A Comprehensive Program for Network Problems

By E. W. Solomon

This article describes in general terms, a program which has been written for the Pegasus digital
computer, which will solve several of the more common problems associated with networks having
weighted branches. All operations are carried out within the incidence matrix stored serially by

rows in the computer.

After a brief introduction to the concepts and terminology of graph theory, a comparison is
made between the two principal ways in which a network may be represented within a computer.
The discussion on the form of output after the program has transformed the incidence matrix
includes a description of a tree symbol more suited to construction in a computer than those given
by Priifer and by Loberman and Weinberger.

Introduction

In this paper we shall be interested in the problems
associated with graphs and networks having weighted
branches. Examples of practical problems falling into
this category are electrical wiring problems involving
minimization of materials, Knight’s tour problems with
minimum travelling and geographical shortest route
finding. Several applications of a program of the type
to be described are discussed at the end of the paper.
Although close to experience, the concepts and especially
the terminology appear to be relatively unfamiliar still.
We therefore feel it necessary to follow the accepted
pattern and to include a preface dealing with the ele-
mentary ideas of the field. Readers who have encoun-
tered previous articles on this topic can safely omit the
following two sections entitled respectively Graphs and
Networks.

The program to be described is designed to solve the
following problems for a given network.

(1) To find the minimum route between two given
points, subject to specified cuts in the network.

(2) To construct the minimum tree on a given node.

(3) To construct the minimum spanning sub-tree of
the network.

The program is constructed so that additional problems
can be solved using suitable subroutines which, however,
have not so far been tested. These include an approxi-
mate solution to the Travelling Salesman problem and
the problem of finding the Nth minimal route between
two points. (The Travelling Salesman problem requires
the construction of an algorithm for discovering the
minimal circuit which includes every node of the net-
work.)

Graphs

A finite graph is defined to be a set of N, objects.
called nodes, between some or all pairs of which a
certain symmetric relation exists. Two such nodes are
said to be joined by a branch. 1t is usual to assign
integers serially to the nodes, so that one can speak of a
pair of nodes, 5 and 11 say, and of a branch (5, 11) if

89

\

i L

Fig. 1.—The complete 5-graph

one exists. Nodes are drawn as points and branches as
lines between them. Fig. 1 is an example of a graph.
Furthermore, it is a ‘“‘complete” graph because every
node shares a branch with every other.

The terminology introduced here is not completely
universal, but appears to be the most widely used among
applied mathematicians. Writers dealing with the sub-
ject from a pure mathematical point of view very often
use the term vertex for a node, and branches are referred
to as edges, links, or arcs. 1f one can get from a node i,
to a node j, by passing along an ordered sequence of “s”
branches, there exists a path between the nodes i and j.
With i and j distinct, the path is an s-arc. If the node i
is identical with the node j, the path is an s-circuit. A
special case of an s-circuit is the 1-circuit. This is known
as a sling, and would be represented by a branch which
curves back on itself, so that both extremes lie on the
same node. It will be assumed that, in all the graphs

$202 YoJel\ g uo 3senb Aq £08¥05/68/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Network Problems

and networks which are discussed here, there are no
slings.

If there exists a path between every pair of nodes in a
graph, the graph is said to be connected and it has
separability S = 1. In general, a graph is divided into S
separate pieces between every pair of which no path
exists. If also, the number of nodes is N, and the
number of branches is B, one may define two useful
quantities associated with a graph in the following way:

The rank of a graphis N — S.

The nullity of a graph is B — (Rank) = B — N + S.

An important concept is that of the forest. This is
defined to be a graph of zero nullity, or in other words
it is a graph with no circuit. A forest of separability
one, is a tree. This, therefore, gives the picturesque
result that a tree is always a forest but that a forest
need not necessarily be a tree.

Since the present treatment concerns only connected
graphs and networks, the term forest will not again be
used. A tree can be redefined to be a graph in which
there is one and only one path between every pair of
nodes. This automatically precludes the existence of
circuits. For a more thorough introduction to graphs,
see Whitney (1932) and for a complete treatment of the
topic, Konig (1950).

