Running Pegasus Autocode Programs on Mercury

Bv A. Gibbons

A new general method of translating autocodes has been used to translate Pegasus Autocode

programs into Mercury machine code.

In addition to describing this translation scheme, the

problems connected with simulating Pegasus Autocode on Mercury are discussed. The specification
of the program is appended to the paper.

Introduction

Pegasus Autocode, a simplified method of preparing
programs for the Ferranti Pegasus computer, has been
described in some detail by its authors (see Clarke and
Felton, 1959).

The autocode deals with two kinds of numbers,
namely indices and variables, which are denoted by nN
and ¢N respectively. There are 1,380 variables, which
represent floating-point numbers. These are recorded
to a precision of 29 bits and have binary exponents in
the range +256. They can be modified by the 28 indices,
which are fixed-point numbers in the range +8,192.

Arithmetic can be done with both kinds of numbers,
and typical instructions are:

vl = 12 + 3
nl = n2 + n3
enl = o(—3 + n2) — (2 -+ n3).

Simple functions of the variables can also be calculated,
as in the instruction

vl = log v2.

An autocode program consists of a series of such
instructions together with input, output and jump
instructions, and is followed by one or more instructions
enclosed in brackets. When the program tape is fed
into the machine, the instructions are decoded and stored,
the first of the bracketed instructions being obeved when
the terminating bracket has been read. If one of the
bracketed instructions transfers control to the main
program, the calculation proper is started, otherwise
more instructions are read.

This scheme of coding is well suited to Pegasus, since
the small high-speed store is partly occupied by floating-
point arithmetic routines, and information can be
transferred between the stores either in blocks of eight
words or in single words of 39 bits.

The Ferranti Mercury computer is both larger and
faster than Pegasus. It is a floating-point machine with
a word length of 40 bits, and the numbers conveniently
correspond, in both range and precision, to those of
Pegasus. The high-speed store consists of 1,024 words
and is supplemented by a drum store of some 16,384
words. Information is transferred between the two in
blocks of 32 words.

The instruction code is of the single-address type, and
ten-bit B-lines are provided to modify the addresses.
Each instruction occupies a half-word, and, although
instructions can only be obeyed in the first half of the

232

store, the partitioning between instructions and numbers
is arbitrary.

Programs for Mercury are usually divided into
chapters. These are stored on the drum and brought
into the high-speed store, one at a time. as required.
A chapter change takes about 180 msec, compared to
the addition time of 180 usec. Consequently it is
desirable that each chapter corresponds to some major
part of the calculation.

Problems of Representation and their Solution

Although it is possible to simulate Pegasus Autocode
exactly on Mercury, the resulting system would be
inefficient, the prime reason being that it would not be
possible to have immediate access to all the 1,380
variables. Normally there are three variables in each
instruction. The variables must be stored on the drum
and it would be necessary to test if each variable required
by the instruction were present in the store. The time
taken to do this would far outweigh the actual instruction
time. Another disadvantage is that direct modification
by a ten-bit B-line would be impossible.

Both these difficulties can be overcome by restricting
the number of variables to, say, 600. They would then
occupy only a little over half the store, leaving plenty of
room for instructions, and could be modified in the
normal way. This restriction is not serious and most
programs can be adapted to use only these variables.

The range of values which the indices can take must
be preserved, as they can be used for ordinary arithmetic.
It is also necessary to have them readily available for use
as modifiers. To achieve this, the indices are stored as
unstandardized floating-point numbers. Unrounded
arithmetic operations are quite straightforward, and the
least significant ten bits of the index, the part used for
modification, can be picked up immediately into a B-line.

The next problem is that of partitioning the instruc-
tions into blocks which will fit into the store of Mercury.
Each translated autocode instruction, which consists of
from two to twelve Mercury machine instructions, is
packed in the store. No record of the individual instruc-
tion lengths is kept and, as a consequence, certain
instructions cannot be translated. One of these is

tape N, N,

which reads more instructions into the program,
beginning N, instructions after the one labelled N,.
It would be unrealistic to restrict the program to a

¥202 Iudy 61 U0 1senb Aq 218/ /€/2€2/v//81o1 e/ |ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

Pegasus Autocode on Mercury

length that could be wholly contained in the high-speed
store, since this only holds about 80 autocode instruc-
tions. Yet care must be taken in dividing up a long
series of instructions since, if a chapter change occurred
in an “inner” loop, it could be very time-consuming.
Several methods have been considered for solving this
well-known problem, and the one finally adopted was
suggested by Dr. D. Morris of Manchester University.

