The DEUCE Alphacode Translator

By F. G. Duncan, and D. H. R. Huxtable

A description is given of a recently completed program for translating from a single-level pseudo-

code (Alphacode) to a multi-level machine code (orthodox DEUCE code).

The chief point of

interest is the allocation of the single-level addresses among the three levels of the real computer
to obtain an efficient final program.

1. Intreduction

At the Cambridge Conference of The British Computer
Society in June 1959, Dr. S. Gill, reviewing progress in
automatic programming, stated (Gill, 1959):

“*One thing which has caused trouble in the past,
and which will probably continue to be a nuisance, is
the problem of utilizing multi-level stores It
turns out to be very difficult to make a multi-level
machine imitate a single-level machine with high
efficiency over a large class of problems. If, therefore,
one is planning an autocode for a multi-level machine,
the only simple solutions of this problem are:

1. To present the user with a multi-level hypo-
thetical machine, with store levels corresponding to
those in the real machine, and to let him decide how
to allocate the available space for them.

2. To present the user with a single level of storage
corresponding to the slowest level in the real machine.”

Some examples of the second solution as applied to
DEUCE were discussed in a recent paper (Robinson,
1959). These ‘‘autocodes” (G.I.P., T.I.P., Alphacode)
are, it was pointed out, complementary to each other in
that each is suitable for its own certain class of problem.
For example, G.I.P. is best suited to parallel operations
on blocks of data, as in matrix manipulation, while
Alphacode (which is not unlike Pegasus Autocode in
many ways) is best for problems of single variables.

A G.I.P. program is very nearly as efficient as the
corresponding DEUCE program. The reason is that,
although the interpretation cycle is slow (~ 4 sec), the
instructions are powerful and call into operation highly
efficient hand-made subroutines which are well buffered
in the fast store. The interpretation time overall is neg-
ligible compared to the calculation time, and although
the data are organized in the slowest part of the store,
this happens to be the most efficient place. Alphacode,
on the other hand, can be rather wasteful in its use of
machine time. The interpretation cycle is quite fast
(~ 17 msec), but this is by no means negligible when
compared with the times for obeying instructions, which
are normally concerned only with single operations.
Also, whereas Alphacode is confined to the slow backing
store, an orthodox program for a problem suitable for
Alphacode can make very good use of the faster levels
of store for numerical quantities. As a result of this

98

wide difference in efficiency, we find that G.I.P. is used
both for ‘‘one-off”” and for repeated jobs, whereas
Alphacode tends to be limited to “‘one-off”” work. In
all other respects, however, Alphacode has been a highly
successful user code, being very popular among ‘“‘non-
professional’ programmers.

It is clear that if the inefficiency of Alphacode can be
overcome in some way, the usefulness of the scheme will
be much increased, and it will be able to cope with a
much wider range of problems. Two difficulties are
involved in this. One is the elimination of interpretation
time, which could be achieved by taking the pseudo-code
instructions one at a time and “‘transliterating” them
into machine instructions. This is a fairly trivial matter.
The other, more serious, difficulty is that mentioned by
Dr. Gill, namely the efficient use of the multi-level
structure of the real computer.

The present paper is concerned with an attempt to
overcome these difficulties. A program, called the
Alphacode Translator, is described which accepts an
Alphacode program and produces an equivalent, more
efficient, program in orthodox DEUCE code. The
translator has been in use since the end of 1959. The
object program is often between five and six times as fast
as its original; the cost in machine time is between 20
and 50 minutes for a translation, according to the size
and complexity of the program. (These figures relate to
the magnetic-tape version of the Translator; for the
punched-card version the translation time is between
30 and 75 minutes.) The Translator itself has about
22,000 instructions (cf. 24,000 for FORTRAN) and took
between four and five man-years to make. As far as
the authors are aware, it represents the first successful
attempt to program the efficient allocation of storage in
a multi-level machine.

2. The Translator in use

Before describing the Translator it is convenient to
describe how it is used. A program for translation is
written in Alphacode and tested and corrected in the
established manner, using the Alphacode Interpreter.
The Interpreter has several useful program-testing
facilities, such as optional punching of intermediate
results, optional stopping, provision for altering instruc-
tions, and so on, and there is thus every hope of the
program being right before translation is attempted.
This is most important, since the translated (DEUCE)

$202 YoJe|\ g uo 3senb Aq 61.8%05/86/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Alphacode Translator

program, being very economically constructed, will have
no special facilities, and though it will be always accom-
panied by a printed DEUCE flow diagram, the latter
may not be readily understood by the original Alphacode
user. There should normally be no need for interference
with the DEUCE program. If modifications are neces-
sary after translation, it is much easier for the user, even
the sophisticated user, to alter the original Alphacode
pack and do a complete translation again, than to
attempt to alter the DEUCE program. It is also
probably less wasteful of machine time.

Forms of input and output, and details of arithmetic,
are exactly the same for the DEUCE program as for
Alphacode. Therefore it is possible to check the work
of the Translator by running both Alphacode and
DEUCE programs with the same case data, and com-
paring the results mechanically: this in fact is standard
practice and seems quite satisfactory.

