Some Remarks on the Game “Dama” which can be played on a
Digital Computer
By N. V. Findler*

Dedicated to the memory o,
Professor J. R. Neukomm

The popularity of intelligence-simulating programs is increasing. Several parlour-games have
been programmed for computing machines, with the idea of investigating machine learning
techniques. This paper describes the strategies employed in a program for playing the game of
dama on the SILLIAC.T A learning process is suggested by means of which an optimal grand

strategy can be achieved.

1. Introduction

There exists an old ambition to construct a machine
which can match any human opponent at such intellectual
games as chess. It is a long story from F. Kempelen’s
“Chess Automaton” (eighteenth century), in which a
very clever dwarf was hidden, to the “Chess Program™
of a modern electronic digital computer.

So far, noughts and crosses, nim, checkers (Samuel,
1956),f and chess [Refs. (1), (2), (3). (4). (5), (7)] are
the games which have been selected for programming.
A detailed analysis of current chess programs can be
found in Ref. (5).

In simple games such as noughts and crosses, the
number of distinct situations is comparatively small,
and a simple enumeration process will enable the machine
to play the best possible game. In more complex games
such as checkers, the problem is much more difficult
since the number of variations is, for practical purposes.
infinite. i.e. there is no question of “looking ahead” to
the end of the game. It is necessary, therefore. to devise
some means of evaluating the resulting board positions
after looking ahead for a limited number of moves.

In this paper we formulate some evaluation functions
for use in the game of dama, which is popular in Central
Europe. This, like checkers, is also played on a chess-
board. We shall. moreover, describe a ‘“‘learning”
process whereby the means of evaluation (and hence the
quality of the game) should improve with experience.
Similar schemes may be applicable to other situations of
economic importance.

2. The Game Dama

Dama is played on a chess-board. Only the white
squares are used. The number of pieces and the playing
area remain constant throughout the game. Eight pieces
of each side stand initially on the first two lines. If the

* The experimental part of this work was carried out while the
author held a research grant at the Adolph Basser Computing
Laboratory, School of Physics, University of Sydney. The author
is now with the Colonial Sugar Refining Co. Ltd., Sydney.

+ SILLIAC, the electronic computer of the Adolph Basser
Computing Laboratory, has at present an electrostatic memory of
1,024 forty-bit words. To characterize its speed, we note that the
time for an addition is 75 microseconds, and for a multiplication
700 microseconds.
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Fig. 1.—The numbering of the used squares.

squares are numbered according to Fig. I, then 1-8
will refer to player A, and 25-32 to player B. A piece
can move diagonally forward by single steps, or by
double, quadruple, and sextuple steps, the multiple steps
occurring only when the piece can jump over other
pieces, his own or those of his opponent.

The aim of the game is to move one’s pieces to the
opposite pair of lines before the opponent has done so.
If a player causes a ‘“blocked position” whereby his
opponent has no legal move, the game is assumed to
have been won by his opponent.*

* According to the original rules, this was a draw. The change
in the rules was desirable in order to exclude trivial games. It also
raises the interesting problem of how the machine is to avoid

causing a “‘blocked position,” and, if possible, force its opponent
to do so instead.

+ EpITOR’S NOTE: This contribution was first received before the
publication of A. L. Samuel’s most recent paper, **Some Studies in
Machine Learning using the Game of Checkers,” I.B.M. Journal
of Research and Development, Vol. 3, No. 3, July 1959.
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The Game “Dama’ on a Digital Computer

Although from this description it appears that the
game is not complicated, nevertheless the number of
possible ways in which a player’s pieces can reach their
final positions with single steps, i.e. when only the
different routes are considered, is of order 10°. This
number has to be multiplied by 56! if we distinguish
between the different orders of steps. Possible jumps
will cause the result to increase by a further large factor.

The game displays many of the characteristic features
of more complex games, but has the advantage that the
program can be fitted into a comparatively small
memory, and a game can be completed in a reasonable
time.

The following alternative strategies suggest themselves.

(a) Retain the smallest possible amount of information
about a game. Hence the evaluation process does not
care about the past history of the game but looks for a
possible best reply in a given position: “best” in the
sense that the given position is the only information.
The relative simplicity of this method affords the
possibility of playing simultaneously with a number of
opponents.

(h) Retain as much useful information as possible:
recall the machine’s and the opponent’s intentions,
implement and frustrate them, respectively.

Of these, version (h) may correspond to the more con-
tinuous strategical line followed by most players, while
version (a) is seldom adopted, except possibly when a
chess champion plays with 50 or so persons.

Unfortunately, the speed of the machine, and the
limited memory space, meant that only version (a) could
be realized by the present program. Each board, i.e.
each game, requires two words, one representing the
machine’s, and one the opponent’s pieces. Twenty-five
games can be played simultaneously.

