A Comparison of some Methods of Calculating Covariance
Functions on an Electronic Computer

By 1. J. Good
Let a,, ay, - « . ay; by, by, -« ., by be 2N numbers, each of at most v binary digits. We wish
to calculate the 2M -~ 1 ““lagged products’’
N-s
g = Xah s (s =M, —M-~—1,..., M),
r=1
for some M < N — 1. We suppose that [V is large, and M not too small, and that v is con-
siderably smaller than the ‘‘word-length’’ of a computer. A comparison is made of three
methods of organizing the calculation, in each of which several numbers are packed into a
single word.
Introduction A, = a, | +a,. 2"+ a2
Let ay, @y . - ., an; by, by ..., by be 2N numbers, each (r=20,1,2,),
of at most v binary digits, i.e. each is selected from ,, e _
LV — . 1 12 1 [uw(e—Dio
0.1,... 2"— 1. We wish to calculate the 2M + 1 By = by 27+ bugp-i2 Fee by 2
(u—0,1,2,...),

“lagged products”
N-—s
e, Yab. ., (s=-M —M-=1...M),
r=1

for some M < N — 1. We suppose that N is large,
and M not too small (see later), and that v is a small
integer. Such calculations arise, even with v = 1, in
approximating the covariances of stochastic processes.
(See, for example, Lomnicki and Zaremba, 1955). In
fact, v will be assumed to be considerably less than the
word-length, w, of the computer, so that it is natural to
ask what advantage can be taken of the packing of
several v-bit numbers into a single word. Three methods
of doing this will be considered.

Method 1 tries to take full advantage of the existence
of the ordinary multiplier of the computer. Many
electronic computers have expensive multiplying com-
ponents in which much work is done in parallel, and it
seems a pity to waste this large capital investment unless
one is forced to do so. In this method both a’s and b’s
are packed into words and these words are multiplied
together. The method is an extension of a known method
used on desk calculators and tabulators. (See, for
example, Willers, 1947.) In Method 11, several a’s are
packed into a single word, and at any time are multiplied
by a single one of the b’s. This method is logically
simpler than Method I, but turns out to be slower. In
both these methods it is necessary to interleave the
packed numbers with zeros in order to avoid embarras-
sing carries. Method III is appropriate mainly for the
case v = 1, and makes use of “logical” instructions.

The conclusions of the paper are stated at the end.

I am indebted to Mr. F. Steel for some useful dis-
cussions while preparing this paper.

Method I

Take some integer p, where p > v; let w = pu + o
(0 < o << w); and let

262

so that A, and B, can be regarded as polynomials in 2%
of degree (p — 1), except that B, contains an extra
factor of 2°, i.e. a shift of o places to the left. A, can
be described as the result of packing p of the a’s together
into one word, each segment being of length u, so that
each of the a’s is preceded by pu — v zeros. There are
in addition o “wasted” zeros in the ¢ most significant
places. Similarly B, packs p of the b’s, with the wasted
zeros in the least significant places. and also the order
of the suffixes is reversed in B,,.

When the product of 4, and B, is formed, the result,
in the double-length accumulator, can be regarded as a
polynomial in 2* of degree 2(p — 1), provided that
there have been no embarrassing carries (i.e. the coeffi-
cients are all less than 2% after the multiplication).*
A sufficient condition is that

2% = (27 — 1)%p. (1)

It will be observed that the product 4,B, has “wasted”
digits in the o least significant places and also in the
u + o (not o) most significant places of the double-
length word, and it has one of the segments of length u
bang up against the left of the least significant half of
the double-length accumulator. Thus none of the
segments is divided between the halves of the double-
length accumulator. The coefficients of powers of 2*
in A,B, are seen to be equal to segments of the required
sums Xa,b,. .. It can also be seen, most easily by a
“geometrical” argument, that in the multiplication of
all 4, by all B,, each product a,b, occurs precisely once.
In Fig. 1, the required sum, c,, is equal to the total of a
single “diagonal” of the whole array, and this is the
sum of ‘“diagonals” of the various squares. Moreover,
half of these “sub-diagonals” are placed in identical
places within their square, and the other half in the
complementary places. Thus, we can give a simple rule

* Strictly, this polynomial is multiplied by 2°.

