A Least Squares Surface Fitting Program

By J. H. Cadwell

A program designed to fit a bivariate polynomial to a set of z values specified at points of a rect-

angular grid in the (x, y) plane is described.

It uses the method of orthogonal polynomials,

providing a detailed guide as to which polynomial terms need be included.

Introduction

This note describes a Mercury Autocode program
prepared at the Royal Aircraft Establishment. It fits a
function f(x, y) to values of a variable z specified at
points of a rectangular grid in the (x, ) plane. The grid
spacing need not be uniform in either direction, and
unequal weights can be allotted to rows, to columns, or
to both. While the set of values will usually be complete,
an iterative facility deals with the case where some are
unspecified.

The function used is a bivariate polynomial, and the
method discussed by Forsythe (1957) is used to deter-
mine its coefficients. Clenshaw (1960) has recently
discussed a modification of the method using Chebyshev
polynomials; this program uses the basic orthogonal
forms. In the case of equally spaced points the ortho-
gonal method has been widely used for curve fitting (e.g.
Fisher and Yates, 1957). DeLury (1950) has also
applied it to fitting a surface. The method offers distinct
advantages in curve fitting, and it is the purpose of this
note to show that, when fitting a surface, these advantages
are still more pronounced.

It is well known that the normal equations that arise
in the usual form of polynomial fitting are very ill-
conditioned; the orthogonal method, however, leads to
a set of simple equations. The other main advantage
lies in the step-by-step nature of the process, and the fact
that it provides a measure of the improvement resulting
from each new term included. Kendall (1951) gives an
algorithm for dropping a term, or adding a new one, in
the standard method. However, it is too involved to be
of much help when many possible terms can be included.

Let the maximum degree of x that occurs in the
polynomial be 7. We have to select integers j(i) for i
from O to ¢ so that the coefficient of xi is of degree j(/) in y.
It is natural to make the restriction

J@) = j(i + 1)

or perhaps the more stringent

(1)

J + i = constant.

The program first fits all terms up to degree 8 in x and »
separately, and finds the reduction in the sum of squares
of residuals due to each of the 81 possible coefficients.
The sum of these 81 quantities plus the sum of squares
of residuals equals the sum of squares of the z values.
They are described as components of the sum of squares,
and they serve to indicate which terms are necessary,
and which make only a trivial contribution to accuracy
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of fit. This information, together with a knowledge of
the desired accuracy in fitted values, enables the best
choice of polynomial terms obeying restriction (1) to be
made. The program is then run again with the initial
data tape suitably modified. It now calculates the chosen
polynomial coefficients, and the residual values, i.e. the
discrepancies between the original data and values
predicted by the fitted function.

An Illustrative Example

As outlined above, the program has two quite distinct
stages. Let there be m values of x and n values of y.
The first stage fits all possible terms up to degree u in x
and v in y, where

u—min (8, m — 1)
vt =min(8 n — 1).

It then prints the sum of squares of residuals, and a
table giving the reduction in the sum of squares of the
original values for each of the (u + 1)(¢ + 1) possible
orthogonal components.

The following example illustrates the method, Table 1
being fitted by the first stage up to degree 4 in x and
8 in y. It is usually advisable to determine a polynomial
in (x — x) and (y — ¥) rather than in x and v, as this
greatly reduces the loss of significant figures in evalua-
ting the fitted polynomial. Thus, in the present insta nce

Table 1

Function Values

PNX 0 20 40 60 80
3 \\
4-0 252-8  255-6  257-7 259-4 260-4
4-1 255-8  259-2  261-7 263-7 265-2
4-2 256-1 260-2  263-2 265-7 2678
4-3 252-6  257-6  261-5 264-6 267-3
4-4 246-8  252-7 256-9 260-6 263-6
4-5 239-6  246-2 250-6 254-3  257-4
4-6 231-8 238-6 243-5 247-0 250-1
4-7 223-3  230-6 235-6 238-9 241-8
4-8 ! 214-6  222-1 227-0 230-5 233-1
4-9 | 205-6 213-4 218-3 221-6 2239
|
5-0 E 196-3  204-3 209-3 212-4 2146
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Table 2
Components of Sum of Squares
POWER OF Xx
POWER OF y |— _ _
0 1 2 3 4
0 3248, 6 1-588, 3 5-120, 1 1-657, 0 = 2630, 2
1 1669, 4 7-400, 1 8-365, o 4561 -1 1-875, 3
2 2-120, 3 2-016, 1 1 325 —1 1-462, —2 3-264, —5
3 1-855, 2 1-492, —2 6-927, 2 1-576, —4 1-228, —3
4 2-054, 0 1-031, 0 2:497, —6 6-853, —4 5-115, —4
5 1-708, o 2266 —1 2:-637, —3 6-160, —3 1-669, —2
6 7-209, —1 ) 1-030, —4 6-623, —4 8-386, —4 1-353, -2
7 4-507, —2 8-086, —2 9-183, —5 1-126, —3 7-823, —3
8 | 2-465, —3 2-143, -2 5-067, —3 7-845, 4 2-036, —2
Sum of squares of residuals, 4-090, —2

