An Introduction to ALGOL 60

By M. Woodger

This is an account of the more important features of the algorithmic language ALGOL 60. The
aim is to explain rather than to define the language, and for full details reference should be made
to the Report published in Numerische Mathematik, Vol. 2, pp. 106-136 (1960).

1. Introduction
1.1 Purpose

ALGOL 60 is a formal symbolic language for express-
ing processes of computation (algorithms).

The order code for any individual computer is, in fact,
such a language—it has a “‘syntax” or set of rules
specifying what are meaningful combinations of symbols,
and a “‘semantics” or set of rules specifying the meanings
of these combinations, that is to say the action taken by
the computer when the orders are executed.

Such “*machine languages” are burdened with details

- of the particular structure, arithmetic facilities, input—
output and storage arrangements of the computer con-
cerned. The purpose of ALGOL 60 is to provide a
language for the expression of computation processes
to the extent that they are independent of these details,
and in a form which can be translated automatically, into
any particular machine code, by a suitable translator
program written for the computer concerned. The
“machine oriented” details of the computation are to
be embodied in the translator rather than in the ALGOL
60 program.

A second use of ALGOL 60 is for expressing processes
of computation in a form suitable for human con-
sumption. Whereas an unbroken sequence of symbols
of a few different sorts is satisfactory for input to a
computer, legibility requires a display on the printed
page, and a variety of forms of expression which will
reflect the natural subdivision of the process. To accom-
modate these varying requirements there are three forms
of ALGOL 60: it is defined in a form known as the
reference language (employing a total of 116 basic
symbols but in a linear fashion); it is used as input to
translators in an appropriate hardware representation
(employing, e.g., 5-bit characters on punched paper tape);
and it is used in publications in the form of publication
language. The latter admits the use of suffixes (a; ; corre-
sponding to a[i, j] in the reference language), exponents
(a® corresponding to a?3), Greek letters, spaces, and
line groupings of characters. Apart from such relatively
trivial differences the three forms of ALGOL 60 are
identical in content.

Words printed in bold type such as begin represent
single basic symbols. In the typescript of an ALGOL 60
program these would be underlined.

1.2 Subject-Matter

The computing processes described deal principally
with ordinary real numbers, integers, and arrays of these.
The real numbers are of necessity approximated digitally,
but how this is done is not expressed.

67

In order to avoid reference to particular storage loca-
tions a notation is introduced for variable quantities in
store, and it is important to be clear as to its precise
significance. A letter, or a string of letters or decimal
digits of which the first is a letter, is called an identifier.
An identifier may be used in an ALGOL 60 program as
a simple variable. This means that the program, when
ultimately translated and run on a computer, will
associate a particular storage location with that identifier.
The number held in this store at any stage in the calcula-
tion is called the current value of the variable. An
instruction or statement in the ALGOL 60 program
which contains this identifier calls either for the use of
this number in calculation or for its replacement by the
result of calculation—the latter is referred to as ““assign-
ment of a value to the variable.”

1.3 Calculation Rules

The course of the computation process described by
the ALGOL 60 program may be visualized as a suc-
cession of assignments of values to variables. The
program expresses rules for the calculation of these
assigned values, and these rules take a variety of forms.
The simplest rules are provided by ordinary algebraic
expressions compounded from simple variables and
numerical (decimal) constants by the usual symbols for
addition, subtraction, multiplication and division. If E
denotes such an expression, the instruction in ALGOL 60
which calls for the assignment of the current value of E
to a variable V' is written

V.= F.

E may well contain V itself; for example, the assignment
statement V := V -+ 1 increases the current value of V
by 1.

To indicate that the variable V is to be treated as a
real variable (say), rather than as an integer or other
“type” of quantity, a type declaration real V is used.
A succession of type declarations for the variables
employed, followed by a succession of assignment state-
ments, each statement and declaration being separated
from its neighbours by a semicolon (;), and the whole
being enclosed between the ‘“‘statement brackets” begin
and end, would constitute a simple ALGOL 60 program.

1.4 Arrays

Large blocks of numerical data are commonly treated
as arrays, the elements of which are specified by sets of
integers. The number of integers in such a set is the

$202 14dy 61 U0 1senb Aq £/ /+06/.9/Z/¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

ALGOL 60

“dimensionality” of the array. Thus a matrix A is a
two-dimensional array for which a set of two integers,
the row number i and column number j, is used to single
out a particular element. This element is denoted by
the suffixed symbol A4;;. If the elements of a matrix A4
of n columns are stored in consecutive locations row by
row, the position number of element A;; relative to A,
as number O is (i — 1)n + (j — 1), and this rule for
finding the (i, j) element must be available to the com-
puter whenever the value of this element is called for.