The geometrical description of the chess-board consists
of two parts: (a) a record of which squares can be reached
from any one square by a legal move; (b) a pattern by
means of which it can be stated whether at any stage
each final square can still be filled in, i.e. whether there
is at least one separate piece remaining in the “‘shadow”
of each final square. Thus, each square has a “‘shadow
word” indicating its quality in this respect.

The program is flexible enough to try each of the
following alternatives.

(@) The number of moves ahead which the machine
computes can be:

(1) always six half-moves*;

(2) four half-moves in the opening and end games.

six half-moves in the middle gamet;

(3) always four half-moves.

(h) When looking ahead, the moves considered can be:

(1) all, regardless of their utility and the ordinal of

the half-move in question;

(2) all moves in the first two (or four) half-moves and

only the jumps in later half-moves:

* A “half-move” is either a black or a white move.

+ If there is at least one piece in the middle two lines, we shall
refer to the state of play as being a middle game.
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(3) only the jumps in the opening and end games,
regardless of which half-move is in question, and
all moves up to two half-moves ahead when in the
middle game;

(4) only the jumps, throughout the game.

We must note that the program also looks for single
moves if there is no jump reply in the above restricted
cases. This is one of the necessary features of avoiding
a “blocked position.”

With a certain modification of somewhat larger extent,
the program can also be made to work in the following,
fairly natural way: it computes four half-moves ahead
but, in the middle game, it picks out the variations which
appear to be the best according to the evaluation of this
extent (usually at most two or three) and investigates
them further for two more half-moves.

In order to make the machine move fast enough for a
demonstration, we altered the program so that it always
looks four half-moves ahead: it considers only the jumps
in opening and end games, while in the middle game all
moves are considered at the first two half-moves and
only the jumps at the second two half-moves. With this
arrangement, the machine requires 10-150 seconds to
produce a move, although in most cases the quality of
the move is no better than those of a moderately
experienced player. However, a somewhat greater depth
of thinking is needed if the learning process (described
in Section 5) is to be successful, that is, lead to a useful
set of optimum parameters. Indeed, it would be desirable
to compute at least six half-moves ahead, and if possible
to apply the type of modification noted in the previous
paragraph: in this case the time for a move is increased
by a factor of 8-10.

3. The Question of Grand Strategy

Since dama is complicated enough to rule out the
possibility of looking ahead to the end of the game
(except. of course, in the end phases) the question arises:
is there a way of playing which provides the best result
if we are restricted to think a limited number of moves
ahead? If the evaluation is based on such a technique,
then the average difference (which we might look upon
as a truncation error) between the evaluation functions
of a perfect game and the one being played is the smallest
possible.

A suitable mathematical formulation of sub-strategies
is usually possible with games of middle or more complex
nature. For example, in chess the factors to be counted
are the different values of the particular pieces, the value
of the king’s safety, number of squares dominated by
pieces, centre control. etc. [cf. Refs. (5), (7)]. We assume
that the grand strategy is some linear combination of the
sub-strategies.

In the following part of this Section we will try to
formulate a similar scheme for dama. Each move is
characterized by a number, the linear combination of
several figures-of-merit (FOM). Here we propose six
possible FOM, though doubtless others could be
suggested.
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The Game “Dama” on a Digital Computer

(a) A particular position can be characterized in a
static way from the standpoint of player A by the
number

8 8
Fe= 3 A - 3
i=1 i=1
where r) and r{ are the “‘rank numbers” belonging
to the ith piece of player A, and the ith piece of player B,
respectively. The rank number of any piece is its
distance (measured in lines) from player A’s end of the
chess-board. Thus, in the starting position,

ro=1@4 x14+4x2)+@x7T+4x8) =72

Obviously, player A tries to increase this value, while
his opponent wants to keep it as low as possible. If
|r — ro| > 6, one side has gained so much that the
opponent cannot make up for it by one move (the best
possible move is a triple jump).

The first FOM is the major characteristic of a move
and can be defined as

0, = Ar,

the change in rank number achieved by that move.

(b) Let us denote the current position by P, and
assume that player A thinks k half-moves ahead. There
is some difference between the values of the jumps made
in the course of k half-moves. Thus, at the first half-
move a jump over an opponent’s piece is more valuable
than a jump over A’s own piece, for the opponent might
remove that particular piece later in order to prevent a
good move on player A’s part, while player A’s piece
can be made to remain there. For any later half-move,
the position may be reversed, as it is undesirable to leave
jumping pieces for the opponent. In other words, player
A’s tendency is to build up a favourable position while
player B tries to destroy it. Consequently a suitable
second FOM for any particular sequence of k half-
moves is

Ik
Q: (i )~ B0 )
i=1:1

where «, is a parameter the optimal value of which
might be found by the learning procedure described
later; and n) and »% are, in the position P;, the number
of possible jumps over player A’s and player B’s pieces,
respectively. Accordingly, the value of, say, the first
bracket can vary from —3 to -+3, depending on the
number and colour of the pieces being jumped over in
the course of the first contemplated move. The sum
X’ is to be extended only over player A’s contemplated
moves in the course of & half-moves.

