Optimum Time for Multiplication on a Digital Computer

By H. H. Johnson

Methods of multiplication used on serial binary computers are discussed with reference to the

optimum time required on a machine with a cyclic main store.

From this point of view the methods

are shown to be of four main types and the time to be allowed for multiplication in optimum

programming is calculated in a number of cases.

The possible time-saving of reversing the

multiplier and multiplicand is also considered.

1. Introduction

Methods of multiplication on serial binary machines
vary from the standard pencil-and-paper method to
multiplication by a fast multiplier (Bowden, 1953). The
time taken for a multiplication by both these methods
is independent of the arrangement of digits in the
multiplier. For some methods, however, the time is
not invariant, so that for an optimum-coded machine
using a delay-type store it is essential to know the
expected time for a multiplication, so that maximum
time-saving may be obtained, by inserting the next
order in the optimum position.

In a machine of this type each order includes an
indication of the operation to be performed and the
address of the next order; other addresses may be
specified also. Wilkinson (1955) gives a detailed account
of the optimum coding of a 3 -~ 1 address machine
with a three level store. For the majority of operations,
e.g. addition, subtraction, doubling, halving, some
logical orders and magnitude tests, the time taken is
known and fixed for the same operation. Thus the next
order may be placed, subject to availability, so that it
may be called in immediately the previous operation is
completed. Further, if the next order is placed in an
earlier position, it will not be available until after a
complete period of the delay store, and if in a later
position, a certain amount of time will be wasted. For
operations such as multiplication and division, with
variable time for completion, the optimum position for
the next order is such that over all possible times the
expected time is minimized.

It may be necessary in the following methods to allow
time for control instructions, but these are functions of
the overall construction of the computer and, as such,
do not affect the basic time for a multiplication.

2. Constant Time Methods

2.1 Pencil-and-Paper Method

In this method the partial products of the multiplicand
and each digit of the multiplier are formed in turn and
totalled to give the final product. Very few additional
circuits are required, and for any N-digit multiplier the
time taken is constant and is that required for N addi-
tions. This method was used in the optimum-pro-
grammed transistor digital computer built at Man-
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chester University and described by Kilburn, Grimsdale
and Webb (1956). The correct sign of the product was
produced by a device which caused the last partial
product to be subtracted when the multiplier was
negative.

2.2 Use of a Fast Multiplier

For any N-digit multiplier, N ‘“‘and” circuits, N-1
adders and N-1 delay circuits are required to form the
partial products of each digit of the multiplier with each
digit of the multiplicand, which are then totalled in
parallel to form the final product. The time taken for a
multiplication is constant and is only two word times.
This method has been modified in Mercury (L.onsdale
and Warburton, 1956) and other computers, with the
result that a reduction in the number of circuits by 1/k
approximately increases the constant time for a multi-
plication to 2k word times.

3. Variable Time Methods

3.1 The Short-cut Method

This method, which was used on the A.P.E.(X)
computer and the HEC4E computer (Bird 1956), is
similar to the short-cut method used on hand calculators.
Using this type of multiplication no adjustment for the
sign of the product is required (Booth and Booth, 1953).
The digits of the multiplier are examined for changes
from one to zero, and vice-versa, commencing at the
least-significant end. The multiplicand is subtracted
from the shifted partial product at the end of a sequence
of zeros, and added at the end of a sequence of ones.
If the least-significant digit of the multiplier is a one,
it is necessary to consider this as the end of a sequence of
zeros. This difficulty may be overcome by having a
preceding digit preset to zero.

The total time for a multiplication is (r + s) time
units, where r is the number of changes of digit and s
is the number of sequences of either digit of length
greater than one. This assumes that one time unit
must be used to count a sequence and to shift the
partial product the required number of places, and one
time unit must be used to perform the required addition
or subtraction at the end of a sequence.

If P(n,m) and Q(n, m) are the probabilities of m
changes and sequences in an n-digit binary number with
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the two least-significant digits alike and unlike respec-
tively, then

Pin+1,m+1)=4%+P(n,m—+ 1) + 10, m) (3.1.1)
and Q-+ 1,m+ 1) = LP(n, m) 4+ £0(n, m) (3.1.2)

or (2EF — F)P(n, m) = Q(n, m) (3.1.3)
and (2EF — 1)Q(n, m) = P(n, m) (3.1.4)
where

EP(n,m)= P(n-+ 1,m)and FP(n,m) = P(n,m + 1), etc.