An array is in effect a function of a number of integer
variables, the values of the function being explicitly listed
(stored) and the values of the variables being used to
locate the function value in the list (store). This may be
contrasted with the situation with an algebraic expression,
which is effectively a function of the variables it contains.
In that case no function values are stored, but the values
of the variables are used to calculate the function value
by a formula. A formula can generally be used for
arbitrary values of the arguments. An array, on the
other hand, is limited, for reasons of storage, in each of
its dimensions. ALGOL 60 deals only with arrays
whose dimensions are independent, i.e. generalized
rectangular arrays, and in particular only those employ-
ing consecutive integer suffix values. The extent of an
array is specified by the lower and upper limiting values
of each of its suffixes, and this information for each
array, together with the type of its elements, is provided
by an array declaration.

Each element of an array may be assigned a value
independently of the others. The general form of such
an assignment statement is

—F

VIE.E, ... E]:-

or in “publication language” ALGOL 60 (which permits
the use of suffixes instead of square brackets)

Ve e .. g:=F.

Here V' is a subscripted variable (the identifier naming
the array); each E (a subscript) is an expression whose
current value is used to locate the appropriate element
of the array, and F is the expression whose current value
is to be assigned to that element.

1.5 Constituents of a Program

The basic constituents of an ALGOL 60 program are
thus statements which are executed as instructions in the
order in which they are written and have the effect of
assigning values to certain variables, and declarations
which are not themselves executed as instructions but
provide information necessary to the execution of the
statements following them.

There is a third (unnamed) category of constituents
which corresponds to the control or “‘red tape” instruc-
tions in machine language. These make it possible

(i) to break off a sequence of calculations and start
again somewhere else in the program (the *‘jump”
or go to statements);

68

(ii) to skip certain statements in a sequence if certain
conditions are not satisfied (conditional state-
ments); and

(iii) to repeat the next statement for a succession of
values of a variable (the for statements).

Since no reference is made to storage locations of the
ALGOL 60 statements themselves, they have to be
labelled to be identified as destinations for go to state-
ments. Any identifier or unsigned integer may be used
as a label, written in front of the statement labelled and
separated from it by a colon ().

Sequences of statements may be combined within the
statement brackets begin and end to form compound
statements, which again may be labelled.

1.6 Blocks and Declarations

Each identifier used in an ALGOL 60 program, other
than as a label, is introduced by a declaration which gives
information concerning it, and which is referred to by
the translator when executing the statements in which the
identifier appears. This declaration is written (possibly
with others) following the begin symbol of some com-
pound statement (possibly the whole program). A
compound statement containing declarations in this way
is called a block, and each declaration is valid only for
the block to which it is attached. This means that each
identifier / is “‘local” to the block B for which it is
declared, in the sense that on exit from B either via the
end (on completion of the last statement in B) or on
execution of a go to (jump) statement leading outside B,
I has no longer the declared significance and may be
used afresh in a new declaration to denote some entirely
different thing. Alternatively, if the block B is itself a
component statement of a larger block 4 for which [
was already declared, then, while B is being executed,
I has the local significance declared for B but on exit to
A it reverts to the significance it had when B was entered,
its value (if a variable) remaining unaffected by passage
through B. Identifiers used in 4 and not declared for B
retain their significance within B. Thus every block
automatically introduces a new level of nomenclature.

Labels are automatically “‘local” to the blocks in
which they are used, so that a jump into a block from
outside is not possible—that would bypass the governing
declarations.

A declaration D, attached to a block B and governing
an identifier / representing a variable or array, may be
prefixed with the symbol own. This has the effect that
on re-entering B the value of the variable (or values of
the array elements) is as it was left at the previous exit
from B.

1.7 Functions and Procedures

We have noted that an algebraic expression can be
considered as a rule for evaluating a function, the con-
stituent variables in the expression being the arguments
of the function. More generally, the same is true of any
ALGOL 60 program if we single out one of the variables

$202 14dy 61 U0 1senb Aq £/ /+06/.9/Z/¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

ALGOL 60

to which the program assigns a value as being the value
of the function. ALGOL 60 provides for the definition
of a function in this way, giving it a name and indicating
the variables concerned, and for using its name (followed
by a parenthesized list of expressions to be used as its
arguments) as a constituent of algebraic expressions
elsewhere, i.e. as a ‘“‘function designator.” A notation
is also provided for defining as a ‘“‘procedure” any
ALGOL 60 program even when its effect is not simply
the assignment of a value to a single variable. In this
case the procedure name (followed by a parenthesized
argument list as before) appears not as part of an
algebraic expression but as a statement—a ‘‘procedure
statement”—in the program. Both functions and pro-
cedures are introduced and defined by procedure declara-
tions which comprise the defining block of program or
statement (the ““procedure body’’) prefixed by the symbol
procedure, the name of the procedure (any identifier),
and details regarding which identifiers in it are to be
treated as the arguments or “parameters’” and how they
~are to be used when the procedure is called. A type
declaration in front of the symbol procedure indicates
that a function is being defined and gives the type of its
value.
For example the procedure declaration

real procedure sumsq (P, Q, R, S);
sumsq 1= P2 -+ Q* - R* 1+ §2

might be used to define the function designator appearing
in a statement such as

y:=T?+ sumsq(a — m, b —m, c —m,d— m)/3.