Networks

Suppose that the relation between the nodes sharing a
branch is not symmetric. The branches are now drawn
as directed lines and the resulting configuration is called
a network. A path in a network is defined as for a
graph, but there is the obvious added requirement that
the branches of the path must be directed in the same
sense, so that one can no longer speak loosely of a path
(i to j), but must emphasize that the path is “from”
i “10” j, or vice versa. Care is also required in the
recognition of a tree. In speaking of a tree “on” a
node k. it is to be understood that every bkranch is
directed away from k.

Fig. 2 is an example of a network with weighted
branches.

The weights assigned to the branches are termed
branch values. In the physical sense, such a value may
be a distance, a transit time, a flow capacity, or some
other numerical quantity. Note that in general the
value of a branch (i, j) need not be identical with the
value of the branch (j, 7). Transit time along a crowded
street depending on the general direction of flow of
traffic, affords an obvious example of such assymmetry.
Networks with weighted branches are not the only kind
of network in which mathematicians are interested. A
great deal of work has been carried out upon networks
with weighted nodes, where the nodal values may be
such varied entities as colours, storage capacities and
different values of time variables including frequency.

One further term remains to be introduced. By the
valence of a node i is meant the number of branches on i
directed “away” from i, or alternatively the number of
branches ‘“‘emanating from™ i.

90

Fig. 2.—An example of a network.

The Incidence Diagram and Matrix

The incidence diagram is the term given here to the
array of binary symbols, zeros and non-zeros, for instance,
distributed so as to represent the given graph or net-
work. The 0’s and 1’s, say, are arranged in rows and
columns so that a 1 at the intersection of the ith row
and jth column indicates that there is a branch directed
from i to j. A zero denotes the absence of such a
branch. The incidence diagram for the network of
Fig. 2 is follows:

[RNl)
—_—0 O O
—_ oo — O
[N Nl
SO —= O -

The incidence matrix is the square array of the branch
values d;;. Thus at the intersection of the ith row and
the jth column is found a numerical value equal to the
value of the branch (i,j). The incidence matrix of the
network of Fig. 2 is as follows:

AN AN —
[V I R N N N
W N N oo
E NS
ENNo SN

s if the branch values are distances or transit
times.
A = 0 if the branch values are capacities.

A =

$202 YoJel\ g uo 3senb Aq £08¥05/68/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Network Problems

Disregarding for the present purposes the frowns of
the pure mathematicians, a graph is taken to be a special
case of a network. A graph is a network for which the
incidence matrix (D;) is symmetrical. A branch,
therefore, between two nodes is considered directed in
both senses, although it is drawn as undirected.

Algebraically, the condition that there are no slings,
is that the diagonal of the incidence diagram is zero.
Consequently, in storing an incidence diagram or matrix
in the main store of a computer, better use can be made
of the available storage space by omitting the diagonal.
However, the increase in running time resulting from
the more complex setting of the search modifier does not
seem to justify the saving of space by this expedient.

This introduction to the algebraic representation is
concluded with a brief reference to connectedness and
sub-networks. Any network may contain a set of sub-
networks, some of which can have the property that
they are sub-graphs. That is, they can be drawn with
undirected branches and the result is a mixed network.
The sub-graph of a network is defined to be the sub-set
of all branches (7, j) and nodes /, j lying on them with
equal values dj; = d;.

It is a slow process to calculate from an inspection
of the incidence matrix, the separability of the sub-graph
of a network, because we must first define the sub-graph.
The separability of a given network, on the other hand,
is found fairly rapidly by direct inspection of the matrix,
or by re-ordering the node numbers so that the incidence
matrix is transformed to a partitioned square matrix
with null off-diagonal blocks.

The Representation of a Network within the Computer

There are two distinct ways in which details of a
network may be retained in the computer memory.
Clearly we must specify:

(1) the total number of nodes in the system,
(2) the pairs of nodes between which branches exist,
(3) the values of these branches.

The first method described is essentially the incidence
matrix stored serially by rows, whereas in the second the
order in which the information is stored is immarterial.

The Incidence Matrix Method
Assuming for convenience that the matrix is stored
from address 0, the address of a branch value dj; is

(No + D — 1) + /.