Further, if R(n, m) is the probability of m changes and
sequences in (n + 1) digits, when the least significant
digit is always zero, then

R(n, m) = YP(n, m) - YP(n,m — 1) -+ 10Q(n, m — 1)
(3.1.5)

or 2FR(n, m) = (F -+ 1)P(n, m) -~ Q(n, m). (3.1.6)

Eliminating Q(n, n1) between 3.1.3. 3.1.4 and 3.1.6 gives

2FQREF — 1)R(n, m) = [(2EF — 1}(F + 1) + 1]P(n, m)
(3.1.7)

and 2FR(n, m) = [FQE — 1) + F + 1]P(n, m) (3.1.8)
Whence

(4E°F? — 2EF?* — 2EF + F — 1)R(n, m) = 0 (3.1.9)
and writing R(n,m) = 2 nX(n, m) gives

(E*F?* — EF? — EF - F— 1)X(n,m) =0 (3.1.10)

with boundary conditions

X(n,0) =20 3.1.a)
X(n, 1) =1 .1.b)
X, m)=0 (m>n). (3.1.¢)

Values for X (32, m) are given in Table 1.

Therefore 2 "NX (N, m) is the probability of a multi-
plication by an N-digit multiplier taking m time units.
If k time units are allowed for a multiplication in opti-
mum programming, then the expected time 7" (M,N.k)
is given by

k
T(M,N,k)y=Fk Y 2 NX(N, m)

m=1

N
+ (M + k) 2 2 NX(N,m)

m=k+1

(N<M+k+1)

k
=M+ k)y— MY 2 NX(N,m) (3.1.11)

m=1

where M time units is the period of the main store.
If the multiplication order is in address p(i), the address
of the next instruction, as specified in the multiplication
order, will be p(i + k). Thus the next order will be
available in k& time units, if m < k, or in kK + M time
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Table 1

Probability of a Multiplication Time of /7 Time
Units (times 232)

m  X@32,m)=27232,m) m X (32, m) = Z (32, m)

0 0 17 46266655
1 1 18 80159046
2 2 19 130589887
3 33 20 199587733
4 91 21 285303525
5 579 22 379927900
6 1788 23 468904185
7 7183 24 532801020
8 21658 25 552539405
9 67731 26 516942938
10 186494 27 429444381
11 495363 28 309691889
12 1218999 29 187361603
13 2842325 30 89896332
14 6228860 31 30737759
15 12890265 32 5702887
16 25148779

units, if Kk <m < k + M. T(M, N, k) has a minimum
value T(M. N, K) if, for k = K,

AT(M, N, k) >0and VT (M, N, k) <0 (3.1.d)

both differences being with respect to k.

Now
ATM, N, k)= (M +— k +1)

kel
— (M 4+ k)y—M Y, 2 NX(N,m)

m=1

k
=M Y 2 NX(N,m)

m=1

=1 — M2 NX(N,k + 1).
The conditions (3.1.d) therefore become
X(N,k = 1) <2N¥/M and X (N, k) > 2N/M.

Thus the optimum time, K time units, to allow for a
multiplication is such that

X(N,.K)>28M > X(N, K+ 1) (N< M-+ K+ 1).

(3.1.e)

3.11 Cvclic Store with a Small Period

If M is small, then T(M, N, k)
k M-k
=k Y 2 NX(N,m) +((k+ M) X 2 NX(N,m)

m=1 m=k-+1

- (k +2M) g] 2" NX(N, m)

m=M-+k—1
M+k+ 1< N<2M + k4 1)
+k

M
=k +2M)—M 2 NX(N, m)
+1

m=k

k
—2M 3 2 NX(N, m).

m=1
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Hence
AT(M, N, k) =1—2 NM[X(N. M + k + 1)
+ X(N, k + 1]

and the optimum time K is given by

X(N, M + K) 4+ X(N, K) > 2¥/M >

M+ K+1< N<2M -+ K+ 1).