(c) The number of jumps possible to the opponent in
the position P;.,., is unfavourable in contrast with
those of player A. Thus. the use of a third FOM is
desirable as follows:

U+ k-1 [+ k1
05 = n ' — n ).

(d) A certain *‘levelness” is advantageous for player
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A’s pieces, so that they can more easily block player B’s
jumps. The smaller the number

8 8
Q=8 T (97 — {4y

is in the position P; ., the more level the pieces are.

(e) Moves into the final two lines might be of some-
what less value (there being no need to worry about them
any more). Clearly, (d) partly involves this aspect;
however, we can introduce another FOM as follows:

Qs = np
where n? = 0 or 1, depending on whether player A’s
move leads to a final square or not.

(f) Moves away from margin squares may be preferred,
since there the pieces have less chance of being advanced
in a favourable way. On the other hand, the marginal
squares in the final lines are harder to fill. It would
seem reasonable to introduce a new quantity, the
“mobility” of any given square. It is defined as the
sum of the numbers of the different routes along which
a piece from a certain square can reach all possible final
squares with single steps. Table 1 illustrates the way
of computing the mobility of the square *“1.”

TABLE 1
The Way of Computing the Mobility of the Square ‘1’
FROM: TO: m  r ;[ pwh d & g
(r =)

25 6 3 3 20 6 14

26 6 4 2 15 | 14

27 6 5 1 6 0 6
1 28 6 6 0 1 0 1 104

29 7 3 4 35 21 14

30 7 4 3 35 7 28

31 7 5 2 21 1 20

32 7 6 1 7 0 7

Here m is the number of moves necessary to reach a
particular final square (*‘ro”’) in the course of which there
are r moves to the right and / moves to the left;

Ph — (m) would be the number of possible different
r

routes if there were not d, routes to be subtracted due
to the finiteness of the chess-board; g, = PU"D — (,

m

and finally, the mobility assigned to the square is

32
&= 2 &
t=25
In general, it could be said that the change in mobility
should be kept low. The sixth FOM characterizes a
move by the difference between the mobilities of the
squares occupied by the moving piece before and after
the move,
O — g — g "

Now, a grand strategy is arrived at by allocating a
certain weighting factor to each FOM.* The linear

* The formulae for the values Q are constructed so that each
weighting factor is to be positive.
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The Game ‘‘Dama” on a Digital Computer

combination of the values Q formed according to the
grand strategy yields the “utility”” of a particular move.
Having investigated all the possible variations of moves
to a depth of £ half-moves, the machine picks out that
most favourable for itself, i.e. that which has the largest
utility assuming that the opponent also plays his best.
(The evaluation of the opponent’s possible replies is
carried out according to the same scheme.)

An example might render this picture clearer. Fig. 2
shows a particular position in which each of the moves
5-21, 7-21, 11-25 and 11-27 achieves the same gain in
rank number, 4. For the sake of simplicity, let &k = 2,
i.e. we think only two half-moves ahead. What can we
say about the different sub-strategies?

While the moves 5-21 and 7-21 represent jumps over
the machine’s own pieces and the opponent cannot
possibly foil these by his subsequent move, the move
11-25 is not safe in this respect; finally, the move 11-27
will still be available to the machine next time. Thus,
with regard to Q,, 11-25, 11-27, and 5-21 or 7-21 is
the order of preference.

As far as Q; is concerned, the move 7-21 is less
favourable than the others since this allows the opponent
one more possible jump.

The fourth FOM would favour the moves 5-21 and
7-21 because these decrease the “levelness” to a smaller
extent than do the moves 11-25 and 11-27.

As to Qs, the moves are irrelevant; none of them leads
to a final square.

As regards the change in mobility, the order of
preference is 5-21, 11-25 or 11-27, and 7-21, as a
simple calculation will show.

4. The Program

Unfortunately, the available memory space limited the
evaluation program to the first, apparently major, FOM.
If we drop the possibility of a blocked position, the
procedure is as follows.

(1) Find all moves of the machine in the given position
and pick out the first. (The order of the recorded
moves is not relevant.)

(2) Find all possible replies of the opponent. Pick out
the first.

(3) Do the same at each half-move up to the last one
(kth). Note which of the last possible half-moves
yields the largest change in rank number, and
record the change C(k) = (Arg)ma.. Form the
difference C(k — 1) = Ar,_, — C(k), where Ar, _,
is the change in rank number achieved by the
second last half-move.