3. The Pseudo-Computer

(For a complete description of Alphacode, the reader
is referred to the Alphacode Manual. English Electric,
1959.)

The pseudo-computer (that is, the imaginary machine
for which the user thinks he is writing) has a uniformly
accessible store of 2,200 or so addresses for floating-point
numbers. These are called X1, X2, .. ., X2200, . . .

The normal form of the instruction is “three-address-
plus-function™:

X3 = X7+~ X29
X5 = X2 —X3

for functions of only one argument the second address
is blank:

X4 =log X5
R23 X7 = cosh~! X40

An instruction can be labelled with a reference number,
as in the case of the last one above, and a discrimination
can lead to it:

(If) X3 equals X4 (jump to) R23.

The basic form is distorted to accommodate more
powerful orders:

12 DATA X5

(i.e. Read 12 data into X5 to X16 inclusive).

There are 64 functions available, including floating-
point arithmetic on real and complex numbers, circular
and hyperbolic functions and their inverses, input and
output in binary and decimal, Simpson’s Rule integra-
tion, linear interpolation, and the solution of ordinary
differential equations.

There are 63 counting registers, called N1, N2 ... N63
(with the same access time as the X-stores), for fixed-
point integers. Arithmetic may be performed on these,
but their main use is for counting round loops and for
modifying X-addresses; for example, if N4, N7, NI10

99

happen to contain at a particular time the numbers 30,
27, 15 respectively, the effect of the pair of instructions:

N4 N7 modify NI10
X3 =X75 + XI25

is the same as that of the single instruction:
X33 = X102 -+ X140.

Instructions are obeyed serially, except at discrimina-
tions and jumps. Subroutines in Alphacode may be
included in a program; special functions are available
for planting and obeying links to these. Up to 27 sub-
routines may be used; they can be nested in any way and
used in any order.

4. The Real Computer

The DEUCE store (more fully described by Haley,
1956) is made up of mercury delay lines and a magnetic
drum as follows:

1. Fast Store

4 delay lines of one 32-bit word each (TSI13, TS14,
TSI15, TS16).

3 delay lines of two 32-bit words each (DS19, DS20,
DS21).

2 delay lines of four 32-bit words each (QS17, QSI8).

The access time to any of these words is less than
0-1 msec.

2. Main Store

12 delay lines of 32 words each (DLI1-DLI12).

The access time to any word here is never more than
1 msec; it is usually much less, particularly if **optimum
coding” (see, for example, Wilkinson, 1955), is used.

There are functional differences between the long delay
lines. DLI-DLS are the only part of the store in com-
munication with control. Instructions stored in any
other part of the machine must therefore be copied into
these delay lines before they can be obeyed.

DL11 is the buffer delay line through which all informa-
tion to or from the magnetic drum must pass.

3. Backing Store

Sixteen blocks of 16 tracks of 32 words each (8,192
words). Information is passed between the main store
and the backing store through DLI11 in units of a com-
plete track. The transfer time for one track is about
15 msec, but if the mechanism has previously been
ordered to operate on a different block a further 35 msec
are required to change blocks, making 50 msec in all.
Transfers to and from the drum are called writing and
reading respectively.

Since transfers are done in complete tracks it is clear
that in order to write a single word it is first necessary
to read the appropriate track, then to amend it in the
main store, and finally to write it. This point is important.
Another important point is that, although a magnetic

$202 YoJe|\ g uo 3senb Aq 61.8%05/86/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Alphacode Translator

operation takes time to complete, this time need not be
wasted, for the computer will proceed with calculation,
or any other logically independent operation, becoming
interlocked only when another (dependent) magnetic
transfer is called before the time has elapsed.

It follows from these points that in an efficient program
references to the drum, particularly for writing, are cut
down to a minimum, and those that remain are spaced
as far apart from each other as possible.

The basic idea in the DEUCE instruction is of a
transfer from a source (S) to a destination (D). Thus,
for example, 13-14 means ‘“‘put a copy of the contents
of TSI3 into TS14.” Transfers for anything up to
32 word lengths can be specified. Thus 11-8 (32) means
“transfer the whole of DLI1 (the drum buffer) to DLS8,”
while 10,,-21(2) means “‘transfer words 14 and 15 of
DLI10 to DS21.”

Each instruction must specify its successor, for DEUCE
instructions are not obeyed as they are stored; rather
they are stored so that each one is accessible as soon as
possible after the completion of its predecessor. (This
is “optimum coding”.)

DEUCE is essentially a fixed-point computer, so
floating-point operations are carried out by means of
subroutines. Now a subroutine needs to have its data
and its link ready in standard positions, and it gives its
result in a standard position. Floating-point numbers
occupy two words each (one for the exponent, the other
for the normalized mantissa). Therefore, all the ordinary
functional subroutines, for use in translated programs,
have been standardized so that the arguments are
assumed in DS21 and DS20 (DS20 for a single argu-
ment) and the results are given in DS21. The links are
assumed in TS16. Since complex numbers occupy four
words each, the complex subroutines use QS17 and
QS18 instead of DS21 and DS20. The more elaborate
subroutines (“differential equations” and the like) are,
unavoidably, exceptions to these rules.

