Automatic Coding for Business Applications

By R. M. Paine

Automatic coding is defined, and the different elements described.
applications are considered and some of the difficulties discussed.

The ideals for business
The concept of a common

source language is put forward and COBOL is used as an example of the structure of common
language for business purposes.
British Computer Society on 5 July 1960 and refers to the position at that time.

Introduction

Great interest is being shown in the U.S.A.. the United
Kingdom and Europe about automatic coding. and this
paper will offer a definition of automatic coding for
business applications, and then state some of the reasons
why computer people are paying so much attention to
this subject.

Definition of Business Automatic Coding

As we well know, systems planning and programming
for commercial work involves much detailed, laborious
work. and requires several disciplines and languages -
those of the accountant, the analyst, the programmer, the
computer, ctc. Automatic coding for business problems
is a system by which a computer can be given a series of
statements in simple English describing a complete
business operation. The computer, by means of a
master program or compiler, can be used to translate
these statements into the machine’s own code, and will
allocate storage and produce a program for the job.
This program, when run against the data for the job,
will produce the desired results such as printing invoices.
accumulating statistics, checking totals, updating files,
and so on.

Source Language

The statements in English which form the procedure
to be followed by the computer are called the Sowrce
language, the program in machine code finally produced
is called the Object language, and the master program
which carries out this work is called the Compiler or
Processor.

The Source language describing the procedure con-
sists of’:

(«) Verbs or action words which call into operation
routines in the Processor, and specify the transla-
tion required. These verbs have the same meaning
in all applications or user companies.

(h) Nouns or names for files, records, fields, cte.,
which would vary with the company using the
system.

(¢) The logic or syntactical rules for forming state-
ments and expressing decisions. These rules would
have the same meaning in all applications or user
companies.

144

This paper was presented at the Harrogate Conference of The

Data Description

Two other clements, closely connected with the source
language and which can be considered part of it, are the
data description and the environmental considerations.

The nouns or names which have been used in the
statements have to be defined so that the compiler knows
where and how to obtain the information involved in
input, processing, and output, and in exactly what
layout, radix, size, ctc., the data are stored. This infor-
mation is normally presented to the compiler separately
from the procedure statements. The data description
section is a very important part of automatic coding and
requires ingenuity in its design to prevent it becoming
too irksome in length or some important fact being
overlooked.

Environmental Factors

The processor may also need to be informed what
equipment or computer specification is to be used on the
actual runs of the business application. This informa-
tion includes points such as that certain files arc on
magnetic tape, that others on cards, how many printers
are available, what size internal store is to be used, cte.
This environmental description will be especially impor-
tant in the concept of a common source language.

The processor using the procedure statements, the data
description, and the environmental factors, will translate
the English into the computer’s own code, in onc or
more runs of the statements, and produce the object
program. The translation is of course a once only job,
since once a proved object program has been produced
this is used for the daily. weekly. or monthly running of
the job.

Ideals of Business Automatic Coding

What advantages do people think they will gain from
business auto-coding? There appear to be about six
main considerations.

Firstly. from the point of view of the accountant it
gives hope of a computer language that he can under-
stand and therefore usc to control the procedures that
are prepared for a computer system. The systems analyst
would also like to write the procedure statements to tell
the computer how to tackle the job, but at the moment
he may shudder at the brink of learning machine coding,

¥202 Iudy 61 U0 1senb Aq LeyGye/vy L/S/g/e10me/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq

Automatic Coding for Business Applications

or even the notation of programmer’s flow charts.
Thus, with an automatic coding system, there is hope
of the computer being instructed by the people responsible
for the job at present, and of management being able to
understand what the “*beastly machine™ is trying to do.

Reductions in Cost

Secondly, there are expectations that the cost of pro-
gramming and the time taken to put an application on to
a computer will be considerably reduced. This expecta-
tion arises from several factors: («¢) there will not be so
many stages or disciplines to go through to obtain the
successful running of a commercial computer system:
(h) less hours will be required for writing the program
or procedure statements since fewer steps or detail will
be required, and the time-consuming job of allocating
storage, avoiding the overwriting of program, cte., will
be reduced if not eliminated: (¢) perhaps less stall, or
even Jower-calibre staff, may be used.

There are few ligures available as to the extent of the
cost reduction or even of the present programming and
systems cost. But some American experience is said to
point to the fact that getting a commercial system on to
a computer costs as much as the hardware itself. Thus
any possible reduction in this immense cost is very
welecome.