The instruction space is divided into four equal blocks
numbered O to 3. On input, the instructions are trans-
lated and arranged on the drum in blocks of the same
length. The number of the block on the drum, modulo 4,
indicates where the block will go in the store, and the
internal addresses of the block are adjusted accordingly.
Consequently, any four consecutive blocks can be in the
store at one time. In practice, this means that if a loop
in the program does not span more than about 60 auto-
code orders, it can be obeyed with the minimum of drum
transfers.

A label list is kept in which there are two entries for
each label, the line and block numbers corresponding to
the beginning of the translated instruction. All jump
instructions transfer control to a set of orders which
test if the block required is already in the store, and
bring it down if it is not.

No attempt has been made to translate Pegasus
machine orders. However, Pegasus Autocode permits
the insertion of some machine orders at the beginning
of a tape in order to alter the storage space allocated to
instructions, labels, indices and variables. When
running the program on Mercury these are unnecessary
and are omitted, as the number of variables is restricted
to 600, for the reasons stated above, and the drum can
accommodate about 2,000 autocode instructions, which
is rather more than Pegasus itself holds. Varying
numbers of labels and indices are allowed for by storing
them end to end, with the indices numbered backwards.
If L is the highest numbered label and N the highest
numbered index, then

2N - L < 184.

Functions of variables are calculated by standard
routines known as quickies. In a conventional Mercury
program, the quickies required are included, as blocks of
instructions, in each chapter. This is not practicable in
this scheme and, instead. the quickies are stored on the
drum and brought down to a particular part of the store
as required. To save time, a quicky is not brought down
a second time if it is already present. A reciprocal
routine is always present in the store.

The routines for reading data and printing results are
adapted from standard Mercury subroutines. They are
stored on the drum and when required are transferred to
the space normally occupied by the autocode instructions
in the store.

These subroutines, together with others for changing
blocks of instructions, selecting labels and functions,
form the *“‘background” for the translated Pegasus
Autocode program.

E

233

Translation

Having decided upon a method of representing
Pegasus Autocode programs on Mercury, it is necessary
to find a suitable method of translation. The method
described below is general in its application and was
suggested by Mr. R. A. Brooker, who is developing a
similar scheme for the Atlas computer (Brooker and
Morris, 1960).

The input routine recognizes two forms of input:
firstly, a description of the autocode instructions and
how they are to be translated, and secondly the instruc-
tions themselves.

The instructions are described by defining the various
classes of symbol strings which can appear. Each class
is identified by a letter and, to distinguish class identifiers
from basic symbols, the former will be written as upper-
case letters. No confusion can arise in the text, since
only letters of one case appear in a Pegasus Autocode
program. However, when actually punching the tape,
special devices, described below, have to be sought,
because the Creed teleprinter used in preparing data for
Mercury has itself only a single case of letters. Each
class is defined by giving a dictionary of its elements,
which may be strings of basic symbols or class
identifiers.

Corresponding to a class definition is a list of pro-
cedures to be followed in the event of an element of the
class being encountered. A procedure usually states the
order in which the procedures corresponding to the sub-
classes of the element are dealt with. At a basic level,
the procedure is given in terms of Z-routines. These are
subroutines which do all the actual writing of the com-
piled program and correspond, in a sense, to the basic
teleprinter symbols in the class definitions. In practice,
the class Z is the class of all possible instructions and is
defined in terms of the other 25 subsidiary classes.
When the description of the instructions and the method
of translation is complete, the machine is ready to accept
the autocode instructions. The analysis routine reads
an instruction and tests if it can belong to class Z.
A mistake which results in an illegal instruction can
easily be detected, and when this occurs the offending
instruction is copied to the output punch and the next
instruction is read.