This expression holds because nodes are numbered from
1, not zero, and each row of the incidence matrix is
preceded by a word called the valence word, which gives
the valence of the node corresponding to the row which
follows. Clearly one must indicate in some way the
absence of a branch (j, k). This is most easily achieved
in a computer by setting zero at the position
(Ny + 1)(j—1) + k, although in some applications the
numerically correct quantity would be arbitrarily large.
Under this system, a network of N, nodes will require

91

No(Ny + 1) words of storage space, irrespective of the
number of branches in the network. In any operation
upon the matrix where a non-zero element vanishes, the
valence word of the corresponding row must, accord-
ingly, be corrected. Suppose that there exists a modifier
whose value is (Ny + 1)(i — 1) + j, but that it is required
to extract and examine the branch value of the branch
(/,i). The modifier is changed to (N + 1)(j — 1) + i
and this operation is called “transposing” the modifier.
The significance of this action will become evident in
the section “Operations on the Incidence Matrix.”

The Branch-Word Method

The second basic method necessitates the use of
partitioned words (at any rate this is unavoidable in a
computer of small or moderate size). A branch word is
a word holding three quantities as follows:

(i\ j. diy).

Clearly the amount of space within a word allocated to
each quantity depends on the number of nodes in the
network, and on the maximum branch values d;;
occurring in it. In the present paper, all branch values
are regarded as integers. In practice this never causes
inconvenience because should a network with fractional
d;; arise, it is always possible to scale up and round to
the nearest integer when rounding errors can be regarded
as negligible. The address of a branch word plays no
part in defining the properties of the network since all
the information is contained within the words themselves.
This is not to say, however, that some form of ordering
of the branch words would not be advantageous from
the operational point of view.

Clearly, with the branch-word method of storage, the
restriction on capacity is not on the number of nodes in
a network as with the matrix method, but on the total
number of branches contained in it. In order to compare
the merits and disadvantages of the two schemes, let us
suppose that there are 1,000 words available in which to
store the particulars of a network.

Under the matrix method, it is possible to store any
network of N, nodes where

No(Ny -+ 1) = 1,000
Ny = 31 to the lowest integer.

Any network whatsoever of 31 nodes or less, including
the complete 31-network, may be accommodated in this
way. Furthermore, the entire word is available to store
the branch value, and no unpacking of the word is
needed. In any fundamental operation, such as the
extraction of a branch value dj; and subsequent arith-
metical treatment of it, followed by a transfer of the
new value back to the main store, the bulk of the time
is taken up by the transfer operations. It is easy to see,
therefore, that the matrix method has a great advantage
in speed, for whereas in the branch-word method a
search of some kind is required involving transfers at
each stage, the matrix method requires only that a
modifier be set for at most two transfers.

$202 YoJel\ g uo 3senb Aq £08¥05/68/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Network Problems

There is one type of network for which the matrix
method is very wasteful of storage space. This is the
network obtainable from an ordinary two dimensional
street map, if every junction is regarded as a node and
every road between two such junctions as a branch. In
such a network, it is very unlikely that any valence
would exceed eight, say. For such a case, the best
system of storage is a combination of the two basic
methods so far described, provided, that is, that there
are more nodes than can be accommodated in an
incidence matrix. Suppose that the maximum valence

is Ve Assign V,.. -+ 1 consecutive words to each
node, where the words have the form
(/s dij)-

The first word, containing the valence of the node i, is
used to set a counter prior to the search for a particular
branch (i, k) say. The number of transfers in any search
never exceeds V.. -+ 2, and the number of nodes in a
maximal network, assuming 1,000 words of store, is

1,000
A

max \JL_ l

= 125

for a network where no node has more than seven
outgoing branches.

A few networks are characterized by having V.
considerably greater than the mean valency. A system
of railways is a typical example of such a network. A
tested method for representing this kind of network
allocates V; words to node i so that there is no
wastage of space at all. A directory of Ny, words is
needed, the ith word of which has th: form,

(Vis Al)

where V; is the valence of node i, and A4; is the address
of the first branch word for node i. The branch words
for node i/ have the form.
(J, d).

These are followed without a space by the branch words
for node i + 1 which start in address 4;., as given
in the directory.

The present program is designed to employ the matrix
method of storage. For a description of a program

which uses a form of branch word storage, read Hoffman
and Pavley (1959).

Two Useful Operations on the Incidence Matrix

The two operations on the incidence matrix which are
the nucleus of the computer program, are now described.
The first of these is based on the well-known Moore’s
Algorithm (Moore, 1957) for finding the shortest route
through a maze, and the second employs an algorithm
described, without proof, by Dijkstra (1959), for con-
structing the shortest spanning sub-tree of a graph.

