement of
the joint, and that all the joints of a particular structure
have the same number of degrees of freedom.

We consider now a general structure with N joints.
We number the joints 1,2,..., N, and consider all
points of rigid foundation attachment (where the dis-
placements are all zero) as joint 0. Since in practice
there is never more than one member connecting any
two joints, we may refer to a member by quoting the
joint numbers at its ends. We use the suffices 1 and 2
to refer to the two ends of a member, and introduce the
convention that the lesser of the two joint numbers
corresponds to end 1, and the greater to end 2. (This
allows us to define the ““direction’ of the member 1 — 2
uniquely, and thus excludes ambiguity in the specification
of the member’s orientation to the co-ordinate axes of
the system.)

For any particular member pq(p < g) we may write
down an expression for the forces acting on the ends in
terms of the displacements of those ends. Since the
member is assumed to behave linearly, the expression
will be a linear one, which may be written

F,

rq

F,

qp

=YD, +~Yi2D,, } 0

YZle + YzzD

q°

where F,, F,, are the force vectors (in system co-
ordinates) at ends p and g respectively, as shown in
Fig. 1, and Y,,, Y|, etc.,, are termed the ‘‘stiffness
matrices” of the member. It can be shown that equa-
tions (1) are always symmetric. Since the F and D
vectors are expressed in the overall co-ordinate system
of the structure, the stiffness matrices of the member p g
depend on its orientation with respect to that co-ordinate
system, but apart from this they are independent of the
position of the member in the structure. Details of
these matrices for different types of structural element
are available elsewhere (Matheson, 1959).

Equations similar to (1) may be written down for all
the other members which meet at joint p. If F, is the
external applied load at this joint, the vector equation
of joint equilibrium will be simply

F, = 2, Fy 2

where Y; denotes summation over all the joints directly
connected by members to the joint p. Substituting for
the various F,;’s from equations similar to (1), we obtain
the vector load-displacement equation for the joint p,
and a similar process may be carried out for all the other
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Fig. 1.—Force and displacement vectors for a member of a
general structure.

joints of the structure.
may be written

The complete set of equations

F = YD. 3)

where F is the column vector of the applied joint loads,
D is the column vector of the joint displacements and ¥
is the stiffness matrix of the complete structure.

The construction of the matrix Y from the matrices
of the individual members is very simple. The matrices
for the member pgq, for instance, will appear in the final
matrix as follows:

rowp Yy Yy
(4)
rowq oo e szz ,,,,,,,,,
column p columng

and the complete matrix will simply be the sum of
patterns such as (4). (It should be noted that since Y
has no row or column associated with joint 0, members
whose end 1 is rigidly fixed only contribute their Y,,
matrices to Y.) Since these patterns are all symmetric,
the final matrix ¥ will also be symmetric, and we need
only consider the assembly of the upper triangle. We
may state the rules for assembling the p’th row of this
triangle as follows.

(1) The leading diagonal element is the sum of the
matrices Y, or Y,, for all the members mecting
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at joint p, where Y|, is selected if the member has
end 1 at p, and Y,, is selected if the member has
end 2 at p.

(3) The off-diagonal elements, corresponding to
columns ¢q,r,s... > p, are the Y;, matrices of
the members connecting p to the associated joints.
If a joint is not directly connected to p, the asso-
ciated element is 0. It should be noted that in
view of symmetry we need only consider here
members which have end | at joint p, i.e. members
leading to higher-numbered joints.

As an example, the frame in Fig. 2 has a ¥ matrix which
may be represented schematically as follows:

1 2 3 4 5 6
1~ X X

2| X >k X

3 X e >k
4 \ X X >k
5 X K
6 R
7

8

9
10 |
11
12
13

Only the part of the matrix above and including the
leading diagonal is shown. The X’s represent non-zero
elements, while the significance of the asterisks will be
made clear later.