¥202 Iudy 61 U0 1senb Aq £26//£/292/¥/¢/8101e/|ulwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

Covariance Functions on a Computer

for defining the ¢’s in terms of the C’s defined by
Cs = %ARBR, S-

Fig. 1 illustrates the case N =32, p=2_8. Each
of the sixteen sub-squares contains p? = 64 cells.
Within each cell is a product a,b, (r, ¢ = 1, 2, . . ., 32).
The shaded cells form a “diagonal” of the whole array,
and the sum of the entries in this diagonal is
cs == abg + asb; + . .. -+ aysb3,. This is the sum of seven
contributions, one from each of the sub-squares
(A1, B)), (Ay, By), (Aa, By). (As, By), (As, Bs), (A5, By
and (A4, B,). These contributions are, respectively, the
coefficients of 22%, 210w 22u 210u 220 2100 221 jn the
polynomials in 2* which represent the seven products
AB,, A\B,, . .. A;B,. More generally, the contribu-
tions would be coefficients of

zfuﬂ 2((4‘(7).'/-“ 2'-:L’ 20+ T)!L’ .

or

2 260w 2w 2GR L (p< T < 2p — 1)),

in which case the products would be 4B, 4,B,, 4,B,,
AsBs, . ..

It will be seen from Fig. 1 that, for example, the
products A,B,, A>B3, A3B,, . . . (or any other products
lying in a diagonal of sub-squares) can be added flat,
provided that there are enough zeros to avoid undesirable
carries. When k products A4,B, are added together,
there will be no undesirable carries provided that

kp(2r — 1> < 24 — 1, ®)

a condition that swallows up condition (1). Therefore

we can define k as
2% — 1
k= |—=——51, 3
@) ©

when [x] is the largest integer not exceeding x. The
condition (2) can be expressed by saying that & > 1.

After k such products have been added into the
double-length accumulator, the 2p — 1 coefficients of
powers of 2% must be “distributed,” in order to avoid
undesirable carries. By “‘distribution’ is meant that the
coefficients are extracted, and added into suitable loca-
tions, corresponding to the various values of s. The
coefficients can each be obtained by the logical operation
of “masking.” There are 2p — 1 such masking opera-
tions required in each of the distributing operations.
Also some shifting would be necessary, but it can be
done rather rarely, except for the segment on the extreme
left of the right-hand half of the accumulator. The
2p — 1 additions are liable to be minimum-time for
computers of variable addition time, since the addends
each have only u digits at the most.

The number of sub-squares is N 2/p2, but only about
MQN — M)/p? are relevant if M is reasonably large
compared with p. In estimating the running time we
may ignore the input and packing, including the reversal
of order of the b’s, since this work is merely proportional
to N. (But see the discussion below under “Inadequate
store.””) 1 shall also ignore ‘“‘housekeeping” instructions

263

B’, Ba B 3 34-

L 23 46 66 7 8 01 1213 i s fly 187 30 1 22 28 2fas 26 U 28 49 30 3 22

e

a

i |

>
DY LR R RN

>
»

&

F

b

-

3

®

-

>

w
e

n
R

1

¥

3

£

>
-3

£
2

w
o

»

w
=

Fig. 1. Thecase N —32,p 8

on the assumption that “‘alarm-clock™ facilities are

available for counting (see the Appendix). If these

facilities are not available, the following estimates will

require substantial modification, but, for the sake of

simplicity, I shall not discuss these modifications in detail.
The total running time will be approximately

MQ@N — M){[i 2p(t5 + 13)}
1 5

p’ k

if full alarm-clock facilities are available, where #; = time
for a multiplication, with the product added into the
double-length accumulator; #, = minimum time for an
addition; ¢; = time for a masking operation.

Strictly, there is a little more time required for shifting,
but it will be ignored here, since it is necessary all the
time only for the numbers in the most significant seg-
ments of the words. 1 have in any case been a little
unfavourable to this method since I have used the factor
2p instead of 2p — 1.

For any given values of v, w, t,, t,, t;, we can choose
p so as to minimize the time, (4). Note that for some
consecutive values of u, p (and therefore k also) has a
fixed value; naturally we should select the smallest of
such values of u.

4)

Method II

]Y; ap. ... ay; by, ..., by;v;and w; are the same
as in Method I, but u, p, o, k are to be replaced by
w, p’, o’y k', where

w=pp+o (0<o <p) (5)

20 > (2Y — 1)2; (6)
2% —1

SR @

¥202 Iudy 61 U0 1senb Aq £26//£/292/¥/¢/8101e/|ulwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

Covariance Functions on a Computer

There are about M (2N — M)/p’ multiplications, and
1/k" of these will be ““distributing” operations. Hence,
again assuming full alarm-clock facilities, the running
time will be approximately

M(2N—M)|:

®)

’

P

where ¢ is the time for multiplication by a u-bit word,
and adding into a one-word accumulator.

o P @].