In both operations, it is considered that there is a
starting-point node, 7 for instance. At the beginning of

92

both operations, the address of the valence word of the
ith row is the only non-zero element of a set S called the
search set. The search set is the set of valence word
addresses of the rows of the incidence matrix upon
which the algorithm is operating. The positive non-zero
elements of the rows in S, excluding the valence word,
are referred to as the elements d;.

From here onwards, the two algorithms are described
separately.

Algorithm 1

The following two operations are performed suc-
cessively until one of two termination criteria is satisfied.
These criteria are described after the algorithm.

(1) Using the addresses, stored as modifiers, in the
set S, find the smallest element dg;, say dg(min), (dsi(min)
need not be unique), and add this quantity to a cumu-
lative register D, say.

(2) Replace all dg; by

dg; = ds; — dg(min):

elements d,;, d,;

let n, rjts Crjys + -

.d,; vanish in row r, reS.

In,
Carry out the following operations:
(a) Replace V, by V, = V, — n,, all reS.
(b) Set the vanished elements equal to —1.
(The negative quantity acts as a marker.)

(¢) Set to zero all elements dj; > 0 for all i, and jeJ
where J is the set of distinct columns containing a
negative marker (—1), introduced in the current
cycle of the algorithm. Accordingly, correct the
valance words for all rows 1.

(d) Remove from S all rows for which the valence
word has become zero and introduce into S all
rows jeJ. (Introduce, that is, the valence word
addresses of rows j, stored as modifiers.)

Expressed in the above form, the algorithm appears to
be lengthy, but this is misleading. In fact, the modifiers
are so set at any stage that the next operation can be
carried out, after a simple addition or subtraction of a
previously stored quantity, except in the operation (2d)
which involves replacement in the set S.

The column zero procedure of (2¢) is carried out by a
separate subroutine.

The termination criteria are as follows:

Either (1) one of the J, (jeJ), is equal to a pre-set
destination node D, say,

or (2) a branch counter, set originally at Ny — 1, is
exhausted.

If termination is as a result of (1), the contents of
register D equals the minimum sum of branch values of a
route from the starting-point node to the destination
node. From the distribution of the (—1)’s in the
resultant matrix, it is possible to assess the particular
minimum route. On the other hand, if termination
occurred because the branch counter was exhausted, D
is equal to the sum of branch values of the minimum
tree on the starting point node, and the distribution of
(—1)’s defines the tree. The tree can be defined more

$202 YoJel\ g uo 3senb Aq £08¥05/68/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Network Problems

economically by means of a tree symbol consisting of
Ny — 2 node numbers which can be quickly obtained
from the resultant matrix in a way described under the
section “The Tree Symbol.”

Algorithm 2

This algorithm is given by Dijkstra (1959), and is used
for constructing the sub-tree connecting every node of a
graph, such that the sum of the branch values is a
minimum. This is the minimum spanning sub-tree. The
method of Dijkstra appears to be the best so far pub-
lished in respect of working space and speed. Other
methods are described by Loberman and Weinberger
(1957).

No mathematical justification for the algorithm is
given in Dijkstra’s paper, which is brief, and therefore a
proof of the theorem upon which it is based, is included
here.

Theorem 1

For every node i/ of a connected graph G, the minimum
branch on 7/ is a member of the minimum spanning
sub-tree.

Proof

Given that the minimum spanning sub-tree of G is
T, we assume that there is a node in G whose minimal
branch is not a member of 7. We show that this
leads to a contradiction.

Consider any node i with a valency (in T)of V;. T
can be regarded as the sum of V; sub-trees 4, B, C, . ..
etc., the node i and its branches (ix,), (iB,), (iy,), . . .
etc., where o,e€4, B.eB, v,eC, and so on.

Any pair of the sub-trees 4, B, C, . . .
in 7 only via the node i.

Now suppose that the minimum branch on 7 is
(io)eG, but that (iag)¢T. (There is no loss of generality
in taking the minimum branch on i to end in sub-tree
Al)

We therefore have d,, < d,,.

Denote by A’ the connected tree made up of A4, the
node i and its branch in 7, (i«,). The nullity of A4’
is zero.

Now let us construct the graph A by removing
from A’ the branch (ix,) and introducing the branch
(ixz,). If N(H)and B(H) are the number of nodes and
branches in a graph H, we have

N(A”) = N(A’y and B(A”) = B(A’).