The third advantage, which is very closely connected
with the sccond, is that de-bugging time and trouble
should be drastically cut down. This arises of course
only if the source language statements are logically and
procedurally correct in the first place. But automatic
coding should be able to help in this extremely irritating
arca, for both programmers and operators, of dealing
with minor coding mistakes and foolish errors in the
program. It secems that compilers. provided they have
good print-outs so that any crrors that do occur can
be casily traced and remedied. should be able to prepare
object programs without the re-occurring normal human
frailties.

Fasier Adaptation

A fourth ideal is that programs will be casier to alter
with changing circumstances, since a program is seldom
finished and unalterable for a business application.
Management is always calling for further information:
or a new deduction, as in the graduated pension scheme,
arises in the payroll: or a new product is added to the
line. The object program neced not be modified, which
would call for a detailed knowledge of machine code,
but instcad the English language statements would be
changed, and that part, or the whole, of the source
language re-compiled to produce a new object program.

Fifthly, it is hoped that training of staff will be quicker,
since less people will need to know the details of the
machine and its code, and can concentrate instead on
the problems to be tackled and the easier English state-
ments. If training can be given in a few days rather than

145

wecks, one-off jobs could be as feasible in commerce as
they are in science.

The sixth ideal is concerned with a common language
which can be used to prepare programs for all types of
computers, provided that each computer has had a special
compiler written to accept the common source language.
This could almost be conceived as the final aim of
cvaluating committees —to test all machines on their
company’s own work before making a dccision! A
common source language would also be useful for a
company in reducing the cost of re-programming in the
event of replacing their computer installation by another,
because of the expansion of the firm or an extension of
the activities to be processed by a computer system.

Difficulties and Drawbacks

The foregoing seems to present a picture of the never-
had-it-so-good accountant and systems man. But what
arce the problems which may mar this image? Again,
there are about six main points which require con-
sideration.

To start with, no matter what people claim or think.
there is still a vast amount of detailed, lengthy work to
do in rethinking and putting a business problem on to a
computer. Automatic coding may help the actual coding
side, but months or years of systems work will still be
required to find out what we want the source language
statements to say. Mr. J. J. Finelli, of the Mctropolitan
Life Insurance Co. of New York (who have four large
Univac Computers in their head office), said in his recent
lecture (Finelli, 1960) to The British Computer Society:
“The matter of developing codes for a computer program.
however, is not the biggest part of the job. Any assem-
bler can come into play only after you have made up
your mind as to what the program should do. Develop-
ing the specifications is the more difficult part of the job.™

We should not, therefore, imagine the chief accountant
or his assistant sitting down and straightaway writing a
statement of the application in English which will be
presented to the machine for compiling. Life is not as
simple as that! When people have spoken of the systems
analysis and programming costing as much as the hard-
ware, by far the greater part of the cost has been on the
systems study. not the programming, and this will still
remain.

Formalized and Strict English

Secondly, in the writing of the English statements of
the source language, discipline and skill will sull be
required. True, the processor will take care of loops.
modifications, end-of-tape procedures, cte., and produce
an object program using a consistent strategy, so that
all programs produced for an organization will abide by
the same techniques, of coding—a house style in cffect.
But the systems analyst or programmer writing the
statements will still have to understand the rigorous
logic and format of his language. This may be no casy
matter (as later examples perhaps show) and in no sense

¥202 Iudy 61 U0 1senb Aq LeyGye/vy L/S/g/e10me/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq

Automatic Coding for Business Applications

is 1t a matter of a person describing a procedure in his
own normal English. He must know the permitted
verbs, the nouns, the way of stating conditions. how to
refer to another section, and so on.

You have probably had difliculty in reading deserip-
tions of automatic coding source languages, and their
restrictions and problems of syntax. A lively American
magazine. Computing News (Computing News, 1960).
recently had an amusing satire on the work of an
imaginary committee working on
called POOGOL.:

“The world watched with bated breath while the
shapers of POOGOL debated the limits to the number
of times a subroutine was to be permitted to call on itself.,
and many hours of heated debate were spent on resolving
the question of whether certain quantities in a restricted
class of paralyzed variables were to have ‘names™ or
“titles.”

