Some Proposals for the Realization of a Certain Assembly

Program
By R. A. Brooker and D. Morris

Some proposals are described for a method of implementing an input routine, which would permit

the user to define the meaning of the statements he uses.

It is hoped that a program will be

developed along these lines for the Atlas computer.

In a previous paper we discussed the principal user
aspects of ““An Assembly Program for a Phrase Structure
Language” (Brooker and Morris, 1960). In the present
paper we describe how the scheme is implemented, and
for this purpose we assume a knowledge of the terminology
and content of the earlier paper. It is the function of
the mechanism described to read and store the definition
of an autocode language (in the form of ““phrase defini-
tions’” and ‘‘statement definitions’’), and then to translate
programs written in this language. We discuss first the
method of using the store, and the storage of definitions.

The Method of Using the Computer Store

We have already described how the store is split into
a conventionally addressed section and a ‘‘chain store,”
and have discussed the advantages which are offered by
the latter for manipulating information in the form of
lists. A conventional section is desirable because it
offers two important advantages:

1. The storage requirements are approximately
halved.

2. Lists of words can be more easily scanned in either
direction.

The basis of our compromise is that most of the working
operations (i.e. the assembly and manipulation of lists)
are carried out in the chain store, and the assembled
reference material is transferred to the conventional part
of the store. It is chiefly as a record store, therefore, that
the conventional section is used. We provide for the
essential manipulation of items in this store by the
following means.

At the beginning of the record store an index is kept
which contains the address of every item in the record
store, and items are always referred to by means of their
index number. Whenever a new item is entered in the
record store the index number allocated to it will corre-
spond to the next available register in the index, unless
some other item has become redundant, in which case
its index number will be taken over by the new item.
It is only the index register of a redundant item which is
re-allocated. The space it occupies is recovered by other
means, namely by “sliding” back all the items beyond
the redundant one, so as to fill the vacant space and
release an equal amount at the “available” end. This
means that all the items should be “‘store invariant.”
They are made so by writing all internal references

220

relative to the origin of the item (external references are
simply index numbers). In order to up date the index
after items have been “slid back™ it is necessary to sub-
tract a constant (equal to the number of words recovered)
from every address in the index which is larger than that
of the reclaimed space.

A similar operation to the above can be carried out in
order to extend an item. This facility avoids the necessity
of making extravagant (safe) estimates for variable-
length items (e.g. the index).

Obviously it is not practicable to use the record store
for items whose usefulness is of short duration, or for
items which are subject to frequent alteration. In our
application, however, a large volume of information,
such as the phrase definitions and statement definitions,
is relatively static and can be profitably “filed” away so
as to release some storage space.

Storage of Phrase Definitions

A phrase definition is the list of alternative phrases
which comprise the class of phrase in question. Each
alternative phrase is a string of basic symbols and/or
class identifiers. By means which are described later
the external multicharacter form of the identifiers (e.g.
[TERM]) is reduced to a single (address) word after
input (both forms are referred to as class identifiers).
Basic symbols are also represented in the same form, but
the numerical values assigned to them are confined to a
different range. Address words, as we have already
mentioned, have two irrelevant digits at the least sig-
nificant end which can be used to distinguish different
types of word. An ordinary “untagged” word is referred
to as W. At the end of each string (i.e. phrase) we add
a word containing the category number of the phrase
within its class. This word is given a tag which marks
it as a terminal word (written W).

It is expected that in many definitions, some of the
alternatives will have common stems, and dictionary

grouping would therefore be advantageous. For
example, the alternatives
ABCI1 c1
A BE?2 ‘B <E 2
BECDj3 couldbe . D6
BEC4 ~goupedas EC5
AEC 3 the dlctlonary<! %’b 3
AB D6 'BEC 4

S

¥202 Iudy 61 U0 1senb Aq 928//£/022/¥/¢ /8101 e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Realization of an Assembly Program

In order to represent a dictionary linearly, we distinguish
a further type of word called a branch word (&). This
word contains the address of one branch whilst the other
continues in the next location. For example, the above
dictionary may be written

&A&B&CI1&E2DG6ECS5BEC&D 34

This could be recorded either as a ‘“‘chain” of 22 words
in the chain store. or in a set of 22 consecutive registers
in the conventional store.

We adopt the convention, when reading a ‘‘linear”
dictionary, of taking the straight-on path first and
recording the addresses of the alternative paths in a nest.
If the straight-on path does not contain the information
sought, then the last entry in the nest is explored, and
SO on.

The above grouping involves rearranging the alterna-
tives within a class. If they are all mutually exclusive
this is acceptable; if they are not, then we expect the
order to reflect the order of preference of the non-
mutually exclusive alternatives. In this case the user
should write the phrase “in order of preference’ before
the first alternative. Limited dictionary grouping may
still be possible whilst preserving the original order.
For example, the above dictionary could be re-formed as

&AB&CIE2&BEC&D34A&EC5BD6

A complete phrase definition is represented by a dic-
tionary (called the class dictionary), supplemented by
six other words. One of these additional words contains
miscellaneous information, such as the number of
alternatives in the class, and the other five are key words.

Each of the 120 binary digits of the keywords is
associated with a particular basic (or composite) charac-
ter; the digit is a 1 if the character it represents is a
permissible starting symbol of the class of phrase in
question, otherwise it is 0. The keywords are subse-
quently used by the expression recognition routine to
answer questions of the type ‘‘can the word A be the
starting symbol of a phrase of class C?” (say). If A
represents a basic symbol, reference to the appropriate
digit of the keywords will give a direct answer. How-
ever, if A is a class identifier, then C may begin with A
only if all the I's in the keywords for A are contained
in those for C. That is an answer “may be’ might be
given and the alternatives in C are then tentatively
compared with A.

If any member of a class starts with the identifier of
a class which has not yet been defined then the keywords
for the class cannot be completed. We therefore keep
a list, in the chain store, of all the definitions which are
incomplete, together with the outstanding definitions
whose keywords they require. This list is updated
whenever a complete set of keywords is obtained.

221

A complete phrase definition is assembled as a ““chain”
thus:

K K K K K M (CLASS DICTIONARY)

Y
miscellaneous information

k'eywords

It is then transferred to the record store, and the index
allocated to it becomes the associated internal class
identifier. Conversion from an external multi-character
identifier to the internal (index number) form is accom-
plished by means of the class identifier dictionary.