It will be seen that only about a third of the elements
in (5) are non-zero. Furthermore, this characteristic of
sparseness will increase with the number of joints.
Consider, for instance, a space framework of N joints
built up on a rectangular lattice pattern. At most of
the joints there will be 6 members meeting, so that there
will be a total of approximately 3N members. There
will therefore be approximately 4N non-zero elements in
the upper triangle of Y, in comparison with a possible
total number of N(N + 1)/2. The proportion of non-
zero elements is thus approximately inversely propor-
tional to the number of joints N.

In the majority of practical frameworks joints are
only connected to their nearer neighbours. This means
that the matrix Y will normally take the form of a band
of coefficients about the leading diagonal as in (5),
provided that a suitable system of joint numbering is
adopted. We shall see later that the band-width of the
matrix, which we define here as the maximum value of
(g — p), 1s very important in the solution process, and
it is advantageous to choose a system of joint numbering
which keeps the band-width as small as possible.

XX X X
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Fig. 2.—A typical frame.
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X
K X
X oKX (5)
| x Kk kX
- | X X >k ¥
7’*‘ X X oK
T X K

Numbering the joints of the structure shown in Fig. 2
in a horizontal sequence, for instance, would increase
the band-width of the matrix (5) and make the solution
slightly more lengthy. Minimizing the band-width is
equivalent to minimizing the greatest difference between
the two joint numbers associated with each member,
and it would seem that this is a process which could be
carried out by the computer itself.

In this connection it is of interest to note that the
band-width may sometimes be reduced by the insertion
of extra joints.* Consider, for example, the section of a
frame shown in Fig. 3(a). The structure is assumed to
extend to both the left and the right of the part shown.
Insertion of the extra joints shown in Fig. 3(b) has
the effect of reducing the minimum band-width consider-
ably.

Storage of the Equations

Any efficient routine for solving sets of simultaneous
equations such as (3) must obviously be designed to
avoid useless operations with zero elements. It is not
enough, however, merely to avoid carrying out such
operations. In a computer such as EDSAC 2, with an

* This suggestion was made to the Author by Mr. E. A. Richards
of the English Electric Company.
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effective high-speed working space of about 700 numbers
and an auxiliary store on magnetic tape,* the time spent
on magnetic transfers may become a high proportion
of the total time if care is not exercised during the pro-
gramming. It is desirable, therefore, to avoid storing
the zero elements entirely.

The simplest way of doing this is to use a method of
solution in which the matrix Y is not altered during the
solution process. Most such methods are iterative in
character, but at least one, the “Method of Conjugate
Gradients” (Hestenes and Stiefel, 1952) is theoretically
exact, being an iterative process which terminates after
N steps. The only use which the method makes of the
matrix Y is in multiplying a sequence of vectors.

A program for general plane-frame analysis using the
Hestenes-Stiefel method was constructed for EDSAC 2
during the period 1958-59. It has been found, however,
that the method has two serious drawbacks. In the
first place. the N matrix multiplications require N
scannings of the magnetic tape, and this is time-consum-
ing, even without the storage of zero elements. More
seriously, rounding errors show a tendency to build up
to such an extent that the solution after N steps is often
a worse approximation to the correct solution than the
starting point. This build-up appears to be due to the
fact that some of the displacement components in a
structure are often closely coupled, so that the matrix Y
is rarely well-conditioned. It could probably be cured
by double-length working in certain parts of the pro-
gram, but this would still further increase the computing
time. The method was therefore abandoned in favour
of an elimination process.

It is sometimes assumed that elimination requires
storage of the complete matrix, since elements which are
initially zero may become non-zero during the solution
process. Consideration quickly shows, however, that
not all the zero elements are affected in this way. If
the matrix consists of a number of bands parallel to the
leading diagonal, then the parts of the matrix lying
outside the extreme bands will not be affected. In the
matrix (5), for example, only the zero elements denoted
by asterisks are changed during the elimination process.
It is possible to anticipate these changes during the
assembly of the matrix Y, and leave appropriate spaces
in the sequence of stored non-zero elements.