Furthermore, the separability is unaltered because
by definition of a tree, every node in A’ is connected,
and in transforming to 4’ no node has been isolated,
and consequently no circuit introduced.

The nullity of 4" is therefore the same as the nullity
of A’, that is, zero. A" is therefore a tree. A’ also
has the property that the sum of its branch values is
less than the corresponding sum for A4’, consequently
T could not have been the minimal spanning tree of G.
The result that the minimal spanning sub-tree contains

i1s connected

D

93

the minimum branch on every node is thus proven,
since there was no restriction on the choice of /.

The algorithm is now described in terms of operations
on the incidence matrix. Dijkstra describes it without
reference to the incidence matrix, but the following
contains no essentially new material.

The Algorithm

Again there is a search set S and let the non-zero,
positive branch values contained in the rows tagged by
the elements of S, be d;.

The first operation lying outside the loop of the
algorithm is to choose an arbitrary node and place the
valence word address of its corresponding row in set S.
At any stage of the algorithm, the latest addition to the
set S is denoted by .S, and its complement in .S consisting
of all rows previously tagged, is written .S,. No rows are
removed from S at any time.

Initially, the branch counter is set as N, — 1, since
the result is a connected tree. A cumulative branch
value word is set to zero and then the following two sets
of operations are performed cyclically.

(1) Find the minimum dg; =d,; say, where ieS

je(1,2 ... Ny).

(@) Add d,;, to the cumulative branch value word

(b) Set d;; and d;, ;= — 1 (the —1 acts as a
marker).

(c) Reduce the branch counter by unity and exit
from the algorithm if it becomes zero.
(d) Include row j,, in S. Thus j,, = S..

(2) Compare the magnitude of the branch value d,
with the values di.s,, ; for each je(1, 2, . . . Ny).
(Note: only one of the elements d,.g, ; is non-zero
for any j; this is the only element considered for
the comparison.)

(a) If for any j, ds,; << di.se.;» set to zero the latter
and its transpose element d; (.s,).

(b) If for any j, ds,; > ds,) . set to zero the former
and its transpose element, d, i,. Return to (1).

Throughout the algorithm the valence word need not
be changed since it plays no part. On exit from the
loop, however, all the valence words are corrected to
equal the number of —1’s in their corresponding rows.
This is a faster process than would result if the valence
words were corrected each time an element vanished.
Subsequently, the pattern of —1’s is transformed in the
way described in the tree symbol section.

The Program

The program has four principal parts which are quite
straightforward:
A. Input
B. Operation
C. Output
D. Re-entry

A, C and D are described in detail here. Section B
will be easily understood from the section on operations

$202 YoJel\ g uo 3senb Aq £08¥05/68/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Network Problems

on the incidence matrix and by a study of the flow
diagram of Fig. 3. Where possible, the material is
presented in diagrammatic and tabular form.

A. Input

Assuming that the network has already been stored as
an incidence matrix in the machine store, section A is
“input’ in the following sense.

The course of the program and the form of the final
output is obviously to be governed by the nature of the
particular problem which it is desired to solve. This
information is given to the program in the form of two
integers, corresponding to a starting-point node and a
destination node, which are read during section A.
Table 1 explains the way in which the program distin-
guishes the problem it is required to solve. In the table,
i and j are two nodes so that i/ and j lie in the range
-1 to -+~ Ny. An unspecified destination j = 0 means
effectively that termination criterion (1) of Algorithm (1)
cannot be used to halt the process and so the result will
be a minimum tree on /. Similar reasoning holds for
the other cases. The Travelling Salesman problem is
included although a suitable subroutine has not yet
been tested. In fact, no exact algorithm for this problem
exists other than testing every possible circuit through
all Ny nodes and it may be that one is not possible,
although several ways of approximating to the desired
solution have been described.

The input section also prepares various modifiers
and counters from the quantity N, which accompanies
the incidence matrix.

C. Output

There are two forms of output (a) and (b). (a) is
used if the result is a single route, and (b) if the result
is a tree. Output (@) is very simple. The first quantity
printed is the sum of the branch values of the route;
this is preceded by a “-”" sign. The succession of nodes
commencing with the destination and terminating with
the starting-point is then printed without signs. The
following is an example of the output for the shortest
route from node 3 to node 1 for the network of Fig. 2.