These points are important. however, and serve (o
emphasize how more diflicult it may be for a non-
programmer to pick up the source language than he
expects.

A third difficulty, leading on from the previous one, is
that the statement writer may still have to know some-
thing about the computer to be used and perhaps, for
the most ctlicient object program, about the compiler.
The compilers, at present. do not plan the number of runs
required for a job, or what should be done on cach run.
The systems analyst must know suflicient about the
capacity and functioning of his computer to decide
whether the cost analysis, say, can be performed in the
internal store. or whether the data needs to be output,
sorted and re-input. He must decide, for instance. the
sequence of all the files. that the first run will produce
the payroll and payslips, the second run will produce an
order and expense analysis from data produced in the
first run. and that a preliminary run will be required to
amend files in respect of permanent changes. (It is this
difference of machine capacity and specification which
may prove ditlicult for the idea of a common language.)

source language

The analyst then has to write the source statements of

computer activity for cach run. He does not, under

present systems, just describe his problem in terms of

inputs and outputs and present it to the computer.
Instead he must initiate a method of solving the problem
and present a series of steps to the computer. telling the
machine what to do. in a sequence best suited to the
computer.

Not Accountants’ Language Yet

Fourthly, there may be a disappointment in store for
accountants who have hoped that automatic coding
would usc their accountaney language rather than codes
such as. for example, 60 for clear-add. and 35 for left
shift. Source lunguages certainly get away from the 60's,
the 55°s and so on. But the meaning of accountancy
terms such as post,” “invoice.” “balance,” ete., varies
so much from firm to firm that the verbs used in source
languages have to be rigorously defined and smaller in

146

scope. The exact accountancy practice required has to
be built up from these brick verbs. otherwise a source
language might be of use to only one or two firms. The
verbs used in the source languages tend to be “Compare.”™
“Read.” “Edit,” “Close.”™ “Add.,” from which the
precise meanings of TPost™ can be constructed.
Accountants and management in general may be able to
read the prepared English statements and gain an overall
impression of what is being done. but it is hardly their
function to construct the statements. Such comments
as “Management can also learn quickly how to prepare
their own programs,. gain complete control over the
data processing. and no longer become dependent on
the programmers™ (Mitchell. 1960). are exaggerated and
gIve & wWrong impression 1o management.

“*Noise’ Words

A fifth difficulty is that Data Descriptions and State-
ments must be exactly right: no wrong commas. no colons
mstead of semi-colons, no incorrect indentations for
various levels of statement or record, no mis-spellings,
no unassigned over-punching. cte. This can be very
tiresome and cause a lot of writing and re-writing of the
procedure statements. For instance, look at the tollow-
ing conditional statement and think how casy it would
be to get the punctuation or phrasing wrong:

“If X equals Y then move A4 to B: otherwise add
to C and also if not positive, go to Error Routine: It/
is greater than A" perform routine | through routine 5
and add J to A: otherwise add A4 1o B™:

Not only must the punctuation, cte.. be correct, but
the procedure statements will also be prone to error

because they are so “wordy™ duce to the presence of

“noise”™ words. ““Noise™ words are those words used
to improve the readability of the language but whose
presence or absence does not atfect the meaning of the
statement or the action of the compiler. A cynic might

perhaps define a computer conference as made up of

contiguous noise” words. An example is the phrase
“If A4 as greater than B, where the words is,” and
“than™ have no significance for the compiler but muake
the phrase casier to read as English.

This scarching for readability tends to make the pro-
cedure statements verbose. and as the person writing the
statements becomes familiar with them and therefore
less concerned with their English flow, he may be driven
to some form of shorthand or symbols to escape writer’s
cramp. The aim would then be to obtain correct punc-
tuation, cte.. allow symbols for the programmer’s
convenience, and vet produce a readable version for the
programmer’s lord and master to understand. This can
probably be done by the use of pre-punched cards with
the standard phrases or conditions on them. with blank
ficld names. The programmer could refer to
phrases by symbols, the cards could be pulled. the names
or nouns punched, and the cards tabuliated to provide a
complete English version and a card input to the
compiler.

these

¥202 Iudy 61 U0 1senb Aq LeyGye/vy L/S/g/e10me/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq

Automatic Coding for

Wasteful of Running Time?