The Class Identifier Dictionary (CID)

As each phrase definition is recorded, a corresponding
entry is made in the CID. This entry consists of a
string of words containing the symbols of the identifier
in question, terminated by a word containing the
associated index number. If a class identifier occurs
on the right-hand side of a definition before it has itself
been defined, a provisional index number (to be used
when the definition appears) is allocated to it and it is
entered in the CID.

The structure of the CID is similar to that of a class
dictionary, but it is retained in the chain store since it is
frequently extended. All the entries are of course
mutually exclusive, since each is a different string of
basic symbols.

Qualified Class Identifier

In addition to writing simple class identifiers the user
may also qualify them by means of “*” and 7" which
indicate, “‘an arbitrary number of appearances of,”” and
“an optional appearance of.” Whenever an identifier,
qualified in a particular way, is encountered for the first
time, its formal definition is synthesized according to
the rules:

[IDENTIFIER?] — [IDENTIFIER]. nil

[IDENTIFIER*] — [IDENTIFIER] [IDENTIFIER*].
[IDENTIFIER]

[IDENTIFIER*?] - [IDENTIFIER*], nil

The definition thus constructed is recorded along with
the other phrase definitions, and the qualified identifier
is added to the CID.

Statement Format Dictionary (SFD)

In the case of recursively defined statements it may
not be possible to define the meaning of each in terms
of previously defined statements only. For this reason
we require that statement formats be defined inde-
pendently of the definition of their meaning, and before
they appear in any other context. Each format thus
defined is added to the statement format dictionary.
The terminal word of each entry (i.e. format) in this
dictionary contains the index number to be allocated to
its definition (when this is subsequently presented). In

¥202 Iudy 61 U0 1senb Aq 928//£/022/¥/¢ /8101 e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Realization of an Assembly Program

the meantime the corresponding register in the index will
contain a dummy word which will not interfere with the
working of the record store. Like the CID the statement
format dictionary is also retained in the chain store.
Before we continue to describe the method of storing
statement definitions, it is convenient to describe the
routine which is used to recognize and analyse statements.

The Expression Recognition Routine (ERR)

This routine is concerned with recognizing expressions
of basic symbols and/or class identifiers which can be
generated from any of the phrase definitions or state-
ment formats. An expression is generated by selecting
a particular format (say) and replacing any or all of its
class identifiers by particular phrases (or forms of
phrases) consistent with their definitions. This process
can be repeated until all the class identifiers have been
reduced to basic symbols (as would be the case, for
example, in statements occurring in the source program).
Alternatively, the process can be stopped whilst some
class identifiers remain, and these are then the parameters
of the expression.

The generation of the parametric statement Y —=
XY + V(i — 1), for example, from the format Y =[GE]
may be illustrated by the ‘‘substitution tree.”

Y - [GE]
]

[£7 T [+T*]

{)
[Q*] QN [+T*]

v

nil
|
] | ¥
Q[Q*] nil [iTl]
Y O +T
Al Al |4 ‘L
vV Y + [Q*] [/Q?]
X Q nil
)
Y
V£ N)
i1

It is the function of the ERR to reconstruct the ‘“‘sub-
stitution tree”” and to determine the format from which
it was derived.

For example, suppose the expression to be identified
is J;, J, . . ., and that the stem J,, J, . . . J;_ has been
recognized as being consistent with the stem I, I, ... ;_,
of a statement format I (say). Now the ERR asks
“is J; = L, Ifit is then i and j are advanced and the
question is repeated. Otherwise the question *‘is J; a
possible first word of I;?” is asked. A negative answer
here means that J;, J, . . . is not of the form I, and the
next alternative statement format is investigated. How-

222

tX}

ever, if the answer is “‘yes,” then the problem is to
compare J;, J;. . . . with the alternatives of class I;.
This is essentially similar to the original problem of
comparing J,, J, . . . to all the alternatives of the class
of procedure formats, and can be dealt with by recursive
use of the ERR.

For this purpose the ERR records all the current
counts in a nest, and re-enters itself at a lower level with
the address of the class dictionary for I; replacing the
address of the SFD. After this recursion has proceeded
as far as is necessary, either to verify that a phrase
Jio Ji 1 ... J; m (say) is a particular member of I; or
that no such phrase exists, control will return to the
primary level. If the phrase has not been recognized
the alternative | is abandoned as above. Otherwise i
will have been advanced by 1 and j by m -+ I, and the
process is repeated. Ultimate success is signalled if the
end of the expression J,, J; . . . and the end of | (i.e. the
index number of its definition) are encountered simul-
taneously.

At all levels of the recursion the dictionary branch
words are nested along with the current value of j, the
dimension of the stem which has been recognized up to
that point. When the search along a particular path
proves fruitless, the path defined by the last entry in the
nest is explored with j reset.

Nothing has so far been said about the form of the
record produced by the ERR. It is, in fact, a one-
dimensional representation of the substitution tree, and
is called the analysis record.

The Analysis Record

This takes the form of a list in which the items are
sublists and hence are of variable length. In order to
accommodate variable length items in a list we insert
before each item an “& word,” which contains the
address of the & word preceding the next item. The
word before the last item is replaced by an ordinary word
and the list takes the form

& (item 1)'& (item 23 L. w (last item).

At the top level of the analysis record the items
“correspond” (see below) to the identifiers of the recog-
nized format, and the word W terminating the list
contains its index number. No record is kept of the basic
symbols which appear in the format because the success
of the recognition process implies their presence. This
“contracting out” of basic symbols is applied at all
levels of the analysis record.

If a class identifier of the format also appears in the
expression under analysis, then it represents a parameter
whose value is to be supplied later. When this happens
the analysis record will be contained in the chain store
(see under Translation Routine), so that the actual values
of parameters can be simply “linked” into the record.
Hence there is no need to leave a provisional space, and
instead the corresponding item in the record is com-
pletely omitted by linking the & word preceding it to

¥202 Iudy 61 U0 1senb Aq 928//£/022/¥/¢ /8101 e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Realization of an Assembly Program

Table 1

&1 & 2 & & & 1 11212 1121
SN ViU b
pY| | Not IRREARLS
| _,,__,‘ | J;\,— }' 3
index no. Q Q|
of Y—[GE] N I
" [(Q*] | |

[Q*) |

- — |

12& 1 1&21 & &1 &251 1 2
| Foogpgpor v b v
RV i = N=I NolQ)
| :‘ IEVARVIREN
| T
| | Q1
. — B
o T
™
™

the & word preceding the next item, and the parameter
is recorded elsewhere (see below—the APL).