In general the optimum time K is given by

S X(N.K+ iM) =>28M > 3 X(N, K+ 1 = iM)
i=0 i=0

(M - K+ 1< N<(a+1)M-K+1)

3.2 A Modification

If it is possible to avoid using a complete time unit to
count a sequence of similar digits and to shift the partial
product the required number of places, then the time
for a multiplication is r + 1 time units, where r is the
number of changes of digit in the multiplier. The
additional time unit is required to shift and count the
multiplier once.

If S(n, m) is the probability of m changes of digit in
an (n -+ l)-digit number, then

Stn —+ 1, m) = 1S(n.m) + 3S(n,m — 1)  (3.2.1)
or (QEF — F — 1)S(n, m) = 0. (3.2.2)

Writing S(n, m) = 2 "W (n, m) gives
(EF — F — DW(@n,m =0 (3.2.3)

with boundary conditions

Wn,0)=2 (3.2.a)
W(n, n) == 2 (3.2.b)
Win,m)=0 (m > n). 3.2.0)

Equation 3.2.3 may be written (AF — 1)W (n, m) = 0.
Therefore (F — A "YW(n, m) = A (a constant) which
gives
Win,m)y-—A m4 = A~m-Ingd = A-m=2p(n -+ 1)4/2!
=An(n—1). .. (n—m—+1)/m! = AnY/[(n — m)'m!]
whence Wn, my = 2n!/[(n — m)! m!].

Thus the probability of m changes of dizit in an
(N + 1)-digit number, whose last digit is zero, is
2°NY(N, m) = 2-NNUY[(N — m)'m!].

Values of Y (32, m) are given in Table 2.

By the method of 3.11, the optimum time K + 1 to
allow for a multiplication is given by

S YN, K+ iM)=28M =3 Y(N,K+ 1 + iM)
i=0 i=0

(M + K+ 1< N<(az+ DM+ K+ 1).

258

Table 2
m Y (32, m) m
0 1 32
1 32 31
2 496 30
3 4960 29
4 35960 28
5 201376 27
6 906192 26
7 3365856 25
8 10518300 24
9 28048800 23
10 64512240 22
11 129024480 21
12 225792840 20
13 347373600 19
14 471435600 18
15 565722720 17
16 601080390 16

3.3 Modification of the Pencil-and-Paper Method

It is interesting to compare the method of the previous
section with a modified version of the standard pencil-
and-paper method. If the multiplier may be scanned for
the next most significant unit digit, the partial product
shifted and the multiplicand added to the partial product
all in one time unit, then the total time for a multipli-
cation is (m -~ 1) time units, where n1 is the number of
unit digits in the multiplier and one time unit is allowed
for the total scanning. Now the probability of m unit

digits in an N-digit binary number is (m>2 N, so that

the optimum time to allow for a multiplication is
identical with the result of 3.2.

3.4 The Halving and Doubling Method

In the binary scale this method becomes identical with
the method of 2.1 (Booth and Booth, 1953). When the
binary multiplier is halved, the remainder is one, if and
only if the least-significant digit before halving was one;
in this case the multiplicand is added to the partial
product. If the remainder is zero, then the least-
significant digit must have been a zero and the multi-
plicand is not added to the partial product. In either
case the multiplicand is doubled and the process repeated.
If a sequence of zeros may be detected, the time for a
multiplication, by either method, may generally be
reduced, depending on the structure of the multiplier,
since when the remainder is zero no addition is required.
If r is the number of ones and s the number of isolated
zeros and sequences of zeros in the multiplier, then the
time for a multiplication is (v +- s) time units.