To fix the idea of a class definition, suppose that a
class A has, as elements. the strings of symbols

bed (1
bg (2)
cld]g 3)
bede 4)
The symbols “*” and ‘[] are used to indicate that

the item so marked can in the first case appear an
arbitrary number of times and in the second need not
appear at all. These concepts are frequently useful
although the same results can be achieved in other
ways.

The elements of the class with common stems are

¥202 Iudy 61 U0 1senb Aq 218/ /€/2€2/v//81o1 e/ |ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

Pegasus Autocode on Mercury

arranged together, or made into a dictionary, to facilitate
the work of the analysis routine. Thus class A is written

e (4)
b:‘Cd:— ()
& (2)
c[d]g (3)

A more particular item must be written before a general
one, otherwise the particular one will be ignored (cf.
items 1 and 4).

This array is made one-dimensional by using the
symbols «, a branching symbol, and f, a terminal
symbol, which are actually integers confined to certain
ranges:

“184/31130‘32

An o usually indicates an alternative path to be
followed if the preceding comparison is unsuccessful.
However, as may be seen,

bocade vcda(g;ﬁg

g becomes ga

Iy

[d] becomes d o

v

and the combination [zl] becomes d x «

The number attached to a f3 indicates which element of
the class has been recognized. To distinguish between
«’s and B’s when the definitions are punched on tape,
100 is added to each . Thus the definition of class A
would be punched on tape as:

h12¢9de8104 101 29107 ¢ d 14 g 103

and would be stored inside the machine in this form.

These concepts can be illustrated by defining the
classes D, N, and K—a decimal digit, an integer, and a
fixed point number, respectively. The class D has
members

0,1.2,3,4.5.6.7.8and 9

and would be defined as

OaﬂoiaB]éxﬁzéaﬁ341[3451ﬁSé

“5070‘/878168959

The class N, an arbitrary number of decimal digits,

could be defined as
D«f, or DOIOI

and the class K which can have the different elements
N[.]. .N and N.N

could be defined as

Nou.aNaB3B . NB

234

or N8 .7NT7103101 . N 102

This process is arbitrary and depends upon how the
definition is to be used.

Just as classes are defined in terms of other classes,
they can also be defined recursively, ie. in terms of
themselves. Thus the class N can be usefully defined as

D[N].ie. DN a B, or D N 310l

Generally the analysis routine asks the question:
“Can the following symbols belong to the class under
consideration?” To answer it the class definition is
selected and the first character examined. If it is a basic
symbol then it is compared with the first of the symbols
under test. If, however, it is a class identifier, then the
definition of this class is selected and examined by the
analysis routine using itself at a lower level. If a B
symbol is successfully reached, then the symbols under
test do belong to the class and the analysis routine
returns to a higher level with a positive answer. When
a negative answer is arrived at, any alternative path is
explored and, if this also is unsuccessful, then the
symbols under test do not belong to the class.

As the analysis routine tests the validity of an instruc-
tion it builds up a detailed record of what classes of
symbols are present. This analysis record has to be
consulted by the synthesis routine before the appropriate
procedures can be selected.

The analysis record of an element of a class consists
of the records of its component classes or, in the case
of basic symbols, the symbols themselves. The records
are linked by « symbols which give the address of the
next «, and are terminated by a B which specifies the
element of the class recorded. The « symbols here do
not correspond at all to those in the class definitions.

If an element of a class may appear an arbitrary
number of times, a record is made of each appearance.
and if an optional element is absent, its record is simply
omitted. Thus, if an element is defined as Ab[C]dE and
the symbols corresponding to AbJEE are present, the
analysis record would be

5 record of A o b o« x d =« record of E,. record of E, B

When the analysis record of an instruction is com-
plete, control is transferred to the syathesis routine
which skips through the «’s of the complete record to
determine which element of class Z is present. The
corresponding procedure is selected and carried out,
and then the next instruction read.