It is now possible to see how Alphacode instructions
could be *‘transliterated” into DEUCE instructions.
For example,

X3 = X7 - X29

could become:

(Read the X7 track to DL11)
11-21 (2)
(Read the X29 track to DLI11)
11-20 (2)
(link) -16
(Enter and obey division subroutine)
(Read the X3 track to DLI11)
21-11 (2)
(Write the X3 track from DLI11)

The immediate reaction to a program written like this
is one of horror. A simple Alphacode instruction to
divide two floating-point numbers has given rise to a
whole string of DEUCE instructions, including four
magnetic transfers—more if the division subroutine is

not already in the main store. This illustrates the
futility of the “‘transliteration” approach by itself.

5. The use of the Fast Store

Let us consider a very simple Alphacode program, for
finding the (real) roots of a quadratic equation

ax? +— 2bx — ¢ = 0.

This program has eleven instructions, as follows:

3 DATA X1 (Reads a, b, ¢ to X1,
X2, X3)

—

2 X4 =Xl X X3 (Calculates ac)
3 X5 =X2 X X2 (Calculates b?)
4 X6 = X5 - X4 (Calculates b> — ac)
5 X7 = ROOT X6 (Calculates
V(b* — ac))

6 X8 = — X2 (Calculates —b)
7 X9 = X8 - X7 (Calculates

—b — /(b* — ac))
8 XI0 = X8 - X7 (Calculates

—b + v/(b? — ac))
9 XIl = X9 = X1 (Calculates one root)
10 XI2 = XI0 - X1 (Calculates the other

root)
11 2 RESULTS XI1 (Punches roots from

X11, X12)

FINISH

The computer, when it has the translated program,
will be dealing with two distinct types of quantity—
numbers and instructions. Now we have mentioned
that instructions to be obeyed must be in part of the
main store, so we can exclude them from consideration
for fast-store use. The numbers are of two types—
floating-point (X-addresses) and fixed-point (N-address
counters). For several reasons, counters are relegated
to the main store. This leaves only the floating-point
numbers to be considered.

All operations on floating-point numbers are done by
means of subroutines, and all of these use the single-
length stores, TS13, TS14, TSI15. They use DS20,
DS21, and TS16 for purposes mentioned in the last
chapter. Many of them use DS19. None of them use
QS17 and QSI18. Thus we have eight words of fast
storage which are free to carry information through
subroutines. We regard these as four floating-point
stores which we name D, E, F, G. (They are, respec-
tively, 17, ¢; 17,535 18y 1; 1853.) Let us now see how
these stores can be used to eliminate many of the mag-
netic transfers implied in the Alphacode program.

In instruction 4 there is clearly no need to fetch X5
from the drum. The number required is still in DS21
as a result of the previous instruction, and this is precisely
where it is needed. Similarly for X8 in instruction 7.
In instruction 3 there is no need to fetch X2 twice from
the drum. It can be fetched into DS21, and then simply
copied into DS20 by means of the instruction “21-20(2).”

$202 YoJe|\ g uo 3senb Aq 61.8%05/86/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Alphacode Translator

The subroutines for all the functions in this particular
program have been written so as not to disturb the
contents of DS20. It follows that X7 in instruction 8
and X1 in instruction 10 need not be fetched from the
magnetic drum since they are already in DS20. In
instruction 5, X6 is in DS21 as a result of the previous
instruction.

Already six drum references have been eliminated
merely by considering what each instruction can use of
the information left by its predecessor, and none of
D, E, F, G have yet been touched. To make use of
these, we look through the program from the bottom.
We first note that the result of instruction 8 is wanted in
instruction 10. Therefore, we put it in D, and alter
instruction 10, so that the address ““X10” now reads “D.”
The result of 7 is wanted in 9; it cannot be carried in D
since D is accounted for over part of the way, but E
can be used. By the time we consider the result of 6,
wanted in 8, D is free again. We carry on up the
program in this way; this process eliminates five more
drum references, at the cost of two fast-store references
each.

We then note that X2 is wanted in 6 as well as in 3;
once it has been fetched into DS21, from the drum,
for instruction 3 it can be put into D and fetched from
there for instruction 6. Similarly, X1 can be carried
in F from 2 to 9. Finally, we note that there is no point
whatever in writing the results of instructions 2 to 8,
inclusive, on the drum, since all reference to them else-
where has been eliminated. Therefore we do not write
them, and so the program, partially translated, now looks
like this:

1. 3 DATA Xl
2. E =XI,F x X3
3. = X2, D x DS21
4. . =, — E

5. E = ROOT DS21
6. D =0 — D

7. E =. — E

8. D =D -+ .

9. XIl =E = F

10. X12=D = .

11. 2 RESULTS Xl11

FINISH

We can go no further with fast-store allocation in this
example, since the DATA and RESULTS subroutines
do not refer directly to the fast stores, as do the others.
(They are designed to cope with strings of numbers of
any length, and so refer always to the drum.) Even so,
remembering that each result for the drum represents
two magnetic transfers, we have only 7 magnetic transfers
in instructions 2 to 10 as against the 34 which would
result from a crude transliteration.