If L(n, m) and M(n, m) are the probabilities of 17 ones,
isolated zeros and sequences of zeros in n-digit numbers
ending in zero and one, respectively, then

Lin,m)=%L(n— 1,m + Mn—1,m—1) (3.4.1)
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and

Mmnm=+Lin—1m—1)+IMm—1,m—1) (3.4.2)
or (2EF — F)L(n, m) = M (n, m) (3.4.3)
and (2EF — )M (n, m) = L(n, m). (3.4.4)

Further, if N(n, m) is the probability of m ones,
isolated zeros and sequences of zeros in any n-digit
number,

N(n, m) = + L(n, m) + 1M (n, m). (3.4.5)

Eliminating L(n, m) and M (n, m) between 3.4.3,
3.4.4 and 3.4.5 gives

(4E*F*> — 2EF? —2EF +F — 1) N(n, m) = (3.4.6)
Substituting N(n, m) = 2 "Z(n, m) gives
(E*F? — EF? — EF + F — 1)Z(n, m) (3.4.7)
with boundary conditions
Z(n,0) =0 (3.4.a)
Zn, 1) =1 (3.4.h)
Zn,m) =— 0 (m > n). (3.4.0)

By comparison with 3.1.10 and associated boundary
conditions 3.1.a, 3.1.h and 3.1.c, we see that Z(n, m) =
X (n, m); thus the optimum time for a multiplication, K,
is the same as that of the short-cut method given in
3.1 and 3.11.

3.5 The Modified Short-Cut Method

This process is described by Lehman (1958), who
gives an earlier verbal reference. Basically a pair of
consecutive digits, d(/) and d(i -+ 1), where d(i + 1) is
more significant than (i), of the multiplier are examined.
If these digits are equal, no alteration is made to the
partial product, and the pair of digits d(/ + 1) and
d(i -+ 2) are examined. If the digits examined are
unequal, the multiplicand is subtracted from or added
to the partial product if (i) is greater or less than
d(i + 1), respectively, and the digits d(i + 2) and
d(i + 3) are examined. Lehman shows that no adjust-
ment for the sign of the product is required. Tocher
(1958) proves that this modified ternary representation
of the binary number

S d(i)2 in the form ¥ (- )e(i)2,

i=0 i=0

where d (i), e(i), s(i) =— 0, 1. i=20,1, 2, ..., gives the
minimum digit representation, i.e. when

eli + 1) = {d(i + 1) — d(){1 — e(i)}

and s(i) = d(i + 1). Two cases will be considered.

3.51 First Modification (Third Method)

The total time for a multiplication is (r -+ s) time units
where r is the number of pairs of unlike digits causing
an addition or subtraction, and s is the number of
sequences of like digits of length greater or equal to
one, not included in the pairs of digits.
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Table 3
m U (32, m)
0 0
1 |
2 3
3 68
4 300
5 2496
6 11900
7 63424
8 274464
9 1131616
10 4140752
11 13827648
12 41363712
13 110319616
14 257856768
15 516163584
16 851094528
17 1080331776
18 921956608
19 417364992
20 75254784
21 3784704
22 23552

Then, if A(n, m) is the probability of m pairs and
sequences in (n + 1) digits, where the least-significant
digit is always zero,

(QE*F? —2EF2 — 2FF + F — 1)A(n,m) — 0O
Writing
Umn-+3,m-+2)y—Umn-+2,m-=+2)—2U@n + 1,

(3.51.1)

A(n, m) = 2 "U(n, m) gives

m-= 1)y -=2U0m,m -+ 1) —2Un, m) — 0 (3.51.2)
with boundary conditions

U(n,0) =0 (3.51.a)

U(n, 1) | (3.51.h)

U(n.m) = 0{m > [(2n — 3)/3]} (3.51.¢)

Values for U(32, m) are given in Table 3.

Hence, by the method of 3.11, the optimum time. K.
to allow for a multiplication is given by

> UN,K+iM)=28NM >3 UN, K-+~ 1+ iM)
i—0

i=0

(eM 4+ K+ 1< N <(ax+ DM+ K1)

3.52 Second Modification. (Fourth Method)

If, as in 3.2, a complete time unit is not necessary to
count a sequence of similar digits and to shift the partial
product, then the time for a multiplication is r -+ 1
time units, where r is the number of pairs of unlike digits
causing an addition or subtraction.