a polynomial in x, y would require coefficients correct
to 10 significant figures to avoid rounding errors greater
than O-1 in its evaluation. With the transformed
variables the same accuracy is attained with coefficients
accurate to 6 significant figures. The program gives
warning when rounding errors become serious.

Table 2 illustrates the results of stage 1. The floating-
point specification of numbers is such that a, b implies
a.106. It will be seen that fitting up to degree 4 in x
and 8 in y gives a sum of squares of residuals of 0-041.
We can also deduce the larger sum of squares of residuals
that will arise if fitting is carried out to lower degrees
in x and .

Thus, if we consider fitting only powers lying above
the dotted lines, the sum of squares of residuals becomes
0-041 plus each of the terms omitted, giving the quantity
0-381. A polynomial

t J(i)
DD aij(x —X)i(y — y)
i=0 j=0
where we use the values
t=3, j0)y==6, j)=5 j2) =2 j3) =1,

will correspond to the dotted lines. After fitting in terms
of the corresponding orthogonal components, these are
multiplied out and coefficients collected up. The result
is obtained from stage 2 of the program. The data tape
for this second stage will be as for stage 1, but with the
numerical values of 7 and the j’s added. The results are
given in Table 3.

The choice of the dotted lines is dictated by the
following considerations.

(1) jO) = j(1) > ... > j(®).
(2) The sum of squares of residuals should be as

G*
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small as possible consistent with a given total
number of coefficients.

When dealing with data subject to random effects the
statistician would use a further criterion. This depends
on the mean square residual defined as the sum of
squares of residuals divided by mn — (u -+ 1)(v + 1).
Individual terms in Table 2, smaller than two or three
times this quantity, would be disregarded, as far as
consideration (1) above allowed.

It will be seen that the maximum residual for each of
the eleven y values is also tabled. An alternative print-
out gives all residuals, should these be required.

Residuals are evaluated directly from the final poly-
nomial and, should they be affected by rounding errors,
this fact will appear from the incompatibility of the sum
of squares of residuals and the check value. This latter
quantity is found independently, and is not affected by
the loss of significant figures that may occur when sub-
tracting nearly equal quantities in polynomial evaluation.

Provided the listed residuals are acceptably small, a
discrepancy between the two quantities is unimportant.
Otherwise a change of origins, or a reduction in the
degrees used, can be tried. It may seem paradoxical to
expect a better fit by using lower-degree polynomials.
However, rounding error effects usually increase rapidly
with degree, while beyond a certain point residuals
decrease rather slowly. Thus the choice of degrees
larger than are justified by the data may well increase
residuals when working in single-length arithmetic.

In some applications it is useful to be able to allot
different weights to either the x columns, the y rows, or
to both, and the program allows this to be done. When
either x or y values are in arithmetic progression, only
the first value(s) and common difference(s) are punched.
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Table 3
Polynomial Coefficients Maximum Residuals
POWER OF x POWER OF Vv l COEFFICIENT v ‘ RESIDUAL X
\

0 1‘ 0 2-50746554, 2 1 ‘ 1-017, —1 4

3 1 —6-96366345, 1 2 —1-256, —1 1

2 —5-05008445, 1 3 2-216, —1 1

3 1-14543928, 2 4 —8-689, —2 2

4 —1-55554895, 2 5 —1-766, —1 3

‘ 5 —1-16986970, 2 6 ; 1-500, —1 2

! 6 3-28594729, 2 7 ! 1-240, —1 3

[ 8 | 1-497, —1 3

1 ‘ 0 2-02546036, —I1 9 ‘ —1-136, —1 1

1 6-77372002, —2 10 8-991, —2 4

2 —4-40136945, —1 11 —7-729, =2 3
3 5-01602247, —1
4 7-91083973, —1

5 —1-50640930. 0 Sum of squares of residuals 3-813, —1
Check value 3-813, -1

2 0 —1-35851656, —3
‘ 1 —1-84253163, —3
; 2 —8-30420598, —4
30 1-27840913, —5
| 1 2-12121172, —5

Missing Values

Should there be some values missing from the rect-
angular array we can proceed as follows. For stage I,
appropriate guessed values are substituted, and the
results are used to provide the required values of 7 and
of the j’s for stage 2.