+12
1
2
5
3

Clearly, in practice, one would not employ a computer
for such a trivial case.

The form of output (b) requires a more detailed

explanation.

Output (b). The tree symbol

Priifer (1918) and Weinberger and Loberman (1957)
have given tree symbols consisting of sequences of

94

A. INPUT SECTION
PEAD STARTING PCINT
S.P.>0 S.P.=0

READ DESTINATICN
D>0 D=0
D#S.P. D=S.P. ;
| [[,. B Tl EEE R TP
|

4 & v
(MIN. ROUTE (MIN. TRFE . (MIN. SUB- (TRAVELLING
S.P.—>D) ON S.P.) ,/’ TRRE) SALESNMAN)
e ! '

AL A. AL A.
SET CUE TO SET CUES SET CUE_TO| SET CUFS TO
ROUTE PRINT 7O TREE SYNMBOL) TRAVELLING
& SYM. NATRIX ROUTINE SALESHAN
RE-ENTRY £
TREE SYMBOL RCUTE PRINT
e
////
‘T -
V/ [4 y oA
B. 'l B.
'
MATRIX | CCMPLETE MATRIX | TRaveLLING
REDUCTION [1 SYMMETRY REDUCTION SALESIAN
I
(MOORE 'S . MAggIX (DIJKSTRA'S| i :
ALGORITHM) |_. ALGORITHM) |..}

D.
REPLACE PRINT SUM
MATRIX OF
& BRANCH VALUES
EFFECT CUTS

o

D.
RE-ENTRY

. PRINT PRINT
SECTICN ROUTE TREE
SYM30L

(READ CUTS)

Fig. 3.—Block diagram of program:

A. Input

B. Operation
C. Output
D. Re-entry

Ny — 2 node numbers. Each is unique and satisfactory
for manual computation, but a shorter procedure as
measured in computer time is possible. Note that here
we are referring to graphical trees such as would be
obtained for a “network” of electrical connections.
The valence of each node is thus just the number of
branches incident upon it and the incidence diagram is
symmetrical. The method of obtaining the symbol
corresponding to any tree, 7 say, is to repeat the follow-
ing operation until the symbol obtained contains Ny — 2
node numbers.

Find the lowest numbered univalent node lying in the
range R where R is defined in cycle n to be the set of
integers r say, where i, <r < N, and where iy = 0.
Write down the number of the multivalent node to
which it is connected. Seti,., =i, + 1 in R. If there
is no univalent node in R before the complete symbol

$202 YoJel\ g uo 3senb Aq £08¥05/68/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Network Problems

ACTION OF THE INPUT
SECTION

spanning sub-tree.

Table 1
STARTING~
POINT DESTINATION THE PROBLEM

+1i - Find the minimal route from
ito .

L -0 Construct the minimal tree
on node i.

+0 — Construct the minimum

Approximate to the mini-
mum Hamiltonian circuit.

Set cues to the subroutines:

(1) Route print.

If alternative routes are to be tested,
set cues to re-entry sections D.

Enter matrix reduction Algorithm (1).

Set cues to the subroutines: (1) Make
the matrix symmetrical with respect to
negative elements.

(2) Print tree symbol.

Enter matrix reduction Algorithm (1)

Set cues to the subroutines:
(1) Print tree symbol.
Enter matrix reduction Algorithm (2)

Set cues to the subroutines:

(1) Travelling Salesman approximation.
(2) Route print.

Enter matrix reduction Algorithm (2).

(Ny — 2 node numbers) has been obtained, reset i, = 0
in R. The symbol is complete when i, is iy,_».

Priifer’s method is essentially the same, but his range
R is invariant as (1 to N), consequently more time is
spent in searching for univalent nodes since the search
modifier is set back to zero at every stage. The methods
of Weinberger and Loberman have similar disadvantages
when programmed for a computer.

An example of the construction of a tree symbol is
given for the tree of Fig. 4 in Table 2. The operations
on the incidence matrix are described in parallel.

The tree corresponding to a given symbol can easily
be constructed in the following way.

Search for the lowest node number not present in the
symbol, but present in the complete list of nodes (1 to Ny).

@

()
)
®

Fig. 4.—A 6-node connected tree

SYMBOL IN MATRIX

(3) Subtract 1 from ¥V, and V;.
Zero d,5 and ds;.

