Two Contributions to the Techniques of Queuing Problems

By C. Strachey

Programs which simulate queuing problems are often
disappointingly slow because it is necessary to investigate
a very large number of small time intervals. Moreover,
as the amount of information required for each interval
is generally small, it is often necessary for reasons of
economy to pack the information for several intervals
into a single word. The process of packing and unpack-
ing this information is tiresome and time consuming,
and it would obviously be very advantageous to be able
to treat a complete word of several packed intervals
simultaneously and in parallel, without unpacking it.
As queuing processes are essentially sequential, it might
seem at first sight that this was an impossible aim it has,
however, proved possible to do this in certain simple
cases, and the purpose of this note is to describe the
techniques employed in the hope that they will have
further uses.

The basic idea is that each binary digit position
represents one interval of time (this presupposes the use
of a fixed-point binary machine). Information of
different types is kept in different words, and operations
concerning a single time interval are carried out by bit-
wise logical operations on all the bits of the word in
parallel. The least-significant end of the word represents
the earliest interval in time, so that the operation of
“carrying” in the arithmetic unit can be used to transfer
information from earlier intervals to later ones.

Random Numbers

It is often necessary to simulate events which occur at
random but at a fixed average rate. For our representa-
tion we therefore need a random number such that each
digit individually has a given probability f of being a 1.

We can construct these numbers without considering
each digit separately as follows:

Yo=1
Forn=0,1,2,3,...

xn;‘I:yn&Rn
yn:’I:yn&Rn:yn—xn‘l'

Here I represents a word which is all 1’s, and R, repre-
sents a random number of the ordinary sort with an
equal probability of 0’s and 1’s; a bar is used for comple-
mentation (interchanging 0’s and 1’s) and & is used for
collation (the operation which puts 1’s in the result
only where there are 1’s in both operands).

It is clear that x,,, , and y, .1 have no 1’s in common
and their sum is y,; furthermore, each of them has on

114

the average one half of the number of 1's of y,. Thus
Xy, X3, . . . form a sequence of disjoint random numbers
such that each digit of x, has a probability of 27 of
being a 1. We can now form our required random
number by adding together those x, which correspond
to the I’s in the binary representation of the fraction f.

This process can be quite easily programmed in the
form of a loop which terminates either when the y,
becomes zero or when the digits of f run out. For a
computer of normal word length the cycle will be
traversed about six or seven times (normally terminating
when y, = 0), and will be very much faster than a
digit-by-digit process.

Simple Queues

The situation considered is like trying to load irregu-
larly arriving objects on to a conveyor belt which is
already partly full. There are certain empty slots
available on the belt and if there is a queue waiting when
a slot arrives it will be filled. If there is no queue waiting
and no object arrives at the same time as the slot it will
not be filled, and any object arriving subsequently will
have to wait until the next slot. In the first instance, we
shall assume that there is no queue at the start of the
time we are considering; we shall see later what modifica-
tions are necessary to deal with the case in which there is.

Let the slots available on the belt be represented by
the word Sy, and the incoming stream of objects by N,,.
We first deal with digits which are in the same position
in Sy and N, since we know at once that there must be
an output in these positions (we refer to objects which
are successfully placed into slots on the belt as “output”
and will use a letter T for them). The existence or
otherwise of a queue at this moment is immaterial, since
the objects are considered to be indistinguishable. We
therefore put

T0:S0 & No
Sl - So - TO
Nl - NO - To.

Thus Ty is the contribution to the output, and S, and N,
the remaining parts of the slots and the input respectively.

We now form D, = S, — N,. In order to see what
happens here, let us divide S, into sections of one or
more digits. Each section starts at a 1 of S, and con-
tinues up to but not including the next 1 to the right;
N is divided into the same sections. Thus, while each
section of S consists of a 1, possibly followed by some
0’s, the corresponding section of N starts with a 0 (since
we have already removed the 1’s common to S and N)

¥202 Iudy 61 U0 1senb Aq LG8¥0G/¥ L L/Z/g/e1o1e/|ulwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

Queuing Problems

and may be followed by either 0’s or 1’s. If the section
of N is all 0’s the corresponding section of D will be
identical with that of S. If, however, the section of N
contains one or more 1’s, the section of D will have the
following properties:

(a) The most significant digit will be a 0, corre-
sponding to the I in the section of S.

(b) There will be one and only one 1 in the same
position in D and N, and this will be the least
significant 1 in N.

Thus we can now form

Dy =S, —N,
Pl:Nl &Dl
leS| &E

where P, represents the objects removed from N and
inserted at a later time 7, into the slots S. We can now
form the remaining

NZ:Nlipl
SzZSl AT].

The entire process (starting with the formation of D)
must now be repeated until there are no further con-
tributions to the output, i.e. until 7, = 0. The final
output is the sum of all the 7"s.

An example may help to make this clearer (see Table 1).