The processes outlined above are all amenable to
programming, and are all incorporated in the Alphacode
Translator. The example used here was particularly
simple; the Translator must cope with complicated
programs containing loops, branches, modified addresses

101

and so on. These features make for difficulties in storage
allocation, only some of which can be mentioned in this
paper. The part of the Translator for allocating the
fast stores has about 5,000 instructions; only a quarter
or so of these would be required if all programs were as
simple as the example.

In an earlier paper on this subject (Duncan and
Hawkins, 1959) these processes were described with a
slightly different emphasis, and without specific mention
of DEUCE. Block diagrams of parts of the system
were also given.

6. Flow-Diagram Analysis

The effect of a storage allocation process, such as that
described in the previous section, on any instruction is
a function not only of the instruction itself but of the
whole context in which it is considered. In the example,
the third address in instruction 10 was affected by the
second address in instruction 2. Here the whole program
was considered as a single unit; this was because its
flow diagram was trivially simple—merely one ‘“‘block.”

Fig. 1(a) shows a simple type of non-trivial flow-
diagram, which is very common. (In these diagrams
we assume that each block stands for a simple string of
instructions with a unique entry point and no branches
within itself; it may or may not end with a jump or
discrimination instruction.) From the shape of the
flow-diagram alone it is evident that Il is obeyed at least
as often as I and III (i.e. once if I-1I-1II is the whole
program); the probability is that it is obeyed much more
often. Hence IT deserves priority of treatment over I
and I1I. In practice this means that I and III should
not be allowed to prejudice the storage allocation in 11,
and so the allocation is done for each of I, II, III inde-
pendently of the others. This ensures that II starts with
a clean sheet. We now have the problem of reconciling
the differences in the contents of the store between the
end of one section and the beginning of its successor.
Clearly, priority in this should be given to the return
path from the end of II. A practical example of the
use of this scheme is where Il calculates a quantity by
iteration. Suppose it is calculating y, where y =y,

-

El<AI=l

]

@

np
Sl

=l

1=l

@ ®) ©

Fig. 1.—A simple flow diagram

$202 YoJe|\ g uo 3senb Aq 61.8%05/86/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Alphacode Translator

and yy, ¥y, . . .y, are successive values calculated by
Il such that y, = f(y,) and |y, —», || < e. In this
sort of situation, it is clear that only the final result,
Yu =), Is significant, and there is no point in writing
the intermediate values on the drum. Thus, around the
loop tie, the result will not be written; along the tie
H-IT it will be written if necessary. Also, along the
tie I-11 the initial value will be (probably) read from
the drum, but intermediate values, carried along the
return arm of the loop, will be taken from a fast store.
This situation would not be achieved if the whole
program I-II-IIT were considered at the same time from
the beginning, and the loop tie put in afterwards.

In Fig. 1(b), however, the situation is somewhat
different. 1f anything, V has lower priority than IV
and VI, but there is little to be gained here by taking
the sections separately. We take the three sections as
a whole for storage allocation, and then insert instruc-
tions, on the tie IV-VI, to adjust the contents of the
faster stores to the assumptions made by VI as a result
of the overall allocation.

This leads us to the idea of “‘stages™ in storage alloca-
tion. In Fig. 1(a) there are three stages; in 1(b) there
is one, while, in 1(¢), VII and VIII form one stage and
IX another. There is an arbitrary division in Fig. 2,
where the third section forms a stage separate from the
others. This is inevitable when stage division becomes
systematized. The division of the program into sections,
the compiling of lists of ties between sections, and the
grouping of sections into stages accounts for about
1,000 instructions in the Translator.

The system seems to cope adequately with any shape
of flow diagram. One of the ugliest specimens dealt
with so far is shown in Fig. 3. Stage division is indicated
by broken lines. This program, which was one of the
first to be translated, was produced by a physicist who
had learnt Alphacode ad hoc, and this was his first
program. This emphasizes the point made earlier, that
the Translator is intended for programs produced by
casual users; this means that it must be prepared to
deal with all kinds of shapes of program. No restrictions
have been put on programmers in this respect.

Fig. 4 shows a more typical flow diagram, also divided
into stages. Here the stage division is much more
reasonable.

7. The use of the Main Store

The problems of main store utilization are potentially
greater than those for the fast store, since there are
several types of quantity which must be accommodated.
Let us consider these in turn.

(1) Floating-point quantities (numbers in X-stores).
The allocation process for the fast stores is not
capable of eliminating all the X-addresses,
although in many cases it absorbs 75/ or so of
them. Those that remain should be considered
for a place in the main store.