(33) Subrtract 1 from V, and V.
Zero dy3 and ds,.

(333) Subtract 1 from ¥, and V.
Zero dy; and dsy.
Symbol complete.

Table 2
The Symbol for the Tree of Fig. 4

LOWEST UNIVALENT CONNECTS

STEP R NODE IN R TO NODE
1 (1, 6) 1 3
2 (2,6) 2 3
3 (3, 6) 4 3
4 (4, 6) 5 6

(3336)

OPERATIONS

Exit from “Tree symbol
routine.”

95

$202 YoJel\ g uo 3senb Aq £08¥05/68/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Network Problems

This node connects to the first node of the symbol.
Draw this and cross out the first mentioned node from
the list of nodes and also the first node of the symbol.
Now search for the next highest node not present in
the symbol but present in the list of nodes. Draw the
connection between this node and the second node of
the symbol and perform the necessary crossing out.
This process is continued until there are only two nodes
uncrossed in the list; these two are connected. The
result is the tree of the symbol. It is easily shown that
the tree is unique by considering a general permutation
of elements within the symbol and showing that all but
the identity permutation yield a different tree. That the
symbol is unique for a given tree is clear from the
definition of the way in which the symbol is obtained.

D. Re-entry

Non-minimal paths between two nodes

Hoffman and Pavley have described an algorithm for
finding not only the first but the nth minimal path
between two nodes of a network. Their method depends
upon the superposition on the network of the minimal
tree on the starting node. It appears from their paper
that they use the branch-word method of storing the
network, but it would not be difficult to program their
algorithm for a system using the incidence matrix
method. It would also be feasible to use simply the
“Moore’s Algorithm” technique for solving this problem
for small n, but the storage requirements increase in
proportion to n. Another way of obtaining the nth
minimal path would be to make permutations of trial
cuts in the minimal and subsequently obtained paths.
This would require no more storage space than the
incidence matrix itself occupies, but the process would be
very slow, especially for large n. A more realistic
problem in terms of practical application, however, is
the problem of finding the minimal route between two
nodes, subject 1o cuts in the absolutely minimal route.
For this purpose, the re-entry section of the program
has been written. If this facility is to be used, the
maximum size of the network is slightly reduced because
the incidence matrix is duplicated in the machine store
for quick replacement. Thus if, as in the case of Pegasus,
there are say 6,400 words available for storing details
of the network. a network of 79 nodes can be accom-
modated without duplication. With duplication, the
maximal network is reduced to 56 nodes.

At the end of the route-printing routine, a stop is
encountered. If it is required to make cuts, these are
read in from tape in the form of pairs of integers —i,
-J, etc., and the re-entry section of the program zeros
the branches dj;, etc., in the restored incidence matrix
and corrects the valence words. The matrix reduction
algorithm (1) is then re-entered. The process can be
continued indefinitely.

General Remarks on the Program and Applications

As it stands, the program is of more academic than
practical interest. This is primarily because of the

96

limited size of the networks which can be accommodated.
A store which could hold a network of several thousand
nodes, say, would be a powerful tool for research in
several interesting fields. Practically, however, there is
no restriction on the magnitude of the branch values in
the present program and, furthermore, the speed of the
program is independent of these magnitudes so that the
program may find some application, albeit limited.

As examples of fields where programs of this type may
find application, we mention the following:

(1) It is not difficult to visualize each of the public
services—fire brigades, ambulance services and police—
in a congested and extensive city of the not so distant
future, having a computer in which is stored a network
representation of their city (as described in the section
on representation of networks in computers) and in
which the branch values, interpreted as transit times, are
continually changing as a result of automatic traffic
monitoring on all roads within the city. A driver in an
emergency, requiring to know the quickest route from
A to B, will then delay his departure for a minute or so
in order to run the Moore’s algorithm on the computer,
and in this way save precious minutes waiting for traffic
lights to change and avoiding undue concentrations of
traffic.

(2) In the indexing of large libraries, cross-references
may be represented as a network in which the nodes are
the works themselves and the branch values are the
relative availabilities of books. This is a special illus-
tration of a much more general concept. A computer
may then be used for finding perhaps the most satis-
factory sequence of references relating to a particular
topic.