The sinth point concerns the efficiency of the object
programs produced by the processors. That is, how
long doces it take for the object program to perform the
application compared with a program written in machine
code by a good programmer? The efliciency of an
automatic-coded object program is usually described as
a certain percentage of the hand program: for instance,
an object program 507, efticient means that it would
take twice as long 1o do the actual data-processing job
as the hand program.

There are very few facts on this important subject of

cfliciency since few jobs have been coded both ways:
not many automatic-coded jobs have been tackled
anvway and. indeed, hardly any compilers have been
completed and tested. A further difliculty is the wide
range of commercial applications for which automatic
coding is supposed to cater, so that an average efliciency
would be misleading for a particular application or firm.
Mr. Finelli. in the same talk as mentioned previously
(Finelli, 1960), thought that Flowmatic which his com-
pany had cxamined would for them take about 207,
more running time than the hand-coded programs. and

he went on to say: “The supplier. being the supplicr of

many customers, must think in terms of developing a
ecneral system to be used by us and others. As a result
many general programs are produced, not programs
specially designed for the insurance business. Had we
used FLOWMATIC we would have had less difticulty
in correcting programs, it does that very nicely. But
we would have paid too much for it in terms of running
costs.”

On the other hand. Remington Rand have stated that,
on most problems, near or equal running time should be
possible since every part of the program constructed by
the compiler has been carried out u.ing the thoughts and
care of a first-class programmer concentrating on one
particular task at a time. rather than thinking of a job
as a whole. LLB.M. have mentioned that with their
automatic-coding system on the 709 an ctliciency of 95,
is achiceved in the object program compared with coding
in symbolic codes. Current commercial systems such
as COBOL cexpect 1o obtain at least 80", to 90",
efficiency: 90°, efficiency would mean that the running
time of 40 hours for a job by hand coding might take
44 hours by automatic coding. (Some people would
sav that over 100°, efficiency can be obtained by having
lousy hand programmers in the first place.) Until more
experience has been gained it is difficult to draw firm
conclusions.

The six difficultics and drawbacks mentioned add up
to the fact that. after a long struggle to establish the idea
of automatic coding for business problems, it may now
have been over-sold and over-simplified so that too
much is expected of it too soon. Despite the problems,
many of them not mentioned here, it has tremendous
possibilitics. But like the “new, unique, brightening
ingredient.” which appears in all detergent packets,
manufacturers arce offering automatic coding schemes

147

© Business Applications

with their machines as a matter of course, and almost
as a matter of publicity. They should beware lest the
users become disillusioned because their clothes are not
suddenly, strikingly whiter than before.

Commen Language

Having considered the ideals and difliculties of auto-
matic coding for business applications. we can proceed
to the idea of a “common source language.”™ The aim
of a common language is that a business problem can be
described in the source language irrespective of the com-
puter concerned and irrespective of the way in which data
is held. The source language program can then be run
on any computer, which has the necessary compiler, and
an eflicient object program produced. As mentioned
previously, this could be useful in assessing various
machines or in moving from one computer to another.

Since computers do vary in their storage capacitics.
input output facilities, binary or decimal representation,
cte., the Environmental section and possibly the Data
section would have to be altered for cach computer. but
the Procedure statements could remain the same. This
is an interesting concept and has received great attention
by users and manufacturers. There are difficulties, such
as the fact that on ditferent computers the problem might
best be tackled in a different way or sequence, and the
eticiency of the object program may vary enormously
from machine to machine, and from onc type of job to
another. The feasibility of the idea i1s best tested by
producing a source language and using it on different
machines and problems.

Origin of Cobol

While people in the United Kingdom were still won-
dering whether automatic coding would work for business
problems and whether it was too carly to standardize a
source language. the Americans have gone into action
and. under the sponsorship of the Department of
Defence (a large user of computers). they have produced a
common language, COMMON BUSINESS ORIENTED
LANGUAGE or COBOL.. It may not be the last word,
but at least it is a starting point for future development.

The organizations participating in the original develop-
ment were:

Air Material Command, U.S AL
ElectroData Division of Burroughs.

David Tavlor Model Basin, Dept. of Navy.
[.B.M.

Minncapolis-Honevwell.

National Burcau of Standards.

R.C.A.

Sperry Rand.

Syvhvania Electric Products Inc.