In the EDSAC 2 program, the non-zero sub-matrices
of the upper triangular half of Y (with gaps where
necessary) are stored consecutively on magnetic tape,
reading along the successive rows of Y from the leading
diagonal elements. The positions of the elements in the
complete matrix are determined by N ‘“‘tag registers,”
one for each row. In the tag register for the p’th row
of Y, for instance, the first binary digit represents the
leading diagonal element, and the (¢ — p + 1)’th digit
the element in column ¢. A 1 in a digit position
indicates either a non-zero element or a space necessary
for the solution process.

As mentioned earlier, members are identified by the

* For further details, see p. 32 of this issue.
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Fig. 3.—Example showing the use of additional nodes.

joint numbers p, g( p<<q) at their ends. The data tape
for the structure consists of the sets of physical constants
which define the members (i.e. lengths, cross-sectional
areas, etc.) arranged in ascending order of p and, for
each given value of p, in ascending order of ¢. Thus the
members of the frame shown in Fig. 2 would be taken
in the order 0/1, 0/3, 0/6, 0/9, 0/12: 1/2, 1/3: 2'5: 3/4,
3/6, etc.

It will be recalled that the member p/q contributes
sub-matrices Y, Y,, to the p’th row of the complete
matrix, and a sub-matrix Y,, to the leading diagonal of
the ¢’th row (only terms on and above the leading
diagonal being stored). At the time when the p’th row
is being formed the location of the start of the ¢’th row
will not be known, so that it is necessary to keep a
temporary list of Y,, matrices during the assembly
process.

The first member details to be read are those for which
p = 0. For each member the matrices Y, Y5 Y
are formed by a subroutine and stored for subsequent
use in the calculation of the internal forces. Since Y
has no row corresponding to joint 0, the assembly
routine merely adds the Y,, matrices for these members
into the appropriate places in the Y,, list (this being
initially clear).

When the number p changes to 1, the program transfers
the first sub-matrix from the Y,, list to the leading
diagonal position in the first row of Y. It also inserts a
1 in the most significant digit position of the first tag-
register. For each member which has p — | it adds the
Y, matrix into the leading diagonal position, plants the
Y|, matrix in the next vacant space, adds the Y,, matrix
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to the temporary Y,, list, and plants a 1 in the appro-
priate position in the tag-register. Applying this pro-
cess to the structure shown in Fig. 2, the first tag-
register would eventually read 11100 . . ., corresponding
to the three elements in the first row of (5).

Before the same process can be carried out for the
second joint it is necessary to consider the operations
which will be carried out with the first row of the
matrix during the elimination process. Since Y is
symmetric, the presence of off-diagonal elements in the
row implies the existence of corresponding elements in
the first column, which will be reduced to zero in the
elimination process by adding suitable multiples of the
first row to the other relevant rows. Thus a 1 in the
g’th digit position of the first tag-register indicates that
the first row will be added to the ¢’th row during the
solution. Clearly the ¢’th row must have elements,
zero and non-zero, corresponding to all the elements of
the first row which will be added during this step. This
can be arranged as follows. The content of the first
tag-register is shifted one digit left at a time, the most
significant digit being tested at each stage. Each time a
1 is found, the content of the first tag-register (in shifted
form) is added* to the tag-register corresponding to the
original position of that digit. In general the content of
the tag-register is shifted (¢— p) places left and added
into the ¢’th tag-register if a 1 appears in the most
significant digit position. In our example, this process
sets the second tag-register equal to 11000 . . . before
the assembly routine commences the formation of the
second row, the second digit corresponding to the
asterisk in the second row of (5).

The second row is now formed in a similar manner to
the first, and stored immediately after it. The assembly
routine takes note of any 1’s transferred to the second
register from the first, and leaves appropriate spaces in
the row. In our example, the complete second row
comprises three sub-matrices, the second one being
composed of zeros, and the second tag-register finally
reads 1101000 . . . This tag-register is now treated in
the same way as the first, and the whole process repeated
for the third and subsequent rows. When all the infor-
mation describing the members of the structure has been
read from the data tape and the matrix Y has been
completed and stored, the program reads the values of
the loads applied to the structure and enters the solution
routine.