(3) In the automatic programming of a large numerical
calculation, the order in which operations are carried
out is highly important in respect of computer time.
Such a sequence may be representable as a path through
a network in which the nodes are the fundamental
operations and the branch values are the length of these
operations in computer time. This is rather a special
case in that branch values at any stage will be a function
of the chosen path at that stage.

(4) Modern computers require wiring of considerable
complexity. The economization of material is a real
problem in the design of these machines and is likely to
become even more important as the number of com-
ponents increases, in the trend towards more powerful
machines. The economization of equipotential wiring
can be achieved by the construction of the minimum
spanning subtree of the complete graph of equipotential
terminals. The branch values are simply the lengths of
the connections. With a more sophisticated inter-
pretation of the branch values, the method may be
capable of extension to a more general class of terminals.

Acknowledgements

The work described was carried out in the Compu-
tation Laboratory of the University of Southampton,

$202 YoJel\ g uo 3senb Aq £08¥05/68/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Network Problems

the author’s position there being made possible via an entertaining lecture delivered in March 1959 to

through a Ministry of Supply contract for which he is the Mathematical Society of Southampton University.

grateful. He would also like to thank Dr. G. N. Lance, the
More specifically, the author desires to express his Director of the Computation Laboratory, for suggesting

thanks to Professor Rado of Reading University for the paper in the first place and for his assistance, and

stimulating his interest in network problems of this kind the referee for several useful remarks.

References

DukSTRA, E. W. (1959). “*A Note on Two Problems in Connexion with Graphs,” Numerische Mathematik, Vol. 1, No. 5, p. 269.

HorrMaN, W., and PAVLEY, R. (1959). ‘A Method for the Solution of the Nth Best Path Problem,” J. Assoc. Comp. Mach.,
Vol. 6, No. 4, p. 506.

KOnNIG, D. (1950). Theorie der endlichen und unendlichen Graphen, Chelsea Publishing Company.

LoBERMAN, H., and WEINBERGER, A. (1957). ‘‘Formal Procedures for Connecting Terminals with a Minimum Total Wire Length,”
J. Assoc. Comp. Mach., Vol. 4, p. 428.

Moork, E. F. (1957). “The Shortest Path Through a Maze.” (A paper presented to the International Symposium on the
Theory of Switching at Harvard University.)

PRUFER, H. (1918). ‘“‘Neues Beweis eines Satzes iiber Permutationen,” Arch. Math. Phys., 3, Vol. 27, pp. 142-144.

WEINBERGER, A., and LoBerMAN, H. (1957). “Symbolic Designations for Electrical Connections,” J. Assoc. Comp. Mach.,
Vol. 4, p. 420.

WHITNEY, H. (1932). ‘“‘Non-Separable and Planar Graphs,” Trans. Amer. Math. Soc., Vol. 34, p. 339.

WOOLWICH POLYTECHNIC BRUNEL COLLEGE OF TECHNOLOGY

WOOLWICH, S.E.18
Woodlands Avenue, Acton, W.3

DEPARTMENT OF MATHEMATICS SPECIAL EVENING COURSES

SESSION 1960-61 The Mathematics Department is arranging the

following courses to commence in September 1960:
EVENING COURSES IN NUMERICAL METHODS

AND COMPUTATION Statistics, leading to the Intermediate exarpi{le}tion
of the Association of Incorporated Statisticians.

- Introduction to Numerical Methods Mathematics and Techniques of Circuit Analysis.

. Advanced Numerical Methods
. Statistics

. Introduction to Electronic Digital Computers

Complex Variable, Laplace Transformation and
Non-Linear Differential Equations.

. Business Applications of Electronic Digital Computers Advanced Mathematical Programming.

Vector Analysis.

A U AW N =

. Scientific and Engineering Applications of Electronic
Digital Computers Differential Equations.

7. Simple Code for the Stantec-Zebra Computer Numerical Solution of Partial Differential Equa-

A copy of the Departmental Prospectus, which in- tions.
cludes details of the above and other evening courses in
Advanced Mathematics, may be obtained from the Head
of the Department. Application for admission to the -
courses can be made by letter at any time or by personal B9 T S Rl b

] . . . 4 f
attendance on the evenings of 19th and 20th September, Further details and application forms may be
1960. obtained from the Head of Department.

* Numerical Analysis for Automatic Computers
based on Chebyshev polynomials.

97

$202 YoJel\ g uo 3senb Aq £08¥05/68/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