When this statement is executed the effect is as if sumsq
represented a simple variable to which a value was first
assigned by substituting the “‘actual parameters” a — m,
b—m, ¢ — m, d— m respectively for the *“formal
parameters” P, O, R, S in the procedure body and
then executing the resulting assignment statement.
T? + sumsq/3 is then calculated and its value assigned
to).

It should be noted that the letters P, O, R, S (in general
any identifiers) bear no relation to other identifiers
outside the procedure body and do not represent
“variables”—they are used simply to mark positions
for substitution in the procedure body, and for this
reason are called ““formal parameters.”

A simple example of a procedure statement is

TEST (B — 4 % a % ¢, L1, L2, L3)

which might be used as a three-way discrimination using
current values of variables a, b, ¢ to continue the program
at statements labelled LI, L2 or L3 according as
b*> — 4 x g X ¢ is positive zero or negative. The
procedure declaration defining TEST (which must
appear in the head of a block in which the above state-
ment appears) could be as follows:

procedure TEST (a, P, Z, N);if a > 0O then go to P else if
a = 0 then go to Z else go to V.

69

This illustrates also a simple form of conditional state-
ment. If Brepresents some condition which may or may
not be currently satisfied, and S, T represent statements,
the effect of

if B then S else T

is the same as that of S if B holds, and is the same as
that of 7T if B does not hold. The statement

if B then S
has no effect (is skipped) if B does not hold.

1.8 Standard Functions

It is recommended in the Report that the following
identifiers should be reserved for standard functions
which may be available with a particular translator
without explicit declaration, through the use of a library
of subroutines. x denotes the current value of the
expression E.

abs (E) the modulus (absolute value) of x
sign (E) “lifx>0"
0if v = 0 ,of type integer
— l1ifx <0

entier (E) the integral part of x (largest integer not

greater than x), of type integer

sqrt (E) square root of x

sin (E) sine of x

cos (E) cosine of x

arctan (E) principal value of arctangent of x
In (E) natural logarithm of x

exp (E) exponential function of .

1.9 Input and Output

The input of data and the output of results have been
excluded from detailed consideration in the reference
language, but it is intended that suitable procedures be
available with individual translators which will perform
these functions. These procedures would be referred to
by name in the ALGOL program and might require as
parameters information concerning the layout of data
on the external medium, i.e. information not expressible
in the language. For this purpose arbitrary strings of
ALGOL 60 symbols may be entered as actual parameters
of procedures through the use of two special “‘string
quotes” symbols, and the body of a procedure declara-
tion may be expressed in machine code while the heading
remains expressed in ALGOL 60 for reference.

2. Examples

Before indicating the full generality of the various
categories of symbolism provided in ALGOL 60 we give
first some elementary examples.

2.1 The following procedure declaration defines
max (a, n) as the function whose arguments are a vector
(one-dimensional array) a of n elements, and the integer n,
and whose value is the modulus of the largest component
of the vector.

$202 14dy 61 U0 1senb Aq £/ /+06/.9/Z/¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

ALGOL 60

real procedure max (a, n);

L1: beginreal m; m := 0; L2: for i := 1 step | until
n do

L3: begin real x: x :=gq;; if v -~ 0 then x := —Xx;
if x > m then m :=— x end:

L4: max := m end.

This illustrates a simple kind of “*for™ statement—the
statement labelled L2 causes the statement L3 to be
executed n times with i taking the values 1, 2, . . . nin
turn, before proceeding to statement L4. The labels
are superfluous in this case since no go to statement
is used.

It is worth noting that one cannot eliminate /m and
write the procedure body simply as

L1: begin max := 0; L2: for i := | step | until n do
L3: begin real x: x :=¢;: if v <0 then x:= —x;
if x >> max then max := x end end

because wherever the identifier max appears other than
on the left of an assignment statement—in this case in
the condition (x > max)—it calls into use the procedure
max itself, which is not the intention here.

2.2 To illustrate the use of the above procedure
declaration by a function designator in an algebraic
expression, suppose we have a matrix B of r rows and
¢ columns and we wish to normalize its rows to have
largest elements unity (where the rows have at least one
non-zero element). We could write:

for i := 1 step | until r do
1: begin array a [l : c]; for j := 1 step | until ¢ do
a; 1= B ;:
for j := 1 step | until ¢ do

if max (a, ¢) # 0 then B; ; : = B; ;/max (a, ¢) end.