In the United Kingdom it has been announced that
I.C.T. have adopted COBOL as @ source language for
the 1301 computer, arc adding such things as sterling

arithmetic, and are writing a compiler for it. L.C.T. are

¥202 Iudy 61 U0 1senb Aq LeyGye/vy L/S/g/e10me/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq

Automatic Coding for Business Applications

already teaching COBOL source language on their
training courses for their own and customers’ staffs.

Description of Cobol

How can COBOL be described in a few pages when a
thick book has been produced and has still left doubts
with some people? Obviously one can only give an
outline of the source language the compilers of course
will be written by the manufacturers for specific machines.
As is required, the Procedure Division is essentially
machinc-independent (c.g. it savs Read File not Read
Tape or Read Card) and it is the provisions in that
Division that will be mentioned in this paper.

There are 51 characters in the COBOL language.
including the digits 0 to 9, the alphabet A to Z, the
hyphen or minus sign, the punctuation characters shown
on the next line plus space:

()
and 8 characters to define the operations involved in
formulas and relations:

Verbs

COBOL uses verbs to denote actions, sentences to
describe procedures, and I clauses to provide
alternative paths of action. The hicrarchy of writing a
procedure is EXPRESSIONS, STATEMENTS, SEN-
TENCES, PARAGRAPHS and SECTIONS. There
are 23 verbs used, 6 of them for directing the action of
the compiler only, and 17 of them for describing the
procedure. They arc the following, to which “If™ can
be added as having the function of a verb.

ADD GO DEFINE

SUBTRACT ALTER ENTER .

MULTIPLY PERFORM EXIT COMPILER

DIVIDE INCLUDE DPIRECTING

COMPUTE MOVE NOTE VERBS
EXAMINE USE

READ

WRITE STOP

OPEN

CLOSE

ACCEPT

DISPLAY

To illustrate the u.¢ of the verbs a sentence could be
“Subtract issue quantity from stores-record quantity
giving new stores-record quantity.”™ The phrase “giving
new stores-record quantity™ is optional and if left out
the result of the subtraction will be left in the “stores-
record quantity™ field, that is the field mentioned after
the “from.”

In commercial work some calculation is

and the exprossi R LA - C)
and the expression (A C)
COBOL in two forms. The first would make use of
the Compute verb and would be written “COMPUTE
R L*(4 - C)(4 C)**2" The second isa long-
hand method:

necessary,

could be written in

148

“Add 4 and C giving numerator. Subtract C from .1
giving denominator. Multiply denominator by
denominator. Multiply L by Numecrator. Divide
denominator into numerator giving R.”

Nouns

Nouns or names may contain hyphens for readability
and casce of reference— for instance, “stores-record™ in
our carlicr example or “movements-item.” There are
several classes of names in COBOL: among them are:

Data-Names. A word with at least one alphabetic
character, designating any data specified in a data
description, c.g. Hours, Name-and-Address-File,
Gross-Pay. There are several data levels, sinee a
filc may be divided into records which may be
divided into smaller groups of data which in turn
may be divided into smaller groups. and so on.

Condition-Names. - These specify values which a field
can take and for which a test can be made. For
example, the field. class of card. can cither have the
value “tissue™ or “receipt.” so the condition names
would be “lIssue-card,”™ “Receipt-Card,” and the
test takes the form *If issue-card This is
instecad of saying “If class of card is punched with
a9 then...”

Procedure-Names.—Sections and paragraphs in the
source program arc not numbered for cross-
reference but arc given names to permil cross-
references. For example, one paragraph might be
called *Gross-Pay Calculation,”™ and the next “"Net-
Pay Calculation,” and in one paragraph the instruc-
tion could be given Go to Gross-Pay Caleulation,”
and the compiler would know to which paragraph
to proceed.

Literals. — A noun identical to those characters repre-
sented by the noun- numeric, alpha or alpha-
numeric. E.g. “Scquence-Error™ to be actually
printed in casce of crror, or “D.C.6B™ as a sentinel
for comparison.

Qualifiers and Subscripts

Nouns used in COBOL must refer to only one thing
i.c. they must be unique—but adjectival forms can be
used to describe names and make them un-ambiguous.
This is called qualification™ and there are two types -
prefixing and suffixing.

If a prefix is used, the name being qualified is placed
last, with the other nouns used adjectivally being placed
in descending order of importance, c¢.g. BRITISH-
COMPUTER-SOCIETY CONFERENCE. where CON-
FERENCE is qualified by B.C.S. as a prefix.