(4) Pick out the next possible (kK — 1)th half-move
and evaluate for it C(k — 1). Repeat the process
with all the (k — 1)th half-moves and record the
maximum C(k — 1).

(5) A corresponding procedure with the (k — 2)th,
(k — 3)th, etc., half-moves eventually leads to a
maximum value of C(1) [since at each step it is,
of course, necessary to re-evaluate higher C(k — i)].
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Fig. 2.—A specimen position to illustrate different sub-strategies
on the machine’s part (white pieces).

The move belonging to this variation will be the
best possible move of the machine, whatever the
opponent does.

Usually there can be several moves yielding the same
C(1). In order to minimize the number of lagging pieces.
the program was made to move that piece which stands
on the square bearing the smallest number.

5. A Possible Learning Process

If, in some way, the machine can optimize its grand
strategy, i.e. improve the set of the weighting factors
used in the evaluation, then this would correspond to
the human way of acquiring experience, refining the
playing skill. An expert chess player must have analysed
a large number of games, pondering the different
alternatives in given situations. His “‘playing style”
represents a technique characterized by the ratio between
the weighting factors in his grand strategy.

There appears to us a mathematical way in which an
optimal grand strategy can be obtained. It is an itera-
tion process during which the machine plays with itself.
We describe the method in connection with dama. but
it can be used also for other games.

We assign a weighting factor of undetermined value
at the moment to each FOM. Let us call them o, x>,
oy, oy, s, g = {o}. We can normalize the most
significant of them as «; = | and look for the other
values.

For the sake of simplicity, we assume in the following
that the optimal grand strategy of a player does not
depend on whether he moves first or second at the
beginning of a game.

¥20Z I4dy 61 uo 1senb Aq £68€ZH/0%/L/¢/a101e/|ufwod/woo dnoolwspese//:sdpy woly papeojumoq
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Let us choose a reasonable starting set {aly, and a
number, say six, somewhat different sets, {a}y;. {o}g. - . ..
i %jgo- The machine makes a first move according to
i %Joo then ““moves round to the other side of the chess-
board™ and replies according to the sets of weighting
factors {a}g . . . {oa}ge. These second moves (which
may not all be distinct) serve to define the start of six
different games on six chess-boards, and will be replied
to according to {«}, again. The fourth moves are made
according to {ay . . . {a}ge, and this alternating type of
game goes on until each game is finished. Among the
sets {ajgy . . . {a}ge there will be some which lose, some
which bring their pieces home within just as many moves
as {o}go does, and some which win. The machine has
to pick out the one that wins within the smallest number
of moves or, if there are several of equal quality in this
respect, then that in which the opponent is left in the
most unfavourable position. Let us call this set {a};,
and choose again six convenient and somewhat different
sets ja}yy ... {a}e. By repeating the above process we
obtain {a},y, and then {u«};o. and so on, until we find
that there is no better set than, say, {a};, — totop.  The
actual values of the individual weighting factors depends
on the “mesh size”” among the sets {a};, . .. {a};,. and
on the gradient of the surface which characterizes the
utility of the set of the weighting factors in the environ-
ment of {x«},,. The above procedure of finding an
optimal ground strategy would fail if one hits upon a
local minimum or if the particular game is not sensitive
enough to respond to changes in {«}. Both cases are
illustrated symbolically in two dimensions in Fig. 3.

Finally, we remark that it should be possible to devise
a more general learning process, in which the machine
determines not only the weights of the evaluation terms.
but also the nature of the terms themselves.

6. Conclusions

In principle, a general-purpose digital computer can
be made to play any ‘“‘game,” in the sense that the
machine is given a position to be evaluated and has to
find by trial the best possible action in order to achieve
a maximum gain. Naturally, the quality of the game
will depend on the depth of “‘thinking” employed, and
this in turn depends on the speed and storage capacity
of the machine. While special-purpose analogue
machines may be more adequate in certain cases, digital
computers are more flexible and versatile. Their detailed
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Fig. 3.—Two-dimensional illustration of the cases of local
optima and insensitiveness with regard to the changes in
weighting factors.

method of operation may be different from natural
thought processes, but the results themselves are similar:
they can thus serve as models for certain human
activities.

Programming experience has brought out three major

points:

(a) The limited size of the rapid-access store (1,024
words) was responsible for a considerable amount
of time spent in packing and unpacking data, and
other red-tape operations. A rough estimate indi-
cates a reduction in computing time by a factor
of 10-15, if the memory is “infinitely™ large.

(b) Even if there is a satisfactory procedure for
evaluating the quality of the moves to be con-
sidered, thinking two half-moves deeper requires
considerably more storage space and computing
time.

(¢) Finally, certain advances in machine design, e.g.
suitable instructions contributing to pattern recog-
nition, could also reduce the time for a move.
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