If a class identifier does not appear explicitly in the
expression then it will have been replaced by one of the
alternative strings of the class it represents. In this case
the item in the record is itself a list whose items “‘corre-
spond” to the class identifiers of the particular alternative,
and the word terminating this list-structure will be the
category number associated with that alternative.
Eventually, where the regression does not end at para-
meters, it will end in a list having no items (i.e. only basic
symbols which are omitted). The category number of
these empty lists is recorded as an isolated terminal word.

The parameters of an expression analysed by the ERR
are recorded in a separate list called the associated
parameters list (APL). Each item in this list occupies
five words which are used as follows:

(1) The first of these words is the class identifier.

(2) The second word contains the label (if any) which
distinguishes it from other appearances of the same
class of phrase. If the class identifier is not
labelled, this word will be given a tag which
indicates that its contents are irrelevant (note that
we do not need to distinguish words for any other
purpose in this list).

(3) The third type of word is associated with the
bracketed type of label which indicates a particular
appearance of a repeated item. If present this
label may be either an «, a 8, or an integer, or
alternatively it may be omitted. We use all four

223

permutations of the tag digits to distinguish these
cases, and the index of any « or 8 concerned is
recorded as an integer.

(4) The fourth word contains the address of the link
word which has to be connected to the parameter
in question.

(5) The last word is used to record the original value
of the link so that the chain can be restored if
a parameter is subsequently disconnected.

As an example of an analysis record we present
in Table 1 the record for Y = xY -+ V(i — 1) analysed
with regard to Y = [GE]. The APL is not given, but
the points where the parameters have to be inserted are
indicated by pY and pV.

In a later section we introduce a pseudo class identifier
denoting “‘the class of phrase identifiers.”” When this is
encountered it is treated separately by the ERR, and the
record takes a special form. It utilizes a fourth kind of
word, namely a block word denoted by B,, and meaning
“regard the next n words as a block of information and
ignore their tag digits even though they may coincide
with those of & and W words or even the block word
itself.”

Packing of Analysis Records

When the analysis records of the substatements in a
statement definition are transferred to the record store,
they are encoded (or “packed”) according to the follow-
ing scheme, which takes advantage of the fact that they
are largely comprised of small integers. Since they

¥202 Iudy 61 U0 1senb Aq 928//£/022/¥/¢ /8101 e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Realization of an Assembly Program

would not in any case be used in situ, the time taken to
unpack them is worth expending for the resulting gain
in storage space. If, however, the need for economy in
space is not so great, then the more frequently used
definitions could be transferred to the record section
without being packed. In this case the APL would still
be incorporated in the analysis record, as below.

In an analysis record the words &, W, W, B, are
distinguished by means of different combinations of the
two least significant digits. In what follows it is of
interest to state the exact forms which these tags take.

& takes the form
W takes the form
W takes the form
B, takes the form

(address part) .11
(address part) .10
(address part) .00
(address part) .0l

The first step in packing an analysis record is to incor-
porate in it the APL. This means inserting each para-
meter (i.e. the first three words of each entry in the
APL) at the appropriate point of the record. These
parameter strings are prefixed by a special symbol p (say),
which could be represented by a block word with a
negative address part. Next we drop the addresses from
the & words and regard them as left brackets. Consider
for the moment a corresponding right bracket preceding
each word whose address is contained in an & word.
The analysis record given above would then appear as

(4) A p symbol is represented by a single character
—o610011.

(5) A (symbol is represented by a single character
— 380001 1.

The procedure for unpacking a record is to examine
it character by character. If the least significant two bits
of a character differ from 11, it is restored as a 24-bit
word and the next character is examined. Otherwise
the least significant bits of the character must take one
of the following forms: 111, 1011, 10011, 0001l.
A character different from all these could be used to
mark the end of the record.

Recognition of the above character endings denote
respectively:

the next 9 digits are to be assembled as a word.

the next 4 characters are to be assembled as a word,

a parameter is following,

insert a left bracket and subsequently convert it to
an & word.

The Built-in Expressions and Formats

In order to use the ERR to recognize the basic listing
instructions and parameter operations in addition to the
statements which the user defines, we supplement the

(PWWW) T (2)(((1112)121pWWW)I)T12(D 121 (pWWW)(1)(2)51D)12

| |
v

3 words describing Y

Obviously the original form can easily be restored. Now
we drop all the right brackets since it is evident that all
terminal words, parameter strings (and blocks denoted
by B,), imply a following right bracket. We now have
a string of words containing short integers (in which the
least significant two digits are relevant), and the two
separator words denoting (and p. This is packed as
a sequence of consecutive characters (a 24-bit word
comprises 4 characters) in the conventional store,
according to the following rules.

(1) A word in which only the least significant 6 bits
are relevant, and in which the two least significant
bits are different from 11, is stored as one charac-
ter. (Since the & word has been omitted only
those (few) words following a B, or p may ter-
minate with 11.)

(2) A word in which not more than 9 bits are relevant,
but excluding the above type, is stored as the most
significant 9 bits of two characters whose remaining
three bits are 111. (This includes words which

terminate in 11.)
(3)

Any word in which more than 9 bits are relevant
is retained as 4 characters and is preceded by a

character whose 4 least significant bits are 1011.

224

3 words describing Y 3 words describing V

SFD by a dictionary of built-in operations. This dic-

tionary consists of the following formats:

[«fB] = [word]
[«B] = [word] 8 [word]
([addr]) = [word]

([addr]) = [word] 6 [word]

— [«BN] [1U] [word] ¢ [word]

— [«N]

Let IT = [some Il expression]

Let Il = [some Il expression]

— [«BN] [IU] I1 == [some Il expression)
— [«BN] [IU] IT = T1

[xB] = category of I1

[«fB] == number of 11

END

The definitions of the following expressions are also
“built-in.”

N = [D*]

K = N, N., .N, N.N
a = al, a2, etc.

B = Bl1, B2, etc.