If a suffix is used, the name being qualified is placed
first and the other nouns follow in ascending order of
importance, with either of the words “OF™ or “IN™
separating them, e.g.

CONFERENCE OF
BRITISH-COMPUTER-SOCIETY.

¥202 Iudy 61 U0 1senb Aq LeyGye/vy L/S/g/e10me/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq

Automatic Coding for Business Applications

Subscripts allow reference to items in a list or table.
The name of the required item is followed by its subscript,
and the subscript is either written in brackets or is
preceded by the word “FOR,™ e.¢.
(¢) "RATE FOR AGE™ (age is subscript)
(hy “IF HEIGHT (10) IS GREATER THAN™
((10) is subscript)

COBOL. permits entrics in tables in up to 3 dimen-
sions, i.¢. a rate for an insurance premium may depend
on age, weight, and sex. So a valuation statement would
be written:

“Multiply Policy-Value by Rate (age, weight, sex)”

Brackets are used since “"FOR™ might be am-
biguous.

Conditional Expressions

A condition is a group of words which express some-
thing which can be tested to see if it is true or false, and
action can then be taken as a result of this test. It is
probably casier to give examples than to try and define
such matters.

(1) If pension-contributor. subtract premium from
Gross wage,” means that the subtraction will be
performed if and only if the employee is a pension-
contributor.

(2) "If X Y, Move A to B: If Greater Move 4 to C:

If Less Move A4 to D.”

It should be noted that there is no need to repeat
the comparison of X with Y as a reference to what
quantitics “If Greater™ and “If Less™ apply.

(3) “If Actual-Bonus is not less than Minimum-Bonus.
then add Actual-Bonus and Gross-Pay.™

This is similar to example (2) except that ““then™
is used instead of a comma, after the statement of
the condition.

(4) If X equals Y, Move A to B: otherwise Move A
to D and also Perform X through Y.

This is a fairly complicuted sentence but is
essentially of the form: “If €, then S|, otherwise
S.." More complicated sentences can take the

References

CoMPUTING NEWS (1960).
Dep1. OF DEFENCE (1960).
Digital Compurters.
FiNever J. J. (1960).
MitcHerL, J. WL (1960).

April 1960.

149

form “If C, then S, and if (', then S,: otherwise
S3.7 and the meaning or logic of these is not always
clear. There is a move in LLC.T. to simplify these
expressions by saying that relations should have
one subject only and onc object only. It is also
felt that instead of saying ““If 4 and B greater than
C and D, then S, otherwise S>,7" you would say
“If 4 -C,and 4 - D,and B -Cand B - D:
then S,: otherwise S..”° This takes more room
but is casier to understand.

Procedure Branches

All source languages must have a means of changing
sequences and jumping. COBOL provides this by the
two verbs “GO™ and "ALTER.” An cxample of the
“Go™ verb has alrcady been given under “Procedure-
Names™: at the end of a paragraph named Purchase-Tax
onc might have the command "GO TO ENTRY-3."
If in another part of the source program we wished to
change this exit we could write:

“ALTER PURCHASE-TAX TO PROCEED TO
ENTRY-3," and the exit from the PURCHASE-TAX
paragraph would be altered to “Entry-3" until a further
“alter’™ statement was given. “Entry-37 and “Entry-5T
would be names of paragraphs or sections in the same
way as "PURCHASE-TAX.™

Conclusion

The only way to understand a source language is to
use it on actual problems and sce if it meets your require-
ments. Only parts of COBOL have been mentioned
here, and the method of DATA DESCRIPTION and
the ENVIRONMENT DESCRIPTION have not been
touched.

There is a manual in existence for COBOL (Dept. of
Defence, 1960). and people interested should try to
obtain this, though it is still in a very indigestible form,
and by trying it sce if this is a useful common language
for business applications. L.C.T. will shortly be issuing
their more rcadable version of the common source
language.

Poobol-Oriented Languages. Vol. 8. No. 8. p. 11.
Initial Specifications for a Common Business Orienied Language (COBOL) for Programming lectronic

“Development of EDP Units.” The Computer Bulletin, Vol. 4, No. 1. pp. 12 and 16.
“What is Automatic-Coding?™™ Awromatic Data Processing, Vol. 2. No. 6. p. 15.

¥202 Iudy 61 U0 1senb Aq LeyGye/vy L/S/g/e10me/|ulwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq

