Convergence Properties of Gaussian Quadrature Formulae

By W. Barrett

An expression is found for the remainder of any Gaussian quadrature formula as a contour

integral, and is then used to obtain estimates of the error in certain cases.

Numerical examples

are given comparing the actual and estimated errors.
A method of constructing more general quadrature formulae is described, and two examples
are given of formulae so constructed.

Introduction

Interest in Gaussian quadrature formulae has increased
considerably since the advent of electronic computers,
because their immediate disadvantage—the practical
computational difficulties in using them—no longer has
the same force. However, a further disadvantage is that
certain simple methods of error estimation are not
available.

When using formulae based on finite differences, we
can compare values obtained using different tabular
intervals, but retaining differences of the same order;
the behaviour of the error as the tabular interval is
reduced does not then depend on the nature of the
integrand. When using Gaussian formulae, on the other
hand, improved accuracy is usually sought by using
formulae with an increasing number of points, and when
this is done, the rate of convergence of the process
depends very materially on the nature of the integrand.
The object of the present paper is to make a contribution
to the understanding of this problem, and results are
obtained which lead to estimates of the error when the
integrand is an analytic function, and which indicate the
rate of convergence to be expected under various
conditions.

A generalization of the method used is applied to two
formulae which are not Gaussian, but which can with
certain advantages replace respectively the Gauss—
Laguerre and Gauss-Hermite formulae. The second of
these two formulae is in fact the trapezoidal rule, but the
first is believed to be new.

The Remainder as a Contour Integral

The basic formula required is an expression for the
remainder of a quadrature formula as a contour integral.

b n

Let [ fGomxdy = X Afx) + 40 (D)
be a numerical quadrature formula. Here, [a, b] is a
specified range of integration and w(x) is a given weight-
function, non-negative in [a, b]; {x,} are n distinct speci-
fied “fixed points,” A, are numerical coefficients, and
A,(f) is the remainder.

If we require the formula to be exact—that is,
A,(f) = 0—whenever f(x) is a polynomial of degree
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less than n. then it can be shown [see Szego (1939), 3.4.3]
that
I p,,(r)u(t)

a P —

Tl

where p,(1) is a polynomial of degree n with zeros {x,}.
It can further be shown that, replacing the symbol x
by the symbol z representing a complex variable,

9,(2)

dt,

AlS) = 55 ¢ p2) /( )dz, (1.2)
where q,(z) - J p,,(t)n(r)
so that A = —q,(x)/pidx,). (1.3)

and the contour contains the interval [a, b] and the fixed
points {x,} in its interior, but no singularity of the
function f(z) lies on or within the contour.
In fact, if a <t < b,
1 -
27 (#

b
so that | f(iy(nds = 21149 {[ ;,(gdz} o

a

S(t) =

(1.4)

Again, since p,(x,) = 0, A, as defined above, is the
residue at z = x, of the analytic function
" pz) — p1)
p,,(z)J z
so that
- ) r Pn( pn(f ) /(@)
AS(x) — — 45{ h} .
r§::l /( ) J‘ ( ) [7,,(2) “
(1.5)

From (1.1), (1.4) and (1.5), (1.2) follows immediately.

It should be remarked that g,(z) is defined in the
complex plane cut along the real interval [a, b]. How-
ever, when a <x <b, we can define functions
g,(x + 0i) and g,(x — 0i); if x = x,, these are equal, so
that ¢,(x,) in (1.3) is defined.

This method applies in particular to Gaussian for-
mulae, for which p,(x) is one of a class of orthogonal
polynomials with weight function w(x) over the interval
[a, b]; the formula is now exact if f(x) is any polynomial
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of degree less than 2n. The best known are those based
on the classical systems of orthogonal polynomials:

SYSTEM INTERVAL WEIGHT-FUNCTION
Jacobi* [—L1] (d—x* + x)* (¢, 8> —1)
Laguerre [0, o] x*e ¥

Hermite [— o0, 0] e ¥

* Includes the Legendre polynomials, with x = 8 = 0.