[«f] = o, B

¥202 Iudy 61 U0 1senb Aq 928//£/022/¥/¢ /8101 e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Realization of an Assembly Program

[«BN] == «, B, N

[addr] — [, [xB] + [«BN]. [28] — [+BN],
[28] ® [«BN]

[word] = [addr], ([addr]), N.D, .D, N

0=+, — ./, & v, 7

b= =, A >, =, <<

[IU] = if, unless

IT = *‘any phrase identifier”

[some [T expression] = “‘any expression consistent
with the definition of I1.”

With the exception of K, which is “‘built-in”” because
it is a frequently occurring expression, these definitions
are required in order to interpret the dictionary of built-in
operations. They are also available to the user as con-
stituents of the phrases which he defines, although
some have meanings so special that it is unlikely they
would be used except in defining the system in terms of
itself. The analysis record associated with most of the
above expressions is consistent with previous descrip-
tions, and we mention below the exceptions to this,
which are treated as special cases by the ERR.

In the case of Il, the analysis record takes the form
of a “block™ of three words, containing the identifier
and its labels (if any) encoded in the same manner as
the parameters of a statement (see previous description
of the APL). The record for the [some Il expression]
will be consistent with the definition of the phrase
identified in TI.

Four other built-in expressions, namely, N, K, «, 3,
are also treated in a special manner. Expressions of the
type N are subjected to decimal-binary conversion and
the resulting integers are recorded as if they were the
category numbers of the class (i.e. N can be regarded
as a class having 22! — | members). An expression of
the type K will also be subjected to decimal-binary con-
version, but this time the result will be recorded as a
48-bit floating-point number. This number will be
added to a central list (unless it already appears there)
and the ‘‘category number” in the analysis record will
contain its address (or the address of the previous
appearance of the same number). In the case of « the
“category number’ in the analysis record will contain
its index. The record for a B is similar, but is more
fully described under ““Translation Routine.”

The Storage of Statement Definitions

A statement definition is a list of substatements, basic
listing instructions, and parameter operations. Each
“line” in this list is submitted to the ERR on input,
and an analysis record and APL are thus obtained.

The statement heading is also subjected to this treat-
ment and analysed with respect to the corresponding
format in the SFD (the purpose of this will become
evident later). At the same time as the definition is
read, a directory is assembled, noting the relative position
within the definition of those ‘“‘lines” which have primary

225

labels. The assembled definition takes the form of a
list employing & words, thus:

& (directory) &‘(statement heading) & (1st instruction) .

which is then transferred to the next available space in
the record store and the index is set accordingly. Here
the & words and the directory occupy single registers,
whilst each “line” of the definition is a packed analysis
record. The first two registers of the directory are
associated with the B’s used in the definition and not
with the primary labels. One gives the maximum index
of the B’s and the other (only relevant when a definitior
is in use) contains the address of the first of a *‘con-
ventional” set of registers allocated to the B’s. The
addresses in the directory and in the & words of the list
will be those of the & words preceding the lines to
which they refer, given relative to the first & word of
the definition.

We may now describe the sequence of events which
occurs when a source program instruction is encountered.

The Translation Routine

Each source program instruction will be analysed by
the ERR. This produces an analysis record, and the
index number of the relevant statement definition.
These are handed on to the master routine whose func-
tion is to ‘“translate” the instruction with the aid of the
definition in question, and any other definitions which
this may call in.

Two working lists which this routine requires are set
up on entry. The first is the list of registers to be used
by the B; of the definition. For this list we allocate the
next available set of registers in a part of the conventional
store reserved for this purpose. The address of the first
of the allocated registers is entered in the first register
of the directory associated with the current definition.
and a count which contains the address of the next
available register in the reserved store is advanced by the
number of B’s used in the current definition (i.e. the
second word in its directory). We shall see later that a
definition must be able to refer back to the B list of a
previous definition. For this reason a B (say fn) is
represented in an analysis record as (64 P + n), where
P is the index number of the definition in which it occurs.
Thus by extracting the P and referring to the associated
definition (in particular the first word of its directory).
the relevant f list is located. The above implies that no
definition uses more than 64 f’s. Definitions may also
be used recursively and for this reason the contents of
the first register in a directory are never destroyed.
Instead they are nested when the B list is set up and
restored when the present use of the definition terminates.

For the second working list we use a chain. This
contains information relating to the expressions which
are singled out in the analysis record of the instruction
under analysis. It is called the /ist of selected expressions
(LSE). The first entries in this list correspond to the

¥202 Iudy 61 U0 1senb Aq 928//£/022/¥/¢ /8101 e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Realization of an Assembly Program

parameters of the statement heading, and are entered by
using the analysis record of the statement heading as if
it was an instruction of the type: ‘“‘Let (the instruction
under analysis) = (the statement heading).”” Subsequent
entries are also made when further instructions of the
above type (and other parameter operations) are
encountered (see below). Each entry in the LSE consists
of three words, namely, the class identifier, the label
(if any) which distinguishes it from other expressions of
the same class, and the address of the item corresponding
to it in the analysis record.

After these two lists have been set up the definition is
“‘obeyed” beginning at the “line” following the state-
ment heading which, like any other “‘line,” can be either
a substatement, a basic listing instruction, a parameter
operation, or an “END.”

Before a substatement or basic listing instruction can
be obeyed, its analysis record must be unpacked into the
chain store. Next, the current values of any parameters
it contains are substituted. If a parameter does not
involve a particular appearance of a repeated item the
substitution is straightforward (we discuss the alternative
at the end of this section). The parameters to be sub-
stituted are described in the first two words of each
entry in the APL. By comparing these with the first
two words of each entry in the LSE the parts of the
analysis record corresponding to the required sub-
expressions are located. It then remains to take the
address of the sub-expression from the LSE and enter it
in the ““link word”” whose address is in the fourth position
in the APL, and to record the previous value of this
“link word” in the fifth position in the APL.. Examina-
tion of the index number of the (now complete) analysis
record decides whether it is a subsiatement or a basic
listing instruction, which are dealt with as follows:

(1) Substatements. With the parameter substitutions
effected, a substatement corresponds to a particular
source program instruction, and the translation routine
uses itself recursively in order to translate it. All the
counts relating to the current level are recorded in a nest.
These include

(a) the address of the current statement definition,
(b) the address within this definition of the current
substatement,
(¢) the address of the LSE,
(d) the next available location in the space reserved
for B’s,
(e) the address of the current analysis record.
The unpacked analysis record of the substatement now
becomes the analysis record of the instruction under
analysis, and the synthesis routine enters itself at a lower
level to execute the associated definition.

(2) Basic listing instructions. These are executed by
an interpretive routine which scans their analysis record
to determine the required sequence of machine operations.

The Parameter operations are also unpacked and
executed by interpretive routines, but the details are of
more interest. In the type “Let Il = [some II expres-

226

sion]; IT is the name of a particular sub-expression of
the instruction under analysis, and [some [l expression]
will be an analysis record for a similar expression
involving parameters. These parameters will be in the
APL for the instruction but will not appear in the LSE,
since it is the function of the instruction to identify the
parts of the analysis record corresponding to them, and
to make the relevant entries in the LSE. For this reason
the parameter linking operation is omitted when the
instruction is unpacked. The left-hand side expression
is located by means of the LSE, and the corresponding
part of the analysis record is compared with that of the
right-hand side [some Il expression], by means of the
‘“‘tree comparison routine.”

It is the function of this routine to verify that the two
trees are of the same form and to locate the sub-trees
of the former which correspond to the parameters of the
latter. This means tracing through the structure of the
former and checking that the latter contains the same
integers in its ordinary and terminal words (W and W)
and that it branches at the same points. Complete
correspondence is expected except when a branch of the
[some Il expression] tree is prematurely terminated and
the remainder is represented by a parameter. These
points are recorded in the APL, and when the trace
reaches them the address of the corresponding point in
the other tree is noted and the next branch is explored.
Any other discrepancy between the two trees violates
the equality. If the equality is satisfied, the end of the
two trees will be reached simultaneously. In this case
the parameters contained in the APL are added to the
LSE, together with the addresses of the corresponding
parts of the analysis record.

In the case of the “‘let Tl = ...” instruction only suc-
cess is acceptable, and failure leads to an *‘error print”
routine. However, in the type “—[«fSN] [IU] II -
[some 11 expression]” which is otherwise identical,
either success or failure is accepted and will decide which
instruction is to be obeyed next.

The tree comparison routine is also used in the case
of the instruction “—[«B8N] [LU] IT, = II,.” Here the
expression on each side of the equality is looked up in
the LSE and the trees are compared as before. They
do not, of course, involve parameters.

New expressions may also be introduced by means of
the instruction “Let Il = [some Il expression].” In
this case only previously introduced sub-expressions
appear as the parameters of the right-hand side and
the relevant substitutions are made when the instruction
is unpacked (as in the case of a substatement). The
name of the new expression is Il and this is added to
the LSE together with the address of the analysis record
of the right-hand side.

Finally, to execute the instructions:

[«fB] = category of Il
[«B] = number of II

we first look up the address of the expression Il in the
LSE. It will be recalled that the category number of an

¥202 Iudy 61 U0 1senb Aq 928//£/022/¥/¢ /8101 e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Realization of an Assembly Program

expression comes before the last principal item in the
analysis record and is therefore located by tracing the
& words to the end of the list. In the case of “number
of ” the expression will be a repeated one with a structure

& (Ist appearance) 1 & (2nd appearance) ... 1 2 (last
appearance)

so that again a simple count of the & words will provide
the required information.

Similarly, when a parameter is encountered which
specifies a particular appearance within a repeated
sequence, the address of the list structure representing
the repeated class is first found in the LSE, and then
the particular appearance required is obtained by
“skipping” over the appropriate number of & words.

It remains to discuss the operation “END.” When
this word is encountered at any level of the above
recursion, control is returned to the level above, with all
the counts reset. Eventually, when an “END” is
encountered at the top level, the translation of a given
source program instruction is complete.

Recovery of the Storage Space used by the Translation
Routine

Another function of the instruction “END” is to
initiate the process which recovers the space occupied
by the redundant information left in the “wake” of a
statement definition. The only conventional store used
by a definition is its S list, and this is recovered by
resetting the relevant count. At this point it is also
appropriate to restore the original contents of the
directory register which contains the address of the first 2
(i.e. the quantity nested when the new f3 list was set up).
The redundant information in the chain store comprises

(1) all the unpacked analysis records and APL’s,
(2) the LSE,
(3) a list containing the addresses of (1).

The analysis records are first restored to the chain form
they had prior to the parameter substitution. For this
purpose the broken links were noted in the APL (as the
fifth word of each entry). The lists (2) and (3) and the
APL are also in chain form, so that all the redundant
space can now be recovered by linking each chain back
on to the main chain. Obviously this operation will
be simplified if we work throughout with circular chains
(or lists).

The Input Process

In this section we describe how the relevant material
is prepared for and read into the computer. The input
medium is 7-hole paper tape and is prepared on a ““Flexo-
writer.” This is a machine similar to a typewriter but,
in addition to giving a printed record, as each key is
depressed a characteristic pattern of holes is punched
on a new row of the paper tape. In each row there are
seven positions in which a hole can be punched (i.e. seven

227

tracks), but as there are less than 64 patterns involved
only six of these are necessary. The seventh position is
used as a parity check and is only punched in those
rows which would otherwise have an even number of
holes. (Input from 5-hole tape will also be provided,
but the techniques are similar to those described below.)

The principal features of the Flexowriters to be used
in conjunction with Atlas are as follows. There are
43 keys each of which is associated with a pair of visually
distinct characters. Depression of any key results in
one or other of the two characters being printed according
as to whether the machine is the upper case (UC) mode
or the lower case (LC) mode. The tape code (i.e. the
pattern of holes punched on the tape) is the same in both
cases, however. The two cases are selected, as on a
normal typewriter, by means of shift keys, the operation
of which is also recorded on the tape so that the following
symbols can be correctly interpreted. The tape codes
associated with the case shift keys are themselves inde-
pendent of the mode of the machine so that, e.g.,
depressing the UC key produces the same pattern of holes
regardless of whether the machine is already in the UC
mode or not. The same applies to the keys for effecting
the operations of space (SP), backspace (BS), newline
(NL), and erase (EX); and certain other keys whose
function is not relevant here. The erase code consists
of a hole punched in all 7 positions. There is a mechanical
tape reader attached to the machine by means of which
a tape can be “played back’ to produce a further printed
record (and if necessary another tape record). During a
playback an UC tape code has no effect if the machine
is already in the UC mode, and similarly for LC.

