Note on the Numerical Evaluation of a First Derivative from a Table
of a Function Satisfying a Second Order Differential Equation

By J. C. P. Miller

It is well known that the evaluation of derivatives from
a table of equally-spaced function values and differences
is an unsatisfactory process. Differentiation is a “local”
process, and any rounding errors produce uncertainties
which are enhanced with small intervals in the tabulation.
On the other hand, the initial convergence of the series
of multiples of differences that represent a formula for
a derivative is improved by using small intervals 4. The
best interval to use for numerical differentiation is usually
not that given in the table, but one which produces a
series which only just “converges,” i.e. one where the
last term available is just on the verge of being negligible.

Kopal (1955) discusses a simplified version of this
problem, and shows how to develop a criterion for
choice of interval to produce derivatives of accuracy as
great as is convenient, though he restricts the choice of
method considered, for reasons of clarity in exposition,
and in order to obtain a definite conclusion.

In the present note we consider one particular case
where better results are obtainable. This is when a
function is tabulated at some interval A, the function
being one that satisfies a second order differential
equation

V' =r(x)

in which we suppose, for the moment, that the first
derivative is absent. There is then no difficulty about
obtaining an accurate second derivative; we simply sub-
stitute the adequately known value of y in the differential
equation. Now, mtegration is a stable process, in the
sense that errors in an mtegral tend to be relatively
reduced with respect to those in the integrand (whereas
those in a derivative are relatively larger). We may,
therefore, integrate »’’ and obtain good' values of )’,
except for a badly determined constant of integration.

We may, however, integrate again, equally accurately,
and recover y, but with two undetermined (or relatively
so) constants of integration. The suggested method for
obtaining the constants is to use two fairly widely-spaced
values of y, taken from the tables, to give equations for
these constants. The ““y” constant can be determined
to an-accuracy comparable with that of the tabular
values y, but is not needed; the other, “‘p,” constant is
determined with a precision that increases with the
interval between the two chosen values of y.

The initial derivation of the formula, in spite of its
evident possibilities of symmetry, was rather clumsy;
we will, therefore, simply quote the formula with
explanations of its various parts, and give a formal
verification using operators.

We suppose y, = 3(a - rh) given for £r=20,1,2,
3, . . . where y(x) satisfies the differential equation
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)" = f (x, y) and that we desire an accurate value of
y'(a). Such a value is given by the formula
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The first term of the right uses the difference between
wide]y separated values of y,, whence comes the accuracy
in determining the “y”’ constant of integration. The
weighted sum represents a double sum of the second
derivative which is converted into a double integral by
the correction terms in the second line. The sum has a
jump in the middle, which is needed to preserve sym-
metry and which, with the help of the corrections in the
last line produces a first derivative of y. This identifi-
cation of terms is somewhat crude, but may be helpful.

We verify by use of operators D, E and 3, detaching
the operand f, in all cases.

The sum operator on the right is
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Thus the complete sum operator is
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Again, we have the familiar expressions for single and
double integrals
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Evaluation of First Derivative

X Bix Bi"x
—1-0 0-103997 —0-103997
—0-9 0-162639 0-146375
—0-8 0-219828 0-175862
—0-7 0-275268 0-192688
—0-6 0-328792 0197275
—0-5 0-380353 —0-190176
—0-4 0-430021 0-172008
—0-3 0-477978 0-143393
—0-2 0-524509 0-104902
—0-1 0-569999 0-057000

0-0 0:614927 0-000000
+0-1 0-659862 +0-065986
+0-2 0-705464 0-141093
+0-3 0-752486 0-225746
+0-4 0-801773 0-320709
+0-5 0-854277 +0-427138
+0-6 0-911063 0-546638
+0-7 0-973329 0-681330
+0-8 1:042422 0-833938
+0-9 1-119873 1-007886
+1-0 1-207424 -+1:207424

See, for instance, Interpolation and Applied Tables (1956),
p. 68.
The complete operator on the right is then
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The formula is thus verified.

If the differential equation is one in which the first
derivative is present, the position is more complicated.

If the equation is linear we may, by change of depen-
dent variable alone, reduce the equation to normal
form, with y’ absent, and still retain the same indepen-
dent variable x, and so also the original tabular
interval. In this case, therefore, we can still use the
formula.

Other cases are also possible, but the more obvious
approaches involve a certain amount of trial and error,
and the investigation will not be carried further in this
note.
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Numerical Example
Consider the equation for the Airy Integral

’

yo=Xxy
and use the table of Bix [see Miller (1946), page B44]
for x = — 1(0-1) + 1 to obtain two values of Bi(0),

with n =35 and n = 10 respectively. ~ Values to 6
decimals are listed, with differences used in the formula,
in the table above. With A = 0-1, n = 5, the terms of
the formula at the top of p. 112 give

1
10 Bi'(0) = 0-0473924,0 — 0-0024609,2
— 0-000514,3 — 0-0000512,4

whence Bi'(0) = 0-448288,1.
With n = 10, the formula gives

1
TOBi’(O) = 0-0551713,5 — 0-0102366,2
0-0000546,1 — 0-0000512,4

whence Bi’'(0) = 0-448288,8. The true value is 0-44328836.

Almost all the error comes from the first term and may
amount to 1/n times the maximum error in Bix, that
is to 10 units in the last place given (the commas are
used to indicate that this is a guard figure) when n =5
or 5 units when n = 10. The other terms contribute
hardly more than rounding errors in the guard figure;
in fact, more correct first terms are 0-0473924,4 for
n = 5 and 0-0551713,1 for n = 10.
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