This now becomes an iterative process. After fitting
to the data, the guessed values are replaced by the values
predicted from the fitted surface. This process continues
until the differences between consecutive sets of predicted
values are less than a prescribed amount. The final fitted
coefficients, together with residuals and the estimated
missing values, are printed. This method, sometimes
called the “missing plot” technique, provides the correct
least squares solution of the original problem.

In this iterative process the problem of convergence
arises, and two points, besides the obvious requirement
of good starting values, have to be watched. The degrees
used should not be larger than are justified by the data.
In addition, the accuracy sought in predicted values
should not be too great. The square root of the mean
square residual defined earlier is a suitable value. The
program prints a unit once in each iterative cycle, and
so there is available a record of the number of iterations
required, enabling the process to be watched while the
program is running.
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Working Times

The basic curve-fitting process uses only the high-speed
store, taking about 8 seconds to fit 100 points up to
degree 8. On this basis the surface-fitting procedure
takes about 0-08n(m -+ 9) seconds. To this must be
added the time taken in polynomial evaluation and in
reading data and punching results. In view of the
number of possible variants these times are difficult to
predict accurately. Table 4 illustrates stage 2 times in
three typical instances. They are for the case where
maximum residuals are printed.

Table 4
SIZE OF WORKING TIME READ AND PUNCH
ARRAY (SECONDS) TIME (SECONDS)
15 x 10 34 74
30 x 30 116 180
100 x 48 470 530

Times for stage 1 are rather smaller; where missing
values arise, the working time has to be multiplied by
the number of iterations required.

The program will deal with up to 50 x values and
48 y values in the general case. When x values have
equal weights, and there are no missing entries, up to
100 x values may be used.
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Mathematical Basis of the Method

The procedure is a straightforward generalization of
the curve-fitting case. Let z; be given for the point
(x;, 1;) with

= 1(m, j= 1(1)n,
and let orthogonal polynomials of degrees 0 to u in x
and 0 to v in y be defined by the relations

m m

P x)b(x;) =0 r s, P $x;) = D, (2)

SO~ 0 ras BU =8 ()

J=1

The polynomials for x are determined from the relations

d)n I(-Y) = (x - oc,,)¢,,(x) - Bnqsn 1(.‘(),

where

m

&, ‘leigﬁlzl(xi)/Dn* Bn - Dn/Dn -1

and initially
do(x) = 1, Si(x) =x — X.
In practice, defining a suitable ¢ _(x) leads to a more
compact program. Similar formulae lead to the 1
polynomials.
The first step consists in finding least squares curves
for the n rows of x values.

0= BAblx) = 10

The coeflicients are chosen so as to minimize

m
_El {gi(x)) — 2%
i

and by virtue of the relationships (2), they are given by

m

Arj — _;l Zij(rbr(xi)/Dl"
Next the (v -+ 1) rows
M Aas o oo Ay

are expressed as polynomials in v

r=0(1)u

é Vt‘\‘/’.\(.") r= 0(1)u.
50

References

We obtain the results

Yrs = Zl A)'j'l/{y(.lvj)/a\\
j=

) = 38 (), )

It follows from (2) and (3) that the minimum sum of
squares of residuals is

" n

Ry = 2z {21/ — flxi )2
1 =1

i

m n u -
= E 2 Z%j 7 2 E '}/E\D,S‘

i=1 j=1 r=0 s-0
Moreover, the least squares solution with v,, omitted is
obtained from (4) by omitting this term in the sum-
mation. The increased value of the sum of squares of
residuals is

R = Ry + y2,D,4,.

This additive process applies for each term omitted in
arriving at the fitted function required. Provided that
the j(i) values mentioned earlier satisfy (1), fitting up
to given degrees in orthogonal form is equivalent to the
same choice of degrees in standard polynomial form.
The final stage of the process consists in reducing (4) to
t o j0)
Sx ) = X X ayxivi.
i=0 ;-0
The above analysis has assumed equal weights, other-
wise these are specified by

w; for i = 1(I)m, and wjfor ;= 1(1)n

for x and y values respectively; they appear as multi-
plicative factors inside each summation over i and .
In particular we note that R, is now defined as

m n

Ry = X X wiwilzi; — f(xi, 1))%
1

i=1 j=

and this must be borne in mind when considering its
value. From the statistical point of view. if we have

var (z;;) = ownj,

then o2 is estimated by dividing R by (mn — k), where a
total of k coefficients have been fitted.
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