When presented to the computer, the Flexowriter tape
is scanned by a photo-electric tape reader under the
control of the initial input program which discards the
parity bit of each row (after checking the parity), and
prepares an ordered list of 6-bit codes inside the store
of the computer. Initially these may be packed 4 to a
word (of 24 bits), but for the next stage they must be
represented by individual words as integers in the range
0-63 (in address units).

The first step is to eliminate the UC and LC codes by
introducing an extra bit in each code, in order to repre-
sent the 86 distinct printed characters. This is most
simply done by adding 64 to the UC codes and the
operational codes, and leaving the LC codes unaltered.

The next stage amounts to a line-by-line reconstruction
process in which the information between successive
newline codes is standardized. For this purpose each
line is regarded as being made up of a fixed numoer of
cells, one for each position across the line of a paper
record. By scanning a line in the “forward” sense
(i.e. in the order in which it was punched) and noting
the space and the backspace operations, we can deter-
mine the characters which fall into each cell. Neither
space nor backspace are regarded as characters in this
sense. If the same character appears more than once in
any cell, then appearances after the first are ignored.

The information in each cell is called a symbol. If it

¥202 Iudy 61 U0 1senb Aq 928//£/022/¥/¢ /8101 e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Realization of an Assembly Program

consists of a single character only it is called an
elementary symbol, otherwise a composite symbol. Thus,
e.g.. () is a composite symbol consisting of the super-
imposed characters “0” (zero), “—” (minus), and
7 (underline). The list of characters in each cell is
now rearranged in ascending numerical order. Thus if
0" == 80, """ =294, and **__” = 22, then the resulting
string is **__0—.” irrespective of the order in which the
symbols were punched. This ordered string of characters
is then looked up in a dictionary of recognized composite
symbols (DRCS), which gives the corresponding single
word identifier (or serial number) to be used in place of
the string. Henceforth it is treated in the same way as
an elementary symbol, and the dictionary can be regarded
as a means of extending the elementary symbol codes.
More than one composite string may lead to the same
identifier. Thus 0 can also be formed with the UC
letter “*O in place of figure ‘0. Since letter “O” = 111
the equivalent string becomes *“_ — O.” The DRCS
may also be extended so as to recognize the dominant
character in certain cases of overpunching (e.g. to
replace “— (BS) +” by “+”).

The empty cells in a reconstructed line are regarded as
being filled by spaces, and the line is terminated with an
end of line symbol (EOL).

Not all possible composite symbols are included in
the dictionary, and if a given string is not found it is
left in the standard form

S(BS)S(BS)S(BS)...(BS)S

in which backspaces are inserted between the constituent
elementary symbols. Backspace itself therefore becomes
an elementary symbol. The underlined symbols will
probably be treated in this way, since otherwise it would
mean almost doubling the number of ‘“‘elementary”
symbols and hence the number of digits in the key words
of a class definition. As proposed at present there are
5 key words which provide up for to 120 “elementary”
symbols. These must include the elementary printed
symbols, namely

(1) the 26 upper case letters A-Z,
(1) the 26 lower case letters a-z,
(i11) the 10 decimal digits 0-9,

and (iv) the 24 miscellaneous separator symbols
ey < > L 12 & =)

which together with the three special symbols space
backspace and end of line make a total of 89. This
leaves room for 31 recognized composite symbols,
such as

4771‘877.‘

S 2 - IF

However, for a reason explained later, 5 key digits are

reserved for certain special symbols, so that only 26 such
composite symbols are recognized.

The reason for the somewhat elaborate reconstruction

process just described is to enable the machine to inter-

228

pret correctly any tape which reads correctly when
played back on the Flexowriter (ignoring erases). Thus,
for example, it is impossible to say from looking at the
play-back just how many “spaces’ there are on the tape,
following the last significant (i.e. printed) symbol on the
line. The eye merely sees the gap between this symbol
and the right-hand margin, and this correspondence is
preserved in the machine by making each line consist of
a standard number of character positions and defining
the “empty” position as spaces. This fact should be
borne in mind when specifying formats. Thus, if each
instruction is intended to start on a new line, for example,
then the last significant symbol of the instruction would
be followed by [SP*?] EOL. Similarly, if the spacing of
the individual symbols of the instruction is irrelevant,
then, strictly speaking, we should put [SP*?] between
each member of the relevant phrase definitions. This
would be rather tedious, however, and so we have intro-
duced a primary statement of the form ‘‘ignore [J's”
where [] refers to some previously defined phrase (which
may include the “nil”” form). It applies to all subsequent
phrase definitions and statement formats, until super-
seded by a further statement of the same kind. It means
ignore the phrase or symbol in question where it occurs
between the principal members in any subsequent
appearance of the phrase or format being defined. With
the aid of this device, only the EOL need be specified in
the above example.

Recognition of the Primary Material

In the remaining sections we discuss how the compiler
recognizes the material which is presented to it in the
form just described. For this purpose we shall need to
define the syntax of our primary language precisely.
Previously a rigid syntax has not been used, and the
reader may therefore notice discrepancies between the
definitions which follow and some of the foregoing
examples. It is intended that the syntax described below
should be observed in practice. The primary material
consists of statements describing the form and treatment
of the secondary or source language material. We have
introduced three main types of primary statement,
namely phrase definitions, statement formats. and state-
ment definitions. The relative ordering of these state-
ments is only restricted by the following:

(1) A phrase must be defined before it appears in a
statement definition, but not necessarily before it
appears in other phrases, or in statement formats.
A statement format must be defined before any
substatement derived from it appears in a state-
ment definition, and before the statement definition
associated with it is given.

(2)

The individual primary statements and blocks of
secondary material each begin on a new line with one
of the master phrases: phrase defn, statement format,
statement defn, ignore. and secondary statements. There
may also be other master phrases of a supervisory

¥202 Iudy 61 U0 1senb Aq 928//£/022/¥/¢ /8101 e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Realization of an Assembly Program

nature, e.g. title, end of message, estimated running
time, etc.