T k’

Method III

This method is intended primarily for the case v = 1.

We pack the @’s and b’s with p = 1 and with the b’s
in direct order. We then use “‘logical” (i.e. bit-by-bit)
multiplication. The effect is to produce w relevant
products, corresponding to a piece, w cells long, of
a diagonal of Fig. 1. The I’s in the product can
then be added together by means of a “‘sideways-add”
instruction, which counts the number of I’s in a word. In
the whole program there would be about M (2N — M)/ w
logical multiplications, the same number of ‘‘sideways-
adds,” and the same number of minimum-time additions.
Therefore the running time would be about

MQ2N — M)
—— (s + s+ 1),)]
w

where t, = time for a logical multiplication; 5 = time
for a “‘sideways add.”

Let us consider a hypothetical machine for which
Method 111 could be applied with v =

The logical multiplication would have to be replaced
by what may be called segmented multiplication, in
which two-bit numbers (‘“‘dibits’’) in each of w/4 seg-
ments (‘“‘tetrabits’) of one word would be multiplied by
the corresponding ‘““dibits”” of another word, the w/4
resulting products (tetrabits) being packed in the single-
length accumulator. (Cf. Good, 1957.) The sideways-
add instruction would need to be applicable to tetrabits
instead of to just monobits, as it is in most existing
computers. If these facilities were available, Method 111
with v = 2 would take just about four times as long to
run as Method Il with v = 1.

Numerical Estimates of Times

The estimates of times have so far been given alge-
braically, and they would vary considerably from one
machine to another. But, in order to make the results
more concrete, some specific figures will now be assumed
for t,, t5 . . Let us assume w — 48 and (in
microseconds)

t, = 192, t, = 36, t; = 60, 1, = 60, t5s = 60,
t{=192if p* > 6, t{ = 108 if u < 6.

. f5.

(These figures are probably about right for Orion.)

We then have the following table, in which each entry
is to be multiplied by M (2N — M) to give the approxi-

264

mate running time in microseconds. (‘“‘Alarm clocks”
are assumed, and if not available some recalculations of
these estimates would be necessary.)

Column 11" gives the times for Method II if 7| = 1,,
even when u < 6.

N\ Method

AN I 11 I 1
N
v > —
1 6 14 3-25 25
2 11 27 13 41
3 14 49 - 49
4 22 53 -— 53

Inadequate Store

Finally we may consider the effect of the store’s being
not large enough to handle all the material in one go.

Suppose that the largest value of N that could be taken
at once is No. Thus the machine can cope with Ng
multiplications without transfers to and from the store.
Hence the total number of transfers must be of the
order of M(2N — M)/N§. 1If N, is large, so that the
number of instructions in the program is unimportant,
then this estimate is independent of whether we are using
Method I, 11 or I1I. Therefore, if there is an inadequate
but fairly large store, our main conclusions will not be
much affected, although the ratios of the running times
for the three methods will be made closer to 1.

Conclusion

Method 111 is best when v = 1, and Method | when
v > 2, at any rate if the “‘alarm clock” instruction is in
the computer. If the fast store is small a more careful
analysis would be required, or the programs would
even need writing in full, in order to estimate the running
times.

Appendix : Alarm-clock Instructions

When we wish to repeat a loop a certain number of
times, one method is to add or subtract 1 into a counter,
and to test after each loop whether this counter has
reached some value such as zero. We, so to speak, must
keep one eye on the clock. If the loop is a very short
one this wastes an appreciable proportion of time.
It is, therefore, perhaps desirable that an electronic
computer should contain several ““alarm clocks.” These
would be registers somewhat analogous to the index
registers or “B tubes.” Each instruction would have,
say, three spare digits, enough for seven alarm clocks
and a null. An alarm clock would contain a counter
from which 1 was subtracted when an instruction was
obeyed in which that alarm clock was specified. When
the counter in the alarm clock was reduced to 0, the

¥202 Iudy 61 U0 1senb Aq £26//£/292/¥/¢/8101e/|ulwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

Covariance Functions on a Computer

control would jump to the instruction at location x,
where x is a number stored in another part of the alarm
clock. At location x, a subroutine would start which
would reset parameters, including those in the alarm
clock.

The general effect of having alarm clocks would be
that work done in counting out loops would be done in

References

Lomnickl, Z. A., and ZAREMBA, S. K. (1955).
p. 243.

parallel with the rest of the calculation by means of
additional circuitry, so that we would be trading cir-
cuitry for time. Part of this extra circuitry is the extra
digitry. In a serial machine, the three extra digits per
word would involve a proportional loss of time of 3/w
in all machine programs, so that the case for alarm-clock
instructions is better for parallel machines.