A procedure must be given for each element of euch
class and is a list of the operations to be done when that
element occurs. Thus if an element consists of

ABC
the procedure definition could be
B2, A1.C3

¥202 Iudy 61 U0 1senb Aq 218/ /€/2€2/v//81o1 e/ |ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

Pegasus Autocode on Mercury

the numbers indicating which item of the element is
referred to. This procedure definition would merely
call in the definition corresponding to the element of
class B which is present, and then the definitions corre-
sponding to the elements of classes A and C.

The Z routines, which are used for performing basic
operations, are referred 1o by number and usually have
parameters associated with them. For instance. Z6, m, n
forms a floating-point number from the analysis record
of an N, item m, in the element under consideration.
If n =0 the number is treated as an integer and if
n = 1 as a decimal. Thus the procedure for the second
element of class K could be

Z6.2, 1

When punching the definitions on tape, class identi-
fiers, «’s and B’s, have to be distinguished from basic
teleprinter symbols. This is achieved by introducing the
concept of double letter and figure shift. If a set of
characters is already on letter shift and another letter
shift is punched, then the next character is said to be
on double letter shift. Double figure shift is defined in
a similar way. Class identifiers are punched on double
letter shift and «’s and B’s on double figure shift. It is
true that care has to be taken when punching these
definitions since the shift characters do not appear on
the print-out, but once inside the machine they can
easily be checked. These devices are undesirable, but
are necessary if all the available characters on the tele-
printer keyboard are to be made available for the
autocode instructions.

Conclusion

The primary virtue of this input routine is the fact
that the calculations in Pegasus Autocode programs can
be done about 25 times faster on Mercury than they can
on Pegasus. Thus, provided the times for input and
output do not constitute too large a part of the total
running time, this is very much to the customers’ advan-
tage. It must be emphasized, however, that this advan-
tage can easily be lost by having excessive output.

The translation scheme, although perhaps rather
elaborate for this purpose, is very flexible, and any
mistakes can be quickly rectified and new types of
instructions added. In particular, algebraic expressions
are easily defined. This can be illustrated by defining a

possible general arithmetic instruction for Pegasus
Autocode.
The following classes are required:
Vi eN, enN, v([£]N -+ nN)
S: +, —
U: nN
V is the class of all variables and U the class of indices.
F: mod, int, frac
G: sin, cos, log, etc.
F and G are the two different classes of functions.
Q: U, V. K, (E), FO. GQ
Q is a class of items, K being the class of fixed-point
numbers. The class E is defined below.
A: xQ
B: /O .
T: 0[4][B]
W: ST
T is a term and W a signed term. An expression E is
defined as

E: [S]T[W]
The complete instruction is
V=F

Not only would this replace all the existing “‘variable”
instructions, but it would also allow the user to write
brackets within brackets.

The procedures corresponding to these classes would
be simply concerned with building up the terms in the
accumulator. The procedure for the class E would be

72,51, W3

In other words, it would form the first term, sign it, and
then add on any subsequent signed terms. A slight
complication arises when (E) is encountered. The
contents of the accumulator have to be stored in a nest
while the expression E is evaluated. These difficulties
can be easily overcome and, if the instruction were to be
incorporated. the user could write such things as

vl — 2 <+ 3 % v4 -+ sin cos 5
and v7 = (el = 2) X (@3 + e4)/(¢5 + v6).

Acknowledgement

The author would like to record his appreciation of
the assistance which Mr. R. A. Brooker and Dr. D.
Morris have so freely given to him.

Appendix: Mercury Library Specification R 3130

Title: Pegasus Autocode Input Routine.
Purpose: To run Pegasus Autocode programs on
Mercury.

Programming Notes: The following restrictions must be
observed:
1. Only the variables ©0-1599 may be used.

2. If N is the highest numbered index and L the
highest numbered label, then

2N + L < 184,
There must be less than 2,000 instructions.

4. Instructions which refer to a second tape reader
will be taken to refer to the single tape reader.

W

¥202 Iudy 61 U0 1senb Aq 218/ /€/2€2/v//81o1 e/ |ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

Pegasus Autocode

5. There must be no instructions of the form
TAPE N, N.

6. There must be no ALTER instructions.

7. There must be no machine orders.

Operational Notes:

1. The program is a binary one and occupies sectors
129 onwards, and sector 2.

2. Three modes of starting are available:
(a) H.S. = 0—to read in a new program.
(b) Key 0 up—equivalent to the TAPE instruction.
(¢) Key 8 up—re-enters the current interlude.