102

Y

@)

Y

Gi)

N

Fig. 2.
Stage Division

Fig. 3.—A ‘“difficult’’ flow diagram

$202 YoJe|\ g uo 3senb Aq 61.8%05/86/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Alphacode Translator

(i) Fixed-point quantities. These are counters,
specified by N-addresses.

(iii) Subroutines, corresponding to Alphacode func-

© tions.

(iv) Main program. The DEUCE equivalents of
translated Alphacode instructions, to be generated

by the Translator.

To simplify the problems, these types have been
allocated to particular delay lines, as follows:

DLI1 to DL4 are reserved for standard subroutines
(floating-point arithmetic, fetch and store routines
for modified addresses) and certain useful constants.

DL5 to DL7 are used primarily for other subroutines,
as required. Changes are organized in a manner to
be described later.

DLS is reserved for the main program. The program
is allowed to extend into DL5-DL7 if these happen
to be free of subroutines.

DL9, DLIO are used for floating-point numbers.

DLI11 is the buffer for the magnetic drum, although if
there is a lull in magnetic transfers, it is used like
DL9 and DL10.

DL12 is used for the 32 most frequently used counters
(N-addresses).

This division is admittedly arbitrary, but it seems to

produce good results with most programs and is in
accord with the practice of most programmers.

(i) Floating-point Quantities

The object is to replace by addresses in DL9 and
DL10 as many as possible of the drum addresses remain-
ing after fast-store allocation.

Each delay line holds 32 words, that is 16 floating-
point numbers, and this is the same as one drum track.
The X-stores are consecutive word pairs on the drum.
Thus X1 to X16 are in the first track, X17 to X32 in
the next, and so on. If there are several references in
one stage to addresses in the same track, the thing to do
is to read this track into DL9 or DLIO before the first
reference is made. The drum references become delay-
line references; only if a result is put into the delay line
does it have to be written back on to the drum. In
practice, several tracks will be competing for places in
the two delay lines, so the allocation process has to decide
which tracks are to have priority.

Allocation is done a stage at a time. For each stage
a table is made showing, for each track concerned, a list
of the instructions in which it is mentioned, and whether
for operand or result. From this a “priority table™ is
made, giving the limits of the span of instructions over
which the track is required, and a priority number. This
number is the number of magnetic transfers which would
be saved if the track were treated as outlined in the last
paragraph. It is the number of times the track is wanted
for operands, plus double the number of times for
results, /ess one (for the first “‘read™ transfer) /ess one

103

ENTRY

Fig. 4.—A more typical flow diagram

more (the final “write™) if the number of results is
non-zero.

The track with highest priority is then considered.
Since this is the first time, it will probably be accom-
modated, although it is possible that the stage contains
an odd instruction that uses the delay lines for itself
(as, for example, “Solve Differential Equations™). If,
however, the attempt is successful, a delay line is marked
as occupied over the appropriate span, and the track is
removed from the priority table. The table is then
again searched for the remaining track of highest priority,
and an attempt made to accommodate this. Whenever
a span cannot be fitted in directly, instructions obeyed
while the delay lines are in use are removed from the
table, and priority for the track re-assessed.

The process is thus iterative in nature. If both delay
lines are free at a particular step in the process, the choice
falls on that with the shorter free path. This is probably
clearer in a diagram. Fig. 5 shows that three allocations
have been made to DL9, and two to DL10. The third
column shows a span which is being considered. It can
go into either delay line, but DLI10 is chosen, so as to
leave the longer free span in DL9 for later use.

$202 YoJe|\ g uo 3senb Aq 61.8%05/86/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Alphacode Translator

The final part of the data delay-line allocation is a set
of runs through the program, changing drum addresses
to main store addresses where appropriate, inserting
markers to show where tracks must be read and written
to and from the delay lines, and making insertions in the
flow diagram description.

Reading and writing markers are so placed as to ensure
that a track is read as early as possible, and written as
late as possible, in order to take advantage of the carry
of delay-line information between stages.

A difficulty common to fast-store allocation and to
this process has not yet been mentioned. This is the
presence of modified addresses. Unlike some other
schemes, Alphacode does not require the user to specify
ranges of modifiers, so the Translator must assume they
are infinite. The only restriction is that they must be
positive.

The effect of a modified address, as far as the Trans-
lator is concerned, is to introduce an ambiguity. The
address X15 modified may mean anything from XI5
upwards, though XI to Xl4 preserve their unique
meaning. It follows that a fast store containing X20,
say, may no longer contain the latest version of X20
after an instruction in which a result is put into “X15
modified” (i.e. if the modifier happens to have the
value 5). Modified result addresses are in fact partial
barriers to the flow of information through the faster
stores. Modified operand addresses have far less effect,
although clearly they must be distinguished from
unmodified addresses.

(i) Fixed-point Quantities

The 32 most frequently used counters (N-addresses)
are allocated to DLI2. Any others—up to 63 are
allowed in Alphacode—are given addresses in a drum
track. A simple run is made through the whole program,
changing the addresses, and a table is made, to be
punched out at the end, relating these new addresses
with the programmer’s N-addresses.

(iii) Subroutines corresponding to Alphacode Functions

The subroutines for floating-point arithmetic (addition,
subtraction, multiplication, division, fixed-to-floating
and floating-to-fixed conversion) are required very
frequently in almost all programs. Therefore they have
a permanent place in the main store, in DL1-4, together
with a ““magnetics fetch and store” routine, for reading
and writing quantities specified by modified addresses,
and for use in other subroutines such as “Sum Series,”
which operate on strings of data.

Other subroutines are given places in DL5, DLG6,
DL7. It has been pointed out that instructions must be
in the main store when they are obeyed. There is thus
no question of a selection of subroutines being allocated
places in the main store—all must be accommodated.
This makes the problem of allocation radically different
from that for numerical quantities, and in fact much
simpler.

104

DL DL.IO CURRENT

- SPAN.
17—
Z ...
Q —
Ly — I
5 —
&7 —
M o o
W
z

Fig. 5.—Allocation of delay lines

Allocation is first done section by section. It is at
first assumed that copies of all subroutines exist on the
drum, and that transfers to the main store are to be
made for each entry to every subroutine. Then unneces-
sary transfers are eliminated. If a sequence of cosines is
to be calculated, for example, all transfers of the cosine
subroutine are eliminated except the first. Since “‘sine”
and ‘“‘cosine” are substantially the same subroutine,
there is no need to read one if the other is known to
be in the main store. Again, if “log” is in the main
store, and “‘sinh~!” is required, only one extra track is
required, since “‘sinh™!"" implies “‘log.” Conversely,
if “sinh=! is down and “log”™ is required, no transfers
are necessary.

The first transfers into each of the three delay lines
are moved right up to the beginning of the section, and
note is made of the contents of each delay line at the end
of each section. When the sections are joined together
into stages, this may enable further transfers to be
eliminated, and, where loops are involved, it may allow
subroutines to be fetched once for the first entry into the
loop and then merely assumed for subsequent entries.
When combined with storage allocation for numbers,
this process often enables quite big loops—perhaps 30
Alphacode instructions—to be contained entirely within
the fast and main stores.

There are a few subroutines too big to be contained in
three delay lines. These are allowed to displace part of
the standard four, as necessary. The standard delay
lines are restored automatically when they are next
required, or, in any case, at the end of the section.

(iv) Main Program

By ““main program” is meant the instructions linking
together the subroutines, fetching subroutines, and
fetching and storing numbers, and so on. One delay
line, DLS, is always reserved for this. In addition, if a
stage does not require any of DLS5, DL6, DL7, that
delay line, or delay lines, becomes available, with DL8
for main program, and is used if the stage requires more
than 32 instructions.

$202 YoJe|\ g uo 3senb Aq 61.8%05/86/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Alphacode Translator

8. Generation of DEUCE Instructions

During the whole of the processes described so far,
the basic unit of the operand program is the Alphacode
instruction. The first operation of the Translator is to
read the whole operand program on to the drum. The
instructions, originally two words each, are rearranged
and given four words (128 digits) each, the extra space
allowing for markers and extra addresses to be put in
during the course of translation. Up to 512 Alphacode
instructions are allowed, and so 64 tracks are allocated.
(This is the same limit as for the Interpreter: facilities
exist for linking programs together.) For each ‘“‘section”
(see previous section of this paper) a set of ‘‘section
parameters’ is set up; this is essentially a description of
the section in terms of the flow of information. Sixteen
words are allowed for each section; 128 sections are
allowed, and so 64 further tracks are accounted for.
Another 16 tracks are required for various tables and
indexes, leaving 112 tracks for the Translator itself and
for working space. The Translator operates by being
read in one part at a time; each part on completion calls
the next from the program tape or the card reader.

By the time the processes for flow diagram analysis,
fast-store allocation, and main-store allocation for
numbers and subroutines have been applied (in that
order), the instructions have ceased to bear much
resemblance to their original forms. The significance of
a four-word group is now not so much one Alphacode
instruction as a string of DEUCE instructions. At this
stage, therefore, it is convenient to generate the DEUCE
instructions explicitly. The part of the Translator for
this has about 3,000 instructions. About 2,000 of these
are concerned with the actual instruction gencration, the
remainder with controlling a referencing system whereby
the first instruction of each section and tie section is
labelled uniquely, and references to these labels are given
at the end of each section to indicate the continuation of
the flow diagram.

Owing to the lack of space in the computer, the
generated instructions are not stored, but are either
written on magnetic tape or punched out, with check
sums in either case. Each stage has an indication of
what delay lines are available for coding (DL8 always,
sometimes some of DLS, 6, 7), and the whole program
is preceded by an indication of which tracks have been
reserved for subroutines. This information is required
for the coding process which follows.

At this point, the translation is about two-thirds
complete. The output tape or pack is used as input for
the next part, which can be operated on the machine
independently of the first.