Here an array a local to the block labelled 1 has been
introduced and a copy of the current ith row of B
assigned to it simply in order to have a one-dimensional
array to use as actual parameter of max. ais defined by
the array declaration array a[l : ¢] as being one-
dimensional with suffix values ranging from 1 to ¢, and
because no “‘type” is indicated, the type real is under-
stood (a special convention for array declarations).
B could have been introduced by a declaration of the
form

array B[l :r, 1 : c].

2.3 The following example from the ALGOL 60
report illustrates a more general form of the heading of
a procedure declaration.

procedure [nnerproduct (a, b) order: (k, p) Result: (y);
value & ;

integer k, p;real y, a, b;

begin reals; s :=0;

forp :=1stepluntilk dos:=5s+ a x b;

y :=s end Innerproduct

The formal parameters of this procedure are a, b, k,
p, ¥, and could have simply been listed between a single

70

pair of parentheses in the first line. The convention used
here is that any separating comma (“‘parameter de-
limiter”’) may be replaced without effect on the program
by a string of letters followed by a colon and enclosed
between reversed parentheses thus

) order: (

By this means the various parameters may more easily
be recognized by the reader.

The last line illustrates a similar convention that the
symbol end may be followed, without effect, by any
sequence of symbols not containing end or else or a
semicolon.

The second line of the declaration is known as the
“value part,” and has been absent from the examples
given earlier. It indicates those parameters which are
to be *‘called by value” rather than **called by name™ as
hitherto. This means that at a procedure call these
formal parameters in the procedure body are not to be
replaced by the actual parameters but are to be treated in
the execution of the procedure as if they were identifiers
local to the procedure body, representing variables or
arrays to which were initially assigned the current values
of the actual parameter expressions.

The third line of the declaration is called the *‘speci-
fication part” and provides in general information con-
cerning the kinds and types of admissible actual
parameters.

In this example the “‘running variable” p of the “*for”
statement has deliberately been made one of the para-
meters so that it may also appear as a suffix in the actual
parameter expressions substituted for @ and b. Thus a
particular procedure statement employing this procedure
to form the inner product of a vector B of order 10 and
a vector defined by fixing the first and third suffix of a
three-dimensional array 4 might be

Innerproduct (A [t, P, u], B[P], 10, P, Y)

Of course the procedure could also be abused (presumably
successfully) by writing /nnerproduct (C, D, n, i, E) to
have the same effect as

E:=nxCxD

in which C, D and n are simple variables, the last a
positive integer.

By omitting the parameter y, replacing the last assign-
ment statement by Innerproduct := s, and preceding the
symbol procedure by real this procedure declaration
would be changed into a definition of Innerproduct as a
function designator.

3. Syntax

In order to describe precisely what combinations of
symbols are meaningful in ALGOL 60, a special notation
is used which is best explained by an example. Given
that the symbol (letter> names any one of the fifty-two
lower or upper case Latin letters, and that (digit> names

$202 14dy 61 U0 1senb Aq £/ /+06/.9/Z/¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

ALGOL 60

any one of 0, 1, .. .9, we can define the name - identifier
by the formula

<identifier > ::= (letter)

Cidentifier> letter |
< identifier - digit

in which the vertical strokes may be read “*or.” This is
to be read as saying that an identifier is either a letter
or is an identifier followed by a letter or is an identifier
followed by a digit. It defines the notion of identifier
recursively. Thus V23« is an identifier because V23
is one, V23 because V2 is, and V2 because the single
letter V' is. This corresponds with the verbal definition
in Section 1.2 above as *‘a letter or a string of letters or
decimal digits of which the first is a letter.”

In general, the juxtaposition of names in these
“metalinguistic formulae” is used to name the juxta-
position of the sequences of symbols named, and any
ALGOL 60 symbol appearing is used to name itself.
Thus examples of sequences named by -+ digit - digit
would be +3-7, +-0-0, +9-9.

In the next section the full extent of the more important
means of expression in ALGOL 60 will become
apparent.

4. Syntax of Expressions
4.1 Numbers

Constant numbers are expressed in ALGOL 60 in the
decimal notation with sign, integral part, decimal point,
fractional part, and finally a signed power of ten to be
used as a scale factor. The exponent of 10 is brought
down to the level of the text by using a special suffix
symbol |, for the radix, and this and various parts of
the general form may be omitted when superfluous,
e.g. —1-083,,—02, -7300, —+,,7.