In these cases the polynomials p,(x) arise as solutions
of certain second order linear differential equations, and
it turns out that g,(z)/w(z) is in each case a second
solution of the same differential equation. Reasonably
simple asymptotic expressions can now be found, which
represent p,(z), g,(z) well, at least for large values of n.

As an example, we find for the Jacobi case the follow-
ing two formulae:

9,(2)pu2) = 27z — DXz + DP[z + (22— D] 2N, (1.6)

where N = n 4 4(o -~ B + 1), which is valid except in
an arbitrary but fixed neighbourhood of the real segment

4.2)/p,(2) = 2z — 1)z + DPKANO/L(NO), (1.7)

where z = cosh 0 and K, [ represent the usual modified
Bessel functions; this expression is valid except in a
neighbourhood of the infinite real segment [—o0, —1];
in particular, it is valid in the neighbourhood of the
point z = 1.

A derivation of (1.6) is given in an appendix, and also
a brief indication of the method of deriving (1.7).

Asymptotic Remainder Formulae

We are now in a position to derive two asymptotic
expressions for the remainder of the Gauss-Jacobi
quadrature formula, valid under different conditions on
the function f(z); these will be followed by a statement of
the corresponding expressions for the Gauss-Laguerre
and Gauss—Hermite formulae.

(i) Notice first that |z + (z2 — 1)}| is constant
(greater than unity if the sign of the square-root is
properly chosen) along any ellipse with the points 41 as
foci. Suppose, therefore, that f(z) has no singularities
within or on a particular such ellipse,

|z 4+ (22 — 1)}| = R, 2.n
except for a pair of simple poles at z,, Z,, where
20 + (z5 — D} = Ry < R,

and suppose that the function f(z)(z — 1)*(z + 1)* has
residues pg, po at these points. As contour in (1.2), we
now take the ellipse (2.1), together with two small circuits,
one enclosing each of the points zy, z,. It can now be
shown that, as n — co, the contribution to the integral
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Fig. 1. Contour for proof of formula (2.3)

(1.2) from the ellipse tends to zero compared with that
from either of the small circuits, and we obtain the
formula

A(f) = —4m Rl{po[zo + (z5 — D] M. (2.2)

In interpreting this result, we notice that the quantity
zo + (23 — 1)} is not in general real, so that (2.2) repre-
sents an exponentially damped oscillation, the damping
factor being 1/R2 for each unit increase in 2.

(i1) It is possible to relax the restrictions on f(z)
slightly, and to allow a singularity at an end of the range
of integration, say at x = 1. The contour should now
comprise an ellipse (2.1) on or within which there is no
other singularity of f(z), a small circuit enclosing the
point z = -1, and also the real axis between this circuit
and the ellipse, described once in each sense. Fig. 1
illustrates this contour, on and within which there is no
singularity of f(z).

Suppose, now, that f(z)w(z) ~ (1 — z)°, % (o = —1) as
z — |; we may thus consider the effect of changing the
weight-function on the computed value of the integral
without changing the value of o. We shall find that

. o ® 20 1K
snrlo ) [T,
0

%n(/() = 20 l,n.NZO’ ©2 I'X(I)

provided that o, 0 — « > —1 and that ¢ — « is not
an integer.
From (1.7) and from the formula

f(@) = (1 =2 X1 +2z)7%
we obtain, in fact,
S(2)q,(2)p,(z) = 2! -°02et=O-0K (NO)/I(NO) (2.4)

as n— o, § -0 (i.e. z—>1); the sign is —ve in the
upper 4-plane and +ve in the lower.