For various reasons we have avoided introducing a
specific symbol to indicate the end of a primary state-
ment or sequence of secondary statements. Instead the
end is recognized by the appearance of the next master
phrase. Thus as each line is reconstructed it is submitted
to the ERR to see if it starts with one of the foregoing
master phrases. It is necessary, of course, that the
master phrases be distinct from all other possible starting
phrases. The “program” is thus decoded and recon-
structed section by section, where each section represents
a primary statement or sequence of secondary state-
ments. In either case the sections are terminated by an
internal end of section symbol, which is distinct from the
115 “elementary” symbols. Each section is then pro-
cessed in accordance with its category, starting at the
first symbol after the master phrase.

The Primary Statement

Certain elementary symbols may not appear directly
in descriptions of source language statements and
expressions, because they are used for meta-syntactical
purposes in the primary statement itself. These are
“SP” “EOL™ *” “[”, which instead are written as
[SP] [EOL] [.] [[]- The meta-syntactical use of these
characters is as follows: “SP” and “EOL” are usually
ignored: *.” is used as a separator (e.g. between source
language expressions in phrase definitions), and “[” is
used to introduce phrase identifierst and, of course, the
special forms of these characters themselves. The
internal identifiers corresponding to these four symbols
are replaced by values 117-120 (the end of section symbol
corresponds to 116), while the special sequences will
eventually be replaced by the corresponding “‘elementary”
identifiers normally associated with these symbols.

Note: The backspace symbol is not available to the
user in any form, so that a phrase definition such as

[A —Z]=[A — Z] [BS] _
[A—-—Z]=A, B, C.....Z
must instead be written as

A2~ ABC.. Z

where

The primary statements are scanned for the identifiers
enclosed in square brackets, which take the general form
[[1 [identifier] [asterisk?] [query?] [label?] [index?]]
where

[identifier] = any sequence of symbols other than

J]1*?
[asterisk?] == *, nil
[query?] = 2, nil
[label?] = /N, nil
[index?] = ([«BN]), nil

T For the purpose of the present discussion we assume that all
phrase identifiers are enclosed in square brackets, contrary to the
description given earlier where single letter identifiers were also used.

229

(The special forms [SP] [EOL] [,] [[] are recognized as
particular cases of this general form.)

The general phrase identifiers are now replaced by the
internal phrase identifier, namely a group of three words
corresponding to (1) the class identifier, (2) the label,
and (3) the index (as explained in the description of
the APL).

The class identifier is obtained by looking up the
identifier sequence in the CID, which also includes the
special character sequences, as well as the *‘built-in”
identifiers «, B, N, etc. The serial numbers of the
different categories lie in different ranges and enable
the type of entry to be distinguished in the ERR. Those
of the four special characters are, of course, the internal
form of the corresponding elementary symbols, and lie
in the range 1-115. Those corresponding to the
“built-in” expressions will occupy a higher range of
values, and the general class identifier will occupy a
higher range still. When a special symbol sequence is
identified it is replaced by one word only, namely the
basic symbol it represents. If the identifier string is not
present in the CID, then it is entered (i.e. merged into it)
and allocated the first available serial number.

The treatment of qualified classes has already been
explained in principle. The qualifying symbols * and ?
are regarded as part of the identifying sequence which
is looked up and, if necessary, entered in the CID in
the usual way. If it is present then the class has already
been defined and no special action is necessary; but if it
is not present then it is necessary to set up the appropriate
class definition, e.g.

[identifier * ?] == [identifier *], nil.

This is subsequently treated in the same way (see below)
as any other class definition: if the [identifier *] involved
is not present in the CID then it is entered as before
and a further class definition is set up, thus:

[identifier *] = [identifier] [identifier *], [identifier].

If the reduced [identifier] is not present in the CID then
it also is entered, but even if it is present the class may
not have been defined (since the phrase definitions can
be introduced in any order), and in this case further
action (that is, attention to the key digits) must await a
formal definition (i.e. by the user) of this reduced class.

In the course of obtaining the internal identifier we
can also carry out certain checks: for example, that an
index occurs only in conjunction with an [identifier *],
except in the special case of [N([«f8])]. We can also
ensure that the label and index parts are absent in phrase
definitions and statement formats.

As a result of the foregoing operations, the internal
form of the primary statements now consists of a string
of ‘“‘elementary” symbol identifiers, phrase identifier
triplets, and the four primary separators SP EOL

COMMA and EOS (end of section). This string of

identifier words is then processed according to the
nature of the primary statement.

¥202 Iudy 61 U0 1senb Aq 928//£/022/¥/¢ /8101 e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Realization of an Assembly Program

The Phrase Definitions
These have the form:

phrase defn: [I1] = [preference clause?] [phrase * ?]
[last phrase] EOS (ignoring SP’s and EOL’S),
where:

[preference clause] = (in order of preference)

[phrase] = [II, ES¥] COMMA

[last phrase] = nil, [II, ES*]

[1I, ES] = [11], [ES]

[IT] = phrase identifier

[ES] = elementary symbol identifier

The description could be strengthened by insisting
that the [II] employed on the left-hand side must not
be qualified in any way.

The Statement Formats
These have the form (again ignoring SP’s and EOL’S):

Statement format = [II, ES*! EOS or

Statement format (auxiliary): [I1, ES, COMMA *]
EOS where
[T, ES, COMMA] = [I1], [ES], COMMA

The second form allows the user to introduce state-
ments which are not intended for use in the source
language itself, but only as intermediate steps in the
construction of certain statement definitions. In this
case the format may include primary COMMA’s which

otherwise cannot be used. The two kinds of statements
are kept in distinct dictionaries so that the auxiliary
statement formats can be omitted during the translation
of source language material.

An internal description in terms of such ‘“phrase
definitions” and ‘‘statement formats” will, in fact, be
used to provide, with the aid of the ERR an ‘‘analysis
record” of the structure of the primary statement string.
It is the task of the correspondinig “‘statement definition”
to merge the alternative phrases of a phrase definition
into a class dictionary, preserving the order of preference
if necessary; or, in the case of a statement format, to
add it to the end of the appropriate SFD (since the
statement formats are given in order of preference).

In the case of a class dictionary the key words are
also set up, and subsequently updated as described in
the account of the CID.

These operations can be described in terms of the list-
compiling instructions which we have already introduced.