The precise definition in several steps is as follows:

unsigned integer> ::== < digit > |

Cunsigned integer - digit

.integer> ::= Cunsigned integer> |

-+ unsigned integer> | —unsigned integer
- decimal fraction> ::= - (unsigned integer>
.exponent part> ::= |g{integer)>

<decimal number) ::== Cunsigned integer)
{decimal fraction)
Cunsigned integer>{decimal fraction
cunsigned number) ::= (decimal number) [
{exponent part) |
<decimal number){exponent part
number> ::= (unsigned number) |
~+<unsigned number) | —{unsigned number

4.2 Variables

{simple variable> ::= (identifier)
(array identifier) ::= {(identifier)

Although strictly speaking redundant, these definitions
help to convey part of the meaning at the same time as
the structure is defined.

71

_subscript list) ::= (arithmetic expression>]
{subscript list>, <arithmetic expression®
subscripted variable) ::= <array identifier)
[(subscript list -]
variable ::= (simple variable > |
<subscripted variable

4.3 Function Designators

actual parameter> ::= string - | “expression> |
‘array identifier | - switch identifier |
- procedure identifier

Strings are not discussed in this article. Switches are
defined under 4.7.

letter string> ::= « letter letter string - letter

parameter delimiter - ::==, |) letter string": (

actual parameter list ::— actual parameter |
actual parameter list - parameter delimiter - actual
parameter >

procedure identifier> ::= - identifier »

function designator» ::= . procedure identifier - |

procedure identifier (- actual parameter list ')

4.4 Simple Arithmetic Expressions
.adding operator> 1= -+ | —

{multiplying operator> ::= x | /| +
{primary > ::= <unsigned number> | < variable " |
- function designator> | (- arithmetic expression)
{factor) ::== {primary> | < factor> * {primary)
{term> ::= factor) |
<term > multiplying operator>< factor -
“simple arithmetic expression > ::= (term’

{adding operator>{term>
_simple arithmetic expression>{adding operator
‘term>

The operators -+, —, x have the conventional
meaning and yield expressions of type integer when both
operands have type integer, otherwise real.

The operator / denotes division, to be understood as
a multiplication of the preceding term by the reciprocal
of the following factor, the result having always type real.

The operator — also denotes division, but is restricted
to operands of type integer and yields the integral part
of the quotient, defined by

m = n = sign (m/n) X entier (abs (m/n))

The operator 1 denotes exponentiation, the preceding
factor being the base and the following “‘primary” the
exponent. If the exponent is a positive integer i the
result is a product of i equal factors of the same type as
the base, if a negative integer then the result is the
reciprocal of such a product and of type real, or is
undefined if the base is zero, while if the exponent is zero
the result is unity of the same type as the base. If the
exponent r is of type real and the base a is positive the
result is exp (r X [n(a)) of type real; if a is zero the
result is zero of type real for positive r, and otherwise
is undefined.

$202 14dy 61 U0 1senb Aq £/ /+06/.9/Z/¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

ALGOL 60

The sequence of operations in evaluating an expres-
sion is from left to right subject to the usual use of
parentheses and to the following rules of precedence
between the operators, which are reflected in the syntax
above:

first: 0
second: x|/ =
third: - —

4.5 Boolean Expressions

These are used chiefly to express conditions for use in
conditional statements and, as introduced below, in
conditional expressions. For these purposes a con-
dition is essentially a two-valued thing, it either holds
or does not hold, and one can manipulate conditions as
two-valued variables by the algebra of logic, i.e. Boolean
algebra, which is available as part of ALGOL 60. A
variable may be declared to have type Boolean, and its
value is then either true or false (these being basic
symbols). Such a variable may be assigned the current
value of a Boolean expression just as in ordinary arith-
metic. A function designator may have type Boolean,
and one can have a Boolean array.

The simplest conditions are relations of equality or
inequality between arithmetic expressions. From any
condition we can derive the reverse condition by pre-
ceding it by the logical negation sign —, and from any
two conditions we can derive, by the logical operators
A (and), V (or), D (implies) and = (equivalent), com-
pound conditions expressing respectively that both hold,
that at least one holds, that either the first does not hold
or the second does or both, and that they either both
hold or both do not hold.

For example:

if(a>b-+ 1)V(a<5» 1) then go to L.

This is equivalent to

if — abs(a — b) << | then go to L

and also to

B:=abs(a—b)<1; if— Bthen goto L

which illustrates the *‘calculation™ of a condition.

The sequence of operations in evaluating a Boolean
expression follows the rules for arithmetic expressions.
with the rules of precedence extended thus:

4th: <
Sthi b |
6th: A
7th: V
8th: D
9th: ==

so the condition in the first example above could be
written without parentheses asa > b -+~ 1Va <b — 1.