Solution of the Equations

The solution of the equations by the normal method of
successive elimination and back-substitution calls for
little comment. The condensed form of the matrix
naturally leads to a considerable amount of red-tape
programming, but since most of this is concerned with
the determination of the addresses of elements, it can be
done by fixed-point arithmetic in the modifier registers.
These are 11-bit registers, and the instructions associated

* The instruction used here and elsewhere during the formation
of the tag-registers corresponds to logical addition, not ordinary
addition.
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with them take very little time compared with the
floating-point arithmetic used in the main calculation.
It must also be remembered that the elements are not
single numbers but sub-matrices, so that the address
calculations need only be made once for each sub-
matrix operation.

For reasons of programming simplicity the elimination
process is carried out in a completely systematic manner.
No attempt is made to pick out the largest pivot, but
experience shows that for the type of matrix considered
there is little tendency for round-off errors to be trouble-

some. This is true even in stability investigations.
where one is dealing with a matrix which becomes
extremely ill-conditioned as the critical load s
approached.

While it is not possible, in general, to hold the whole
of the matrix Y in the working store of the machine at
once, the banded nature of this matrix implies that each
row will only affect its immediate successors in the
elimination process. If the last element in the p’th row
lies in the g’th column, then row g will be the last to be
modified by row p, and it will usually be possible to
hold rows p,p + 1,...,q in the working store at the
same time. This allows a great economy in magnetic
transfers, since each row can be copied into the store for
modification, held there until it is used as the pivotal
row, and finally written back into the magnetic store.

In the EDSAC 2 program the elements are 3 % 3
matrices, so that the 500 registers used for the operations
on the matrix Y allow for a continuous band-width of
about 6 (i.e. ¢ — p < 6). This corresponds to a tall
building with 6 joints per floor. The first row of Y is
copied from tape into the first of the 500 registers, and
the other rows transferred in order when required for
modification. When a row has been used as the pivotal
row it is written back onto the tape and the remaining
rows shifted up, so that the next row comes into the
pivotal position. Thus each row is transferred to the
next vacant position in the working space, is modified
by the other rows, and finally acts as the pivotal row
before being written back onto tape. For the final back-
substitution the process is reversed, the program working
up the successive rows of Y from the bottom. When the
displacements of the structure have been found, the
internal forces and moments may be found simply by
using equation (1).

The part of the program which prints the forces
and moments in the members, and the deflections of
the joints, also carries out a check on the solution by
subtracting the computed forces and moments from
the appropriate terms in the external load vector F.
Referring to equation (2), it is clear that when all the
members have been dealt with, F will have been reduced
to the residual vector, and this is printed out with the dis-
placements. In view of the fact that the loads applied to
a real structure are only known to within certain limits,
any solution with a residual vector lying within those
limits must be accepted as “‘correct,” whatever the size
of the associated displacement error vector.
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Conclusions

The EDSAC 2 program described above is in fact
part of a larger program (Livesley, 1959) for solving
problems of structural instability when plasticity is
present. Since such problems are non-linear, they are
solved by an iterative approach. Each iteration involves
a solution of the linear equations (3), and after each
solution the individual member matrices are modified
to take account of axial forces and plasticity. The pro-
gram is therefore not as ambitious, in terms of size of
structure, as it might have been if simple linear analysis
had been its objective. Its present capacity is a plane
frame of 25 joints, giving rise to 75 scalar equations.

As an example of the speed of this program, a frame
of 44 members and 25 joints took 4 minutes to analyse.
Of this time, 14 minutes was spent in reading the data
tape, 2 minutes in punching out the solution, and only
30 seconds in solving the equations. The frame was
more or less ““‘square” in terms of joint arrangement—
that is to say it had the maximum possible band-width
(6) for a frame of its size. The actual speed of the
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