The ‘‘Ignore’’ Statement

This takes the form: ignore [II]’s. It is treated as
follows. A facility is built into the ERR whereby at
each level it will ignore (i.e. pass over) all phrases of a
specified class, when trying to identify a particular class
of phrase in the string under comparison. (No mention
of whether such phrases are present is made in the
analysis record, however.) In the internal form of the
class definition, each alternative phrase is prefixed by
the identifier of the particular phrase (or symbol) which
it is required to ignore in that particular case. If this is

230

nil then this word will indicate the empty class. In a
phrase definition, the “‘ignore” applies to all the alterna-
tive phrases, and so, as a result of the merging process,
its identifier appears only once at the head of the dic-
tionary ‘“‘tree.”” This is not the case, however, with the
statement format dictionary, where the ‘‘ignore” may
apply to the individual formats.

Statement Definitions
These take the form:

statement defn: [substatement] [line *] [separator * 7]
EOS

where:

[substatement] = [auxiliary substatement], [secondary
substatement]

[line] = [separator * ?] [primary label ?] [line proper]

[separator] = COMMA, EOL

[primary label] = [N]]

[line proper] = [built in operation], [substatement]

The combinations SP and EOL [SP*?] / (i.e. EOL

followed by solidus) are ignored. This directive is in
addition to any ignore statements applying to the sub-
statements involved.

The complexity of the foregoing ‘‘phrase defns” is
necessary in order to allow the freedom of layout which
is usually taken for granted in an informal program.

The formats of the built-in operations do not, as they
stand, include any characteristic terminal symbol, and
we therefore arrange for the corresponding internal
format descriptions to terminate with the [separator]
phrase. The same applies to auxiliary statement formats:
it is automatically included at the end of the format.
These operations must therefore be followed in a state-
ment definition by a COMMA (i.e. a proper comma) or
an EOL (i.e. a new line). A secondary statement format
will normally include its own terminal phrase. e.g.
[EOL] or [,] (corresponding to actual EOL or comma in
a source language program), and it must terminate in
this way when it appears in a statement defn, althougzh
it may be followed by further primary [separator]'s.
With these precautions, a sequence of substatements and
built-in operations can be recognized unambiguously
provided they do not start with a primary COMMA or
EOL. The latter is impossible and the former unlikely.
If any material “overflows” the end of a line, then it
can continue on the next line provided that it is prefixed
by a /, since this is ignored after an EOL.

The formats of the built-in operations constitute a
dictionary distinct from both the secondary SFD and the
auxiliary SFD. They include the parameter operations
and the basic compiling instructions. These may not
appear directly in the source language material, and those
of them which could be used there, namely the compiling
instructions:

[B] = [word]
([addr]) = [word]

[« B] = [word] 6 [word]
([addr)) = [word] 6 [word]

¥202 Iudy 61 U0 1senb Aq 928//£/022/¥/¢ /8101 e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Realization of an Assembly Program

must be formally redefined, thus, e.g.:

statement format: [« 8] = [word] [EOL]
statement defn: [«f] = [word] [EOL)]

[8] = [word].

end

Such a statement occurring in the source language
program, e.g. a; = (a3), would have a purely declarative
significance, corresponding to those statements in
classical input routines which manipulate ‘““preset para-
meters.” The expressions « and 8 may also occur in
any permissible source language statement built up from
these compiling instructions. In this case, however, it
is necessary to restrict the number of S’s (say to 50) for
a reason which is explained in the next paragraph.

The other built-in operations involve either parameter
operations, or transfers of primary control which have
no significance in the source language program because,
unlike a statement definition, such a program is read,
analysed, and translated statement by statement. A
further consequence is that the range of S’s involved
cannot be determined. Normally this is done with the
aid of the routine (part of the ERR) for recognizing
phrases of the form Bn, which also notes the maximum
value of n. This value is then recorded when all the
lines of the statement definition have been read and
analysed. In the case of a source language program
this never happens because each statement is translated
as soon as it is analysed.

In the case of the basic compiling instructions, which
are redefined for use in the source language program
we have the choice of either form for use in a statement
definition, e.g.

oy = (o3), or o = (a3) [EOL]

Naturally one would employ the original form.

It should be remembered that the expression which
replaces [some [T expression] in certain of the parameter
operations is normally a source language expression, so
that any commas appearing in it must be written in the
form [,].

The format of the parameter operations (see Storage
of Statement Definitions) can be strengthened by
differentiating between the [I1]’s used in the different
operations, as was suggested in the case of the phrase
definition. Thus we have the following rules.

1. In the operations
Let [I1] = [some II expression]
—[aBN] [LU] [11] = [some II expression]
the phrase identifiers occurring in [some Il expression]
must not be indexed. This can be checked by examining

the resulting APL. Also, [II] itself cannot take the
form N([«8]).

Reference

2. The [I] employed in the operation
Let [II] = [some II expression]
must not involve an index. The phrase identifiers

appearing on the right-hand side, however, can take the
most general form, as in a substatement.

3. The [II]’s appearing in the operations
—[«fN] [TU] [11] = [1T]
[«B] = category of [1]]
must not take the [N([«f])].

4. In the operation
[«B] = number of [I1]

ek

the [I1] must represent an
not be indexed.

The above checks would be included in the subroutines
involved by the ERR when attempting to identify the
different types of [I1].

class and, of course. must

The ‘‘Statement Defn’’ of a Statement Definition

The string of identifier words representing the state-
ment definition is compared, by means of the ERR,
with an internal description in the above terms. This
results in an analysis record which provides almost
directly the information needed to assemble the final
form of the statement definition. (See Storage of
Statement Definitions.)

The Secondary Material

It remains to recall what happens to the source
language material. This, of course, is submitted for
comparison with the secondary statement format
dictionary by means of the ERR.

When the appropriate form is recognized, the corre-
sponding statement definition is entered and executed
(see the description of The Translation Routine). This
results in the statement being translated unless it has an
operational significance, in which case it may cause the
material translated thus far to be obeyed as a program.
Otherwise the compiler continues to read and translate
secondary material until another section (i.e. a master
phrase) is encountered.

Conclusion

As already mentioned, the system could be formulated
entirely in its own terms, using phrase definitions,
statement formats, and statement definitions. This
would mean including such operations as dictionary
search, packing and unpacking, etc., among those used
in the statement definitions. These could either be
built into or built up from the basic listing instructions.

BROOKER, R. A.; and Morris, D. (1960). ‘““An Assembly Program for a Phrase Structure Language,”” The Computer Journal,

Vol. 3, p. 168.

¥202 Iudy 61 U0 1senb Aq 928//£/022/¥/¢ /8101 e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