The syntax built up following this order of precedence
is as follows:

(relational operator> 1= < | < | =| > | > | #

72

1= <arithimetic expression < relational
operator >« arithmetic expression
logical value » ::= true | false
Boolean primary > ::= <logical value®
<function designator |
{relation>) ('Boolean expression)
Boolean secondary ::= Boolean primary - |
— (Boolean primary)
Boolean factor ::= - Boolean secondary " |
<Boolean factor> A < Boolean secondary>
Boolean term " ::= « Boolean factor - |
- Boolean term V{Boolean factor>
Boolean term - |
- implication® D < Boolean term"
;1= implication |
- simple Boolean >

relation

< variable> |

implication > ::=

simple Boolean
implication®

4.6 Conditional Expressions

These provide a method (due to J. McCarthy) for
selecting one of a sequence of expressions E,, E,, . . .
according to the current values of a corresponding
sequence of conditions (Boolean expressions) By, B, . . .
If B, is the first condition to hold, i.e. to have the value
true, then the value of the following conditional arith-
metic expression is that of Ej, regardless of whether or
not By, Byis ..., 0r E, Ef.y, ... are even defined.

if B, then E, elseif B, then E, else...else FE,
In particular E,, E,, . . . may themselves be Boolean
expressions.

This enables us to complete the syntax of arithmetic
and Boolean expressions as follows:

if clause™ ::= if < Boolean expression > then
- Boolean expression> ::= <simple Boolean |
if clause - simple Boolean> else < Boolean expression:
arithmetic expression’ ::= <simple arithmetic expres-
sion> | <if clause><simple arithmetic expression>
else ‘arithmetic expression >

Discontinuous functions are naturally expressed as
conditional expressions. For example

sign (E) is equivalent to
if £ > 0 then 1 else if £ — O then O else — 1|
and abs (E) is equivalent to
if £ << 0 then — E else £

4.7 Switches, Designational Expressions

Just as an arithmetic expression is a rule for obtaining
a numerical value, so a designational expression is a
rule for obtaining a designation of a statement, i.e. a
label. The only such expression so far introduced is
simply a label itself, but we now provide a notation—the
“switch”—for using any arithmetic expression whose
value is a positive integer to select one from a list of
labels (or again in general designational expressions).
This is in some ways analogous to a one-dimensional
array. Whereas an array declaration merely specifies
size, shape and type of values, a switch declaration

$202 14dy 61 U0 1senb Aq £/ /+06/.9/Z/¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

ALGOL 60

actually exhibits the list of values. The designational
expression whose value is the kth label in this list is
written like a suffixed variable with k as suffix and the
switch identifier as identifier.

For example, if the switch S were defined by the
declaration

switch S:=L, P, 4, L

then the ‘‘switch designators” S[I] and S[4] and
S[3 + 1 1 1] have each as value the label L. These may
themselves appear in go to statements within the block
to which the switch declaration is attached, or as entries
in other switch declarations.

Finally, one can have conditional designational
expressions just as in the case of arithmetic and Boolean
expressions, and the full syntax is as follows:

(label ::= (identifier> | <unsigned integer,
(switch identifier) ::= {identifier>
<switch designator) ::= {switch identifier»[{arith-
metic expression)]
«simple designational expression> ::= (label) |
«switch designator> | (< designational expression)
<designational expression) ::= {simple designational
expression> | (if clause>{simple designational ex-
pression > else <(designational expression>
Cexpression> ::= arithmetic expression |
(Boolean expression™ | < designational expression

5. Syntax of Statements
5.1 Assignment Statements

The only new point here is the provision for simul-
taneous assignments such as

alb[1, 1):=x :=b[1,1]:=3 x x

which assigns the current value of 3 x x to a certain
element of the one-dimensional array a (depending on
the current value of b,), to x itself, and then to b, ,.
(All variables here must be integers.)

If the expression assigned is E of type real, the variables
may be of type integer and then the value assigned to
them is that of entier (E + 0-5).

left part> ::= J(variable> :=
left part list> ::= (left part)

(left part list><left part)
cassignment statement) ::= {left part list) arithmetic
expression> | (left part list>{Boolean expression>

5.2 Go to Statements
(go to statement) ::= go to {designational expression)

5.3 Dummy Statements
(dummy statement) ::= {(empty>
(empty) names the “empty” sequence of symbols.

A dummy statement is simply a blank—nothing is
written. Its only purpose is to place a label. A go to

statement which is simply to lead out of a compound
statement to the following one can refer to a labelled
dummy statement before the end, thus:

begin . . .; if x << 0 then go to END; .. .: END: end.

5.4 Procedure Statements

These are syntactically identical with function desig-
nators (4.3 above) but are used as statements instead of
as expressions.

«procedure statement> ::= procedure identifier - |
{procedure identifier »(<actual parameter list))

The actual parameter list might be absent, e.g. in the
case of a procedure which simply sounded an alarm; the
procedure itself would then be in machine code.