If 7(n, m) and J(n, m) are the probabilities of /m unlike
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Table 4
m V' (32, m)
0 1
1 63
2 1800
3 30856
4 353808
5 2864160
6 16839680
7 72864000
8 232581888
9 543921664
10 916844544
11 1083543552
12 859955200
13 428654592
14 120324096
15 15597568
16 589824

pairs in an (n + 1)-digit binary number with, respec-
tively, a sequence or a pair at the most significant end,
then

I(n—1,m +1)=YIn,m—+ 1)+ Jn,m—+ 1) (3.52.1)

and Jn+ 1, m -+ 1) = $I(n, m) (3.52.2)
or (2E — )I(n, m) = 2J(n, m) (3.52.3)
and 2EF)(n, m) = I(n, m). (3.52.4)
Further, if B(n, m) is the probability of m pairs in
(n —+ 1) digits when the least-significant digit ‘s always
zero, then
B(n, m) = I(n, m) + J(n, m). (3.52.5)
Therefore (2E*F — EF — 1)B(n, m) = 0. (3.52.6)

Writing B(n, m) = 2 "V (n, m) gives
Vin =2 m-—1) —Vmn+1.m+1)—2V(n,m) =0
(3.52.7)
with boundary conditions
Vn,0) =1 (3.52.a)
V2n -+ 1,n) = 2" 1 (3.52.5)
Vi(n,m) = 0{m > [(n + 2)/2]}. (3.52.¢)

Values for V/(32, m) are given in Table 4.

Hence, by the method of 3.11, the optimum time,
K -1, to allow for a multiplication is given by

Y V(N K+ iM)=>28M >3 V(N,K + 1 +iM)
i=0 i=0

i= i

(M + K+-1< N<(a+1)M+K=+1).

4. Selection of Multiplier

It has been shown that in some methods of multipli-
cation the time taken depends solely on the arrangement
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Table 5
Optimum time for the Multiplication of two 32-digit
Binary Numbers
MULTIPLIER UNSELECTED MULTIPLIER SELECTED
FIRST SECOND FIRST SECOND
METHOD METHOD METHOD METHOD
(3.1 3.4) (3.2 3.3) (3.1 3.4) (3.2 3.3)
M K K M K K
8 3 1+ 1 8 1+ P 1+ P+1
16 12 3+1 16 10+ P 24+ P+
32 29 20 + 1 32 28P 19+ P+ 1
64 30 21 41 64 29+P 20+P+1
128 30 2241 128 29+ P 21+ P-+1
THIRD FOURTH THIRD FOURTH
METHOD METHOD METHOD METHOD
(3.51) (3.52) (3.51) (3.52)
M K K M K K
8 2 4 +1 8 1+ P 4 - P+1
16 3 13+ 1 16 24P 134+ P+ 1
32 19 13+ 1 32 18-+ 13+ P41
64 20 14 41 64 18+ P 13+P+1
128 20 14+1 128 19-+P 13+ P+1

of digits in the multiplier. It would, however, be
feasible to use the multiplicand as the multiplier, if the
multiplication would thereby be completed more quickly.
This would involve a small number of additional cir-
cuits, and a certain number of time units would have to
be allowed for comparing the two numbers.

If this choice is possible and P time units are needed
to select the best number as multiplier; then if 2 "C(n, m)
is the probability of a multiplication by an n-digit
number taking m time units, the probability of a multi-
plication of two n-digit numbers taking s time units is

2 2"D(n, m) = 2 2'{C(n, m)( Y, C(n, f))

i=m

+ C(n, m)( é C(n, i)):l.

i—m 1

Hence, following 3.11, the optimum time to allow for
a multiplication of two N-digit binary numbers is K 4 P
or K+ P -+ 1, according to whether additional time is
required to shift the partial product, where K is such that

DN, K + iM) > 2> /M > ¥ D(N, K + 1 -+ iM)
=0 i=0

1

(M +- K+ 1< N<(a+ 1M+ K-+1)

5. Discussion

Variable time methods of multiplication have been
seen to be of four types. By allowing the optimum time
for a multiplication, instead of N time units, where N
is the number of digits in each number, the percentage
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time savings on the average, for N = 32, are 9-4, 34-4, The prior selection of the “best” multiplier is shown
40-6* and 56-2 by the first, second, third and fourth to be of no benefit, except possibly in three of the cases
types, respectively. The last figure represents a very considered, and only then if the choice can be made in
remarkable saving in machine time, the middle two are one time unit.

well worth consideration, whilst even the first saving
would be useful, particularly in calculations involving a
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The author wishes to thank Dr. A. D. Booth of

*33Toch<}r c([{oc. cit.)dshows for lardge Nda diregt saving of diglits Birkbeck College for his advice and encouragement,
of 339 of digits and a corresponding direct decrease in multi- .
plication time; the further decrease is due to the optimal strategy and Dr. J. G. . Freeman of Bradford Institute of
employed in positioning the next instruction. Technology for his continued support.