There remains the problem of initial and final queues,
that is to say the carry-over from previous periods and
into subsequent ones. An initial queue can always be
considered as a source of digits at the least significant
end of N. The simplest way of dealing with it is probably
to use S—N-1 for D, in place of S-N, in any step in which
the initial queue is not empty; at the same time the
initial queue should be reduced by 1. A final queue
will only originate when there are 1’s in N more sig-
nificant than any surviving 1’s in S. This will mean
that there are objects arriving for which no slots can
be found. It will be demonstrated by the fact that D
will appear negative. In these circumstances, 1 should
be added to the final queue because the ordinary cycle
will reduce the number of 1’s in N by 1 without any
corresponding output. When the cycle finishes, any
initial queue still remaining should be added to the final
queue and, if N is not zero, its sideways total (i.e. the
number of 1’s in it), should also be added to the final
queue.

The maximum length of the queue at any time can be
determined by counting the number of times the cycle
is traversed and adding the number, if any, remaining
in the initial queue at the end of the process. It is also
useful to be able to find the total time spent by objects

Table 1 — Example

S 1 011010

N 01 GO O 0 I

Sy & Ng=Ty, 0 0 0 0 0 0 0
So —To==S, 1 0|11 0]1 0
No—To =N, 0 1]0[0 0|0 1
S, —N,=D, 0 1[1]|1 0/0 0
S, &D, =T, 1 0000 10
Ny&D, =P, 01 00000
S, —-T, =S, 0 O0|1l]1 000
N,—P, =N, 0 0[0/0 0 0 1
S, ~N,=D, 0 0[1]0 1 1 0
7, 00 0 1 0 0 0

P, 000O0O0O0O

S; 0 0|1 00 0 0

Ny 0 0/0 00 O I

Dy, 0 0[O0 1 1 1 1

T, 0010000

P, 00O0O0O0 O I

S 000O0O0O0O

Ny 000 0O0OOTO
D4:S4

Output T 1 011010

—_o == 0O OO0 O—=O0 o — O

OO OO OO0

001110010 1
01001 1001110
00001 0000O0T 10
0 0[1[1 00 O0[1 00 OfI
0 1[0[0 0 1 0[O0 1 000
I 1/1jo 1 1 0/0 1 00|l
000100010000
010001001000
0 0[1 0000O0O0O0O]|LI
0 0[0000O0O0O0O0 OO
0 0/10000O0GO0GOO]I
00000O0O0O0O0O0O0O
0000000O0O0O0O0OO
0 0/1 00000O0GO0O]|I
0 0[]0 000O0O0O0GO0O0/0
0 0/1 000000O0OO]|I
000000O0O0OO0O0O
0000000O0O0O0O0O0O
00100000O0GO0O0 1
000000O0O0OO0O0O
Ty =0

0001 100107110

¥202 Iudy 61 U0 1senb Aq LG8¥0G/¥ L L/Z/g/e1o1e/|ulwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

Queuing Problems

in the queue, as this makes it possible to find the average
number of objects in the queue at any moment, and the
average time in the queue spent by each object. This
can be done by forming the sideways total of the quan-
tities 7, — P, and making suitable provision for the
waiting time of objects transferred directly from the
initial queue to the final queue and for those still left
in N at the end of the process. Another quantity which
might be wanted is the maximum time spent in the
queue by any one object; unfortunately, it seems impos-

sible to obtain this number using this sort of technique,
as the identity of the objects is not preserved.

The description of these processes has deliberately
been left somewhat general, and detailed algorithms
have not been given, because the logical orders available
vary a good deal from computer to computer, and the
exact details of what is available will have a very con-
siderable effect on the actual program. Examples of
the Pegasus programs for the two processes are given
in the Appendix.

Appendix: Examples of Pegasus programs

Note.—The sign bit is not used.

Random Numbers

X2 Output
X3 f Probability for each digit to be 1
X4 vy,
X5 R, Ordinary random number (sign bit = 0)
f 3 00
R, 500
1 442 T
32 406 }‘0 -0
0 2 00
-5 520
6 706rX5:X7:R,,
7 500
4 705 y, & R, = x, .,
7 4 03 Yn — Xnp1 = Vnoi
_1 g g% } Test next digit of f
' 2 01 Add x, , if necessary
- 3 60—
— 46l ‘
EXIT<

Note.—The method of generating random numbers
used above appears to be novel; it is certainly fast,
convenient, and satisfactory.

116

Simple Queues

X2 Q@ Initial queue
X3 QF* Final queue

X4
X5
0 00 Q*=0
So 10 Store S,
4 05 TO — NO & SO
5 03 N,
So 04 S,
.5 00 B
s 1% b

60
43 D — 1| Deal with
43 Q — 1] initial queue

I 62

i 1 41 Final queue

5 00
7 05 S&D
5 03 S—S&D=S&D=T
4 05 N&D=P

LT 03 N—N&D=N&D

61 Jumpif N0

61 Jumpif T 40

X5 = XT = final output
01 Final queue

EXIT

o
S

More sophisticated methods of testing can be used to
avoid the last repetition of the cycle, which is superfluous.

¥202 Iudy 61 U0 1senb Aq LG8¥0G/¥ L L/Z/g/e1o1e/|ulwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