“Some Applications of Zero-one Processes,” J. Roy. Stat. Soc. Ser. B, Vol. 17,

WILLERS, F. A. (trans. by R. T. Beyer) (1947). Practical Analysis (Dover, New York), p. 55.

Goop, 1. J. (1957).

“Variable-Length Multiplication,” Computers and Automation, Vol. 6, p. 54.

Book Review

Automatic Language Translation, by A. G. OETTINGER
(Harvard), 380 pages, price not given.
Automatic Translation, by D. Yu. PaNov (Pergamon),
73 pages, 2ls.

The best chapters of Dr. Oettinger’s book are those describing
the practical work done under his direction over the past
few years. The Harvard group decided that a pre-requisite
for automatic translation research was a thoroughly reliable
automatic dictionary, to which reference would be made by
the program for syntactic and other information about the
words of an input text; they felt that, in the experimental
stages of a translation program, so many unforeseen troubles
would arise that progress would be almost impossible unless
the researcher could have complete confidence in the reference
stage of his program. In particular, since, in common with
most groups in the U.S.A., they were proposing to work on
Russian, it was necessary to develop very reliable methods
for removing the endings of inflected Russian words, which
could then be used with confidence that no unexpected
anomalies would arise. In order to achieve this, the
Harvard group were obliged to set up a new classification
of Russian words, of such precision that the paradigm could
be worked out exactly and not merely roughly from a know-
ledge of the classification of a word. The full paradigm was
then produced mechanically, and each member of it sub-
jected to the ending-removal algorithm. When each word
was processed it was then possible to make an exhaustive
test for failures and anomalies, and then to remove or note
any that arose. All this work is thoroughly described, and
anyone proposing to work in problems of mechanized
linguistics would do well to study the Harvard experience at
an early stage.

I am not so clear as to the usefulness of the remainder of
the book. For instance, the chapter on the structure of
signs concludes with an interesting discussion of the Cyrillic
Unityper used at Harvard. Is it necessary to discuss set-
theory, isomorphisms, use-mention, the identity of indis-
cernibles, the nature of models, the type-token distinction,
and other such topics of college philosophy courses in order
to understand this device, or indeed the program as a whole?
While I would not deny that topics like these may come up
in the ultimate analysis of language, Dr. Oettinger does not
reach a point where they emerge and, in a work subtitled

G

265

“Lexical and Technical Aspects,” there would be no reason
to expect him to refer to them. Why, therefore, was the
material put in?

Professor Panov’s book is the reverse of Dr. Oettinger’s in
almost every way. It describes the work on automatic trans-
lation, mostly English—-Russian, done at the Institute of
Precise Mechanics and Computing Technique and the
Institute of Scientific Information of the USSR Academy of
Sciences since 1955. It also discusses experiments now under
way on the automatic translation of Chinese to Russian.
Professor Panov starts with a discussion of the mechanism
of ordinary (human) translation, and goes on to show how
his workers have tried to represent in a program the various
stages he describes.

In working from English, he had much fewer inflectional
problems to deal with than Dr. Oettinger, and the dictionary
compilation and reference methods are accordingly simpler.
He has, however, to extract information about case in order
to be able to construct the Russian output, and case infor-
mation is not easily obtainable from English, which expresses
it mostly by prepositions and word-order rules. His analytic
procedures are all expressed very neatly as choice structures.
For example, in the choice structure for English nouns, we
find “5(6, 13) Test preceding word for ‘let’.”

This means that this is test 5; with a positive answer we
proceed to test 6, with a negative answer to test 13. Words
which have more than one Russian equivalent are given, as
part of their dictionary entry, a special choice structure for
selecting the right rendering. In effect, the dictionary con-
tains a special subroutine for each recalcitrant word. This
suggests that Panov believes that such words are something
of a rarity; I cannot believe that this is so, and I fear that the
program may become overburdened with large, rarely used
choice structures. However, when the program has been
extensively tested the answer will be known.

Professor Panov’s book has been well translated, and is.
probably on account of its short length and absence of frills,
easier to understand than most accounts of experimental
automatic translation programs.

Neither of these books should be omitted from the library
of any computing laboratory where linguistic applications of
computers are carried on or contemplated.

R. M. NEEDHAM.

¥202 Iudy 61 U0 1senb Aq £26//£/292/¥/¢/8101e/|ulwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