5.5 For Statements

A ““for clause” causes the statement S which it pre-
cedes to be executed zero or more times, and performs
an assignment of a value to a ‘“‘controlled variable” V
immediately before each execution. The ‘‘for list”
defines these consecutively assigned values. An element
of this list which is an arithmetic expression causes the
assignment of its current value to ¥ and a single execu-
tion of S. An element of the form AstepBuntilC where
A, B, C are arithmetic expressions causes the assignment
of the current values of 4, 4 —~ B, A + 2B, .. .to V
and corresponding execution of S, the operation ter-
minating as soon as ¥ — C has the same sign as B (this
test being made just prior to each execution, so that S
is never executed if initially 4 — C and B have equal
signs). An element of the form EwhileF where E is an
arithmetic expression and F a Boolean expression causes
the assignment of the current value of E prior to each
execution, this being repeated until the current value of F
is false, the test being made prior to each execution as
above. This additional facility enables the number of
times a loop is executed to be made to depend on the
results of calculation without the necessity of writing a
special test instruction.

If S is left by a go o statement, interrupting the execu-
tion of the for statement, the then current value of V
continues to be available outside; otherwise V is treated
as local to the for statement.

{for list element) ::= (arithmetic expression> |
Carithmetic expression> step {arithmetic expression)
until <arithmetic expression> |
Carithmetic expression> while {Boolean expression)

{for list) ::= (for list element) | {for list>, <for list
element >

{for clause) ::= for {variable) := (for list)> do

(for statement) ::= {for clause>{statement> |

(label) : {for statement)

The last definition shows that for statements may be
repeatedly labelled. This is true of all kinds of statement,
as will be seen.

$202 14dy 61 U0 1senb Aq £/ /+06/.9/Z/¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

ALGOL 60

5.6 Conditional Statements, Compound Statements, Blocks

The following completes the syntax of statements:

. basic statement> ::= (assignment statement>
< go to statement) | {dummy statement>]

procedure statement>

.unconditional statement > ::= <basic statement) |

“for statement> | {compound statement) | < block
f statement) ::= (if clause>{unconditional state-
ment> | Jlabel> : {if statement
conditional statement> ::= «if statement) |
<if statement else < statement
statement > ::= unconditional statement > |
conditional statement
compound tail -~ ::= statement - end |
statement > ; <compound tail
compound statement - :: == begin <compound tail - |
“label : < compound statement®
block head ::= begin - declaration>
- block head>; < declaration
block" ::= block head": compound tail - |

{label™ : ‘block

6. Syntax of Declarations

- declaration» ::== (type declaration> l
array declaration - | (switch declaration - |
_procedure declaration:

6.1 Type Declarations

“type list) ::= {simple variable> |
{simple variable>, <type list -
“type> ::= real | integer | Boolean
<local or own type> ::= (type> | own <type>
- type declaration> ::= (local or own type>{type list"

6.2 Array Declarations

lower bound> ::= {arithmetic expression)
upper bound) ::== {arithmetic expression)
<bound pair) ::= {lower bound) : (upper bound>

bound pair list> ::— <bound pair) |

< bound pair list>, (bound pair;
carray segment) ::= <array identifier>[{bound pair

list>] [Carray identifier), <array segment)>
-array list) ::= Carray segment> |

{array list), {array segment)

<array declaration> ::- array <array list> |

‘local or own type> array <array list’

Examples
arraya,b,c[7:n,2:m],s,u[—2 X r:10]

declares three matrices a, b, ¢ and two vectors s and u.
own Boolean array perer3[1 + if n > 0then n else 0: 20]

declares a vector called perer3 with elements each either
true or false, the definition of the lower bound of its

suffix involving a conditional arithmetic expression.

(label> : (basic statement

6.3 Switch Declarations

switch list> ::= (designational expression - |
< switch list>, {designational expression >
switch declaration> ::= switch (switch identifier> : =
< switch list>

6.4 Procedure Declarations

formal parameter> ::== (identifier
formal parameter list - ::= « formal parameter - |
formal parameter list>{parameter delimiter formal
parameter
formal parameter part> ::= empty - |
(- formal parameter list)
identifier list ::= < identifier - |

<identifier list -, < identifier
value part - ::= <empty> | value - identifier list>;
specifier ::= string | < type | array | - type - array |
label | switch | procedure | - type - procedure
specification part ::= <empty |
specifier - identifier list ; |
specification part > <specifier > identifier list ;
procedure heading> ::= < procedure identifier
- formal parameter part>; value part > specification
part)>
procedure body: ::= {(statement " | - code "
procedure declaration> ::= procedure « procedure
heading < procedure body" | - type> procedure
procedure heading>{procedure body"

7. Classification of Basic Symbols

As stated ecarlier the Reference language embraces
116 basic symbols.

basic symbol ::= letter> | <digit | logical value" |
delimiter>

delimiter > ::= {operator) | < separator [
<bracket> | <declarator> | - specificator>

operator) ::= <arithmetic operator" |
relational operator> | <logical operator |
sequential operator>

‘arithmetic operator) 1= | — | x | /| = |
‘logical operator> ::= = |[D|V|A| =
‘sequential operator > :: = go to | if | then | else | for | do
“separator> 1=, | .| o| | :|:= || |step | until |
while | comment
bracket) ::=(|)|[|]]|*] | begin | end
(declarator> ::= own | Boolean | integer | real |
array | switch | procedure
‘specificator) ::= string | label | value

The separator | | denoting a space and the brackets
*and ’ are used in forming strings used as parameters of
procedures. The separator comment is used to introduce
explanatory text in an ALGOL 60 program without
affecting the meaning of the program: the convention is
used that

; comment < any sequence of basic symbols not con-
taining a semicolon);
is equivalent to a single semicolon.

$202 14dy 61 U0 1senb Aq £/ /+06/.9/Z/¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

ALGOL 60

8. Example

procedure Bisection(F)initial: (x1,d1)precision: (d0)
result bounds: (xP,xL);

comment Finds bounds xP and xL (with difference less
than dO0) for a zero of the function F(x) at which its deriva-
tive is positive. Evaluates F(x) at x1, x1 <+ d1 and then
at equispaced values of x until the zero is passed (indicated
by b = true) when it is located by the method of repeated
bisection, xP being the final value and xL the previous
value the other side of the zero; value d0; real xL, xP;
real proceduref'; begin Booleana, b, c; realx, d;

a:—b:—false;: v :— xl:d:=dl;
A ¢ = sign(F(x)) = sign(d):

b := cAaVb:

if cAa then xL := x - d:

a = true:

if b then ¢ : = d/2.

if cthend := - d:

ifabs(d)>> dOthen beginy := x--d: go toAend:
XP == x endBisection

This process has been used for non-linear eigenvalue
problems in which the largest part of the calculation is
the evaluation of the function F(x), and this function
involves empirical data so that its derivative is not
available. The Boolean variable a is used to distinguish
the first passage through the sequence of instructions
(when it has the value false). The formula for the Boolean
variable b is equivalent to b := (¢Aa)Vb by the pre-
cedence rules for the logical operators. This shows
that once b has been assigned the value true it will
“stick” at that value—indicating that the required zero
of F(x) has been “‘bracketed.” The part cAa ensures
that this will not happen on the first step (when insuffi-
cient information is available for this decision). ¢ = true
indicates (when «a is true) that addition of ¢ to x will
move it farther from the required zero, i.e. that the sign
of d is to be changed.

Acknowledgement

This article is published with the permission of the
Director of the National Physical Laboratory.

[Information Processing

As we go to press with this edition of THE COMPUTER JOURNAL,
the prepaid subscribers, who attended the International
Conference on Information Processing at UNESCO in Paris,
15-20 June 1959, have received from the publishers their
copies of the Proceedings.

This volume, which we, or The Computer Bulletin, may
review in more detail later, has been published jointly by
UNESCO, Paris; R. Oldenbourg Verlag, Munich; and
Butterworths Scientific Publications, London. It includes a
full report of the inaugural addresses at the Sorbonne and
the closing speech by Professor Howard H. Aiken. These
are rendered in French or English, as given at the time.
There is an Introduction by UNESCO’s chief editor explaining
that despite the early publication deadline, the already printed
texts, corrected by 20 June 1959, have been completely recast
to enable the standard of presentation to conform to the
traditions of the Oldenbourg Verlag. The material has been
rearranged into seven chapters on considerations of logic,
without any attention to the chronological order of the
meetings. It includes approximately 60 papers and short
reports on 12 symposia. All papers are in English or French,
preceded by abstracts in these languages, also German,
Russian and Spanish. There are English and French Indexes
and the list of participants brings the total to 520 pages.
The Preface has been written by the Director-General of
UNESCO.

The volume may be ordered from booksellers at prices
alternatively quoted on the dust jacket as U.S. $25.00;
£7 7s. 0d.; N.F. 100.00; D.M. 84.00.

The printers and publishers are to be congratulated on
making this volume available within twelve months of the
Conference.

75

Now available

THE RELIABILITY AND
MAINTENANCE OF
DIGITAL COMPUTER SYSTEMS

Managerial and Engineering Aspects

Full report of discussion meetings held in
London on 20th and 2lIst January 1960 by
The Institution of Electrical Engineers and
The British Computer Society under the
aegis of The British Conference on Auto-
mation and Computation.

70 pages, 4to, price 17s. 6d.
(12s. 6d. to members of B.C.A.C. Member
Bodies)

From: The Secretary,
The Institution of Electrical Engineers,

Savoy Place,
LONDON, W.C.2.

$202 14dy 61 U0 1senb Aq £/ /+06/.9/Z/¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