3. If key 4 is set and followed by I.T.B. then the

References

CLARKE, B., and FELTON, G. E. (1959).
BROOKER, R. A., and Morris, D. (1960).
Vol. 3, p. 168 see also p. 220 in this issue.

on Mercury

sector 2 of Pig 2 is restored, i.e. if Pig 2 was pre-
viously in the machine then it need not be read in
again.

4. To restart after a STOP instruction press the

prepulse button, and after a Z (when the machine

hoots) press key 9.

Spurious instructions are copied and ignored.

6. Errors encountered during execution are printed
out and the machine then stops.

v

Time: The speed of calculation on Mercury (excluding
input and output) is about 25 times greater than
on Pegasus.

“The Pegasus Autocode,” The Computer Journal, Vol. 1, No. 4, p. 192.
“An Assembly Program for a Phase Structure Language,” The Computer Journal,

Book Review

Integrated Data Processing and Computers—Report of a
Mission to the United States, E.P.A. Project 6/02B.
Organisation for European Economic Co-operation,
Paris, November 1960. 77 pages. Available from
H.M.S.O., price 10s. 6d. (or from O.E.E.C. Sales Agents).

For some time, it had become evident that the progress in
exploiting computers and other new equipment had reached
a stage in the U.S.A. when a new study of experience would
be of interest to Europe. This report has been prepared by
the Mission, under the presidency of Mr. Brian A. Maynard
(Cooper Bros.), which visited the United States from April
to June 1960. Two members of the B.C.S. Council, Mr. John
Goldsmith and Mr. Jack Grover, served on the Committee
which prepared the report, as also did Mr. Jeremiah Donovan
(Aer Lingus): another B.C.S. member was Mr. Michael
Wright (N.R.D.C.): the project manager was Mr. Karl
Seelmayer of O.E.E.C-E.P.A. The Mission totalled 25
representatives from 10 countries.

The present report will be supplemented early in 1961 by
a folder of background material, reports of lectures and
reports on individual installations. The report covers a
period which is approximately four years after the earlier
study by Gregory and Gearing (published in THE COMPUTER
JOURNAL, Vol. 1, p. 179: it is unlikely that the second author,
now preoccupied with his own business instailation, will
complete the 1958 survey). Mr. Grover's random reflections
were published in The Computer Bulletin, Vol. 4, p. 77
(December 1960).

The Mission divided into groups, which reassembled
together at intervals, and visited 44 industrial and commercial

236

organizations, 8 government offices, 4 computer service
centres and 14 research/educational establishments—in three
dozen cities. The division of the party into groups permitted
sufficient time to be spent at each establishment for a sub-
stantial study and the checking of the findings with the
management.

The authors are to be complimented on their brevity, which
may, however, have led to the omission of some expected
detail. For example, one expected a reference to the intro-
duction of magnetic tapes for greater speed in supplementary
storage, when discussing the history of the influence of new
equipment (p. 12). The first 29 pages summarize the principal
features of A.D.P. with computers, problems of installa-
tion, the government role, educational trends, and new
developments in equipment engineering and programming
already made in Britain. The final chapter summarizes
conclusions and recommendations: these recognize the
economic differences between Europe and U.S.A., which
result in a greater difficulty in justifying an installation, and
look to the U.S.A. scene to provide a cross-check on our
thinking and stimulus of new ideas: the appendices and
folder (to come) will be valuable in this respect.

There are 11 appendices, including 4 illustrations of the
effect of integrated data processing on office-routine pro-
cedures, government recommendations for co-ordinating
departmental work in this field, and a manager’s guide to
COBOL.

This report should be widely read in office management
and accounting circles. It contains nothing of direct interest
to the mathematician.

H. W. GEARING.

¥202 Iudy 61 U0 1senb Aq 218/ /€/2€2/v//81o1 e/ |ulWwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