In estimating the value of the contour integral (1.2),
we first let the small circuit enclosing the point z — 1
tend to zero in size; from (2.4) it can then be shown that
the contribution to (1.2) from the circuit tends to zero
provided that ¢ — « > —1. Using now the fact that
K(NO)/I(NO) ~ exp (—2NO) as NO — oo, it follows
that the contribution from the two portions of the
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contour which follow the real axis are together asymp-
totically equal to

21-%sin w(o — «) J'°° 029 +1K (NB)
" o LNG)
as N —- oo, which is reducible to the right-hand member

of (2.3) by the substitution t = N6.
Finally, the contribution from the ellipse is

O(R - ZN) — O(N" 2642)’

and the result (2.3) is established.

It should be observed that the rate of convergence,
as determined by the factor N--2° "2, is lower than in (2.2).
If ¢ — o is an integer, a slightly more refined argument
leads to

10

™

%n(f) - O(Nﬂz“ 2)'«

so that, for greatest accuracy, w(x) should be chosen so
that ¢ — « is an integer, though there is little point in
matching the weight function to the integrand to the
extent of making « = o.

(iii) Corresponding results hold for
Laguerre and Gauss-Hermite formulae.

the Gauss—

(a) Gauss-Laguerre:
w(x) = x% *~.

If fz)w(z) ~z"asz—0,and o, 0 — a > —1,

dr, (2.5)

e

oy 4sin m(o — o) = 127 VK (1)
R 0

where « = 4n + 2a + 2.

If f(z) has no singularities on or within the parabola
Rl +/(—z) = log R, except for a pair of simple poles
at zq, Zo, the residues of f(z)w(z) being pg, po. then

‘%n(f) ~ —47 Rl {poe*i““[exp \'/(*ZO)] =2y K}.

(b) Gauss—-Hermite:
w(x) = e .

(2.6)

If f(z) has no singularities on or between the lines
Im:z = + log R, except for a pair of simple poles,
and z,, p, are similarly defined, Im z, being positive,

#,(f) =~ —dm R {pglexp (—iz)] 2"} (2.7)

where « = 2(n + 1).

In these formulae, certain conditions have to be
imposed on the behaviour of f(z) as z-— oo in the
complex plane; further reference will be made to this in
the next section. It will be noticed that the rate of con-
vergence is in each case rather slower than for the Gauss—
Jacobi formulae; effectively, a multiple of n? replaces a
multiple of n, both in (2.2) and in (2.3).

Similar methods can be applied to a wider variety of
functions f(z), but these few results perhaps suffice to
indicate the type of convergence to be expected. It
should be added that, in numerical examples to which
this theory has been applied, there is a very satisfactory
agreement between predicted and calculated errors, even
for quite modest values of n. A description of two
examples appears in a later section.
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A Generalization of the Gaussian Quadrature Formulae

We next consider two quadrature formulae which can
be regarded as limiting forms of the Gauss—-Laguerre
and Gauss—Hermite formulae. One of these two
formulae, with a disposable scale-factor, can replace a
complete class of Gaussian formulae, and since its
convergence properties as the scale-factor is increased
are closely comparable with those of the corresponding
Gaussian formula as the number of points is increased,
there is a useful gain in simplicity in using such a formula.

The formulae in question are obtained by means of a
generalization of (1.2), (1.3). Let ¢(z), ¥(z) be two
analytic functions having the following properties,
w(x), and [a, b] being defined as in (1.1):

(i) ¢(z) is single-valued in the finite complex plane,
and without singularities, except possibly at the
real points a, b. Its zeros are to be all distinct,
and at the points {x,} of the real interval (a, b);
their number need not be finite, nor need the
interval [a, b].

(i) ¥(z) has no singularities in the plane cut along the

real segment [a, b].

J(x — 0i) — P(x + 0i) = 2mid(x)w(x), when
a < x < b; notice that (x,) is defined uniquely,
since ¢(x,) = 0.

(i)

Then in (1.1), if A, = —(x,)/$'(x,), #, is given by

oy L),
AN = 5§ gy O (3.1
the contour being defined as in (1.2), with suitable
changes if there are singularities of f(z