References

BowbEN, B. V. (Ed.) (1953). Faster Than Thought. London: Pitman & Sons Ltd., p. 56.

LonspaLE, K., and WARBURTON, E. T. (1956). “‘Mercury: A High Speed Digital Computer,” Proc. I.E.E., Vol. 103, Part B,
p. 2093 M.

BIrD, R. (1956). *“The HEC4E Computer,” Proc. I.LE.E., Vol. 103, Part B, p. 2052 M.
BooTH, A. D., and BooTH, KATHLEEN H. V. (1953). Automatic Digital Calculators. 1London: Butterworths, pp. 44-6 and 56-8.

KiLBURN, T., GrimsDALE, R. L., and WEeBB, D. C. (1956). ‘A Transistor Digital Computer with a Magnetic-Drum Store,”
Proc. ILE.E., Vol. 103, Part B, p. 2043 M.

LEHMAN, M. (1958). *‘Short-Cut Multiplication and Division in Automatic Binary Digital Computers,” Proc. 1.E.E., Vol. 105,
Part B, p. 2693 M.

TocHer, K. D. (1958). “Techniques of Multiplication and Division for Automatic Binary Computers,” Quar. Jour. Mech. and
Applied Maths., Vol. XI, p. 3.

WILKINSON, J. H. (1955). “‘An Assessment of the System of Optimum Coding used on the Pilot Automatic Computing Engine
at the National Physical Laboratory,” Phil. Trans. Roy. Soc., A.946, Vol. 148, pp. 253-81.

Forthcoming Publication of the Proceedings of the 1960 PICC Symposium, Rome

A Symposium on the numerical treatment of ordinary The Symposium was attended by about 200 mathematicians
differential equations, integral and integro-differential equations from the following countries: Austria, Belgium, Czechoslo-
took place during the week of 20-24 September 1960 at the vakia, Finland, France, Germany, Greece, Hungary, Ireland,
Mathematical Institute of the University of Rome. This Israel, Italy, Japan, the Netherlands, Poland, Rumania,
Symposium was organized by the Provisional International Sweden, Switzerland, United Kingdom, United States of
Computation Centre (PICC). America, Yugoslavia.

The Symposium opened with a report delivered by Of a more general and philosophic nature was the lecture
Professor Walther of Darmstadt (Germany) on the methods delivered by Professor Lanczos (Dublin) on the possibilities
presently employed in the treatment of integral and integro- offered by modern electronic computers, closely allied with
differential equations. The different methods are classified a penetrating criticism of approximation processes and con-
in categories according to the nature of the problem, the vergence caprices.
type of solution desired, and the numerical and/or electronic The final session was devoted to an outstanding speech by
techniques available. Dr. Genuys (Paris) then presented a Professor R. Courant of New York, who explained his per-
second report, also very complete, on the methods of treating sonal conclusion on the requirements of scientific research
ordinary differential equations. Like Professor Walther, in this highly technical century, and the problems of training,
Dr. Genuys examined each method in relation to the practical at the highest level, young specialists in the field of automatic
possibilities of processing by modern electronic computers. computation.

After this introduction, more than 50 specialists, divided The Symposium, on the whole, presented a fairly complete
into three study groups (Section I: Ordinary differential picture of the actual state of this important section of mathe-
equations; Section II: Integral and integro-differential matical sciences. Its success was largely due to the careful
equations; Section 111: Applications), spoke on the particular preparatory work furnished by the Italian representative to
problems with which they dealt and how the practical and the PICC, Professor Aldo Ghizzetti, Rome.
theoretical difficulties which they encountered had been The Proceedings (about 700 pages) will be published by
overcome. Birkhduser Verlag (Basel/Stuttgart) early in 1961.
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