9. Main Program Organization

The partially translated program which is given to the
second part of the Translator still gives opportunity for
improvement. Improvements are made in two ways.
The first is in merging together as far as possible branches

105

[LI
NERRRET
RERERR

|11 -

&
\
IH\Il

@) W)
Fig. 6.—Merging of branches

of the flow diagram which converge to the same point.
For example, consider the case where four branches
converge, Fig. 6(a).

In practice we might have the last four instructions of
branch 1 identical with those of branch 2 the last two
of branch 2 identical with those of branch 3; and the
last seven of branch 3 identical with those of branch 4.
In this case Fig. 6(b) shows all the instructions that are
strictly necessary: thirteen redundant instructions of
6(a) have been eliminated. (It should be pointed out,
perhaps, that unconditional jump instructions are not
necessary in DEUCE, since, to make optimum coding
possible, each instruction specifies its successor.)

This process does not directly cause any increase in
speed, for along each path the same amount of work as
before has to be done. However, the saving of instruc-
tions may very well enable a loop, for example, to be
coded within the main program space in the main store,
thus doing away with the need to have program changes
from the drum during the execution of the loop. This
indirect saving of magnetic transfers may be quite
significant in effect.

The second way of improving the program is exclusively
concerned with magnetic transfers. It is usually the case
that a high proportion of the magnetic transfers remain-
ing in the program are redundant, because they merely
repeat what has been done by the preceding magnetic
transfer. A simple example of this is of a track of
numerical data which has failed, because of insufficient
priority, to find a place in DL9 or DLI10. Instructions
will have been generated to read this track for each time
it is wanted. But (if there are no other magnetic transfers
to confuse the issue) only the first is necessary: the others
are eliminated, and so DLI11, the drum buffer, behaves
like DL9 and DLI10. This elimination of redundant
magnetic transfers always saves time as well as
instructions.

Concurrently with the latter process, the program is
divided into blocks for detailed coding, and room for
these blocks is reserved on the magnetic drum. The
simplest case is of a stage with less than a trackful of
instructions. This becomes one block, and is coded in
one delay line, even though more may be free. Similarly,
a stage which can be coded within the delay lines avail-
able is one block: it will not take more of these delay
lines than are necessary. If a stage has too many

$202 YoJe|\ g uo 3senb Aq 61.8%05/86/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Alphacode Translator

instructions for the delay lines, it must be split into two
or more manageable blocks, and instructions generated
to make each block replace its predecessor in the delay
lines. This involves some rather tricky logic, particularly
since elimination of redundant transfers is also taking

place. In all cases, spaces are reserved on the drum for
each block. The whole process takes about 2,000
instructions.

The next task is detailed coding. The basic problem
is that of coding a block of instructions within four or
less delay lines. The subject of DEUCE coding has been
dealt with elsewhere (e.g. Haley, 1956) so there is no
need to outline the action of the Translator’s coding
routine. In generating the instructions of the translated
program most of the sophisticated “‘gimmicks’ beloved of
DEUCE programmers have been thoughtfully avoided,
so that the coding routine is much simpler than might
be supposed (about 1,500 instructions). The next
instruction space chosen is always the first available, after
the completion of the transfer specified by the current
instruction.

After coding, the Translator is able to punch out, in
binary form, the flow diagram of the translated program.
This punching out is optional, and can be suppressed.
Conversion to alphanumerical form, and tabulation can
be done if required as independent operations.

Finally, the Translator punches out the complete
translated program as a pack of cards, which can be
used entirely by itself. It contains

(i) DEUCE standard initial routines.

(i1) A copy of each subroutine required, selected and
reproduced from the library contained within the
Translator pack.

(iii) The coded main program.

As stated before, at the beginning of this paper, data
forms for the translated program are identical with
those for ordinary Alphacode programs, so no con-
version of data is necessary.

10. Conclusion

It is extremely difficult to obtain a fair comparison
between the performances of a translated program and
a hand-written program for the same job. It is intended
to obtain some direct comparisons by writing Alphacode
versions of existing DEUCE programs. In the mean-
while, examination of translated programs seems to
suggest that they operate at something like two-thirds
the speed of the programs that would normally be
produced by hand.

The allocation of storage is of course done more
systematically by the Translator than by the human
programmer, but the latter has the advantage of ad /ioc
knowledge of the problem, whereas the Translator, being
designed for a wide range of problems, suffers by being
forced to ‘“‘play safe.” In particular, the Translator,
working only from the Alphacode program, has no
information as to the dimensions of arrays, and so is

106

prevented from accommodating them in the faster
stores; it knows nothing about relative frequencies of
alternative paths in the flow-diagram, and so has to
make “intelligent guesses” as to priorities in storage
allocation: and finally, it suffers from the stage division.
%

100

)

%0

NN

80

70

60

50

—

/ \\\Q WHOLE PROGRAM
/ 7

MAIN LOOP

77

| 2 3 <4 5 6 No. OF REGISTERS.

7

N\~

AL
N \\

Fig. 7.—Percentage of slow store transfers remaining after the
use of fast registers

For practical reasons the stages are treated almost
independently. ldeally, the program should be treated
as a whole throughout, but this would mean a much
more complicated, and slower, Translator.

In the section describing fast-store allocation, it was
stated that about 759 of the number addresses were
changed into fast store addresses. This was with four
ordinary fast registers, and two fully addressable arith-
metical registers (DS20, DS21). The system briefly
described there has also been applied to a few programs
assuming up to six ordinary fast registers. For each of
these programs a histogram was drawn. They were
quite consistent with each other, and one is shown in
Fig. 7. The percentage of slow-store transfers remaining
after allocation is plotted against the number of fast
registers available. In the first column («) there are no
addressable fast stores; in the second column (0) the
two arithmetical registers (called ‘“‘accumulator” and
“multiplier register” in some computers) are addressable;
in the next columns there are, in addition, from one to
six fast registers.

Two plots are superimposed on the diagram; the
upper one is for the program as a whole, the lower
(better) one for its main calculating loop. This illustrates
the effect of the priority system described above.

11. Publication

It is clearly impossible to describe the Translator fully
in a short paper. However, it is being made freely
available to all DEUCE users as part of the normal
DEUCE library service, and the report issued with it,

$202 YoJe|\ g uo 3senb Aq 61.8%05/86/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Alphacode Translator

which will be in several volumes and contain several
hundred diagrams, will contain a complete description,
detailed block diagrams, and coding.

12. Acknowledgements
"Much of the initial planning and investigation of

13. References

1. BrigHaMm, R. C., and BeLL, C. G. (1959).
Vol. 2, p. 76.

. BROOKER, R. A. (1960).

. DENISON, S. J. M. (1960).
Review in Automatic Programming, Vol. 1.

4. DuncaN, F. G., and Hawkins, E. N. (1959).

w N

possible procedures, as well as the programming of
considerable parts of the Translator, is due to Mr. E. N.
Hawkins. Part of the programming of the storage
allocation process was done by Mr. W. P. Gillott.

The paper is published by permission of The English
Electric Co. Ltd.

“A Translation Routine for the DEUCE Computer,” The Computer Journal.

*Some Techniques for Dealing with Two-level Storage,” The Computer Journal, Vol. 2, p. 189.
“Further DEUCE Interpretative Programmes and Some Translating Programmes,” Annual

“Pseudo-Code Translation on Multi-level Storage Machines,” Proceedings

of the International Conference on Information Processing, Paris, 1959, p. 144.

. GiLL, S. (1959).
. HALEY, A. C. D. (1956).
Supplement 2, p. 165.
8. RosinsoN, C. (1959).
9. RosinsoN, C. (1959).
10. WiLkinsoN, J. H. (1955).
Phil. Trans. Roy. Soc. A, Vol. 248, p. 253.

N O\ W\

. THE EnGLIsH ELECcTRIC Co. LTD. (1959), “DEUCE Alphacode Manual.”
*Current Theory and Practice of Automatic Programming,” The Computer Journal, Vol. 2, p. 110.
“DEUCE, a High-speed General Purpose Computer,” Proc. Inst. Elect. Eng., Vol. 103, Part B,

“Automatic Programming on DEUCE,” Annual Review in Automatic Programming, Vol. 1, p. 45.
“DEUCE Interpretive Programs,” The Computer Journal, Vol. 1, p. 172.
“An Assessment of the System of Optimum Coding used on the Pilot A.C.E. at the N.P.L.,”

Book Review

Mathematical Methods and Theory in Games, Programming,
and Economics, by SAMUEL KARLIN, 1959; 2 volumes,
819 pages. (London: Pergamon Press, 75s. 0d. each
volume.)

The present review is written under the assumption that
readers of this Journal are mainly interested in contributions
to computing theory and practice. It would be most valuable
to have a book on those subjects in the title, dealing with
their computing aspects, but these two volumes do not
constitute such a text. This should not detract from their
value, which will certainly be praised in other reviews; the
author did not set out to write a book on computing, and he
cannot be blamed for it.

The two volumes deal, on an advanced level of mathe-
matical abstraction, with the theory of matrix games, of
linear and non-linear programming, and of mathematical
economics. Volume 2 is entirely devoted to infinite games,

107

i.e. games where at least one of the players can choose from
an infinity of strategies. The wide scope of this theory is
well illustrated.

Chapter 6 is entitled Computational Methods for Linear
Programming and Game Theory. It presents the Simplex
Method with a brief illustration, some slight modifications
of it, a computation of network flow—without making clear
the position of this algorithm in relation to other methods
mentioned—and finally a differential-equation method for
determining the value of a game. No numerical methods
for solving non-linear problems are exhibited, although such
methods exist.

On its own advanced level the book is excellent, and so is
the contribution of the publishers, concerning type, display
of formulae, paper, etc. The two volumes are worthy of a
place in any library of modern mathematical texts.

S. VaIpA.

$202 YoJe|\ g uo 3senb Aq 61.8%05/86/2/S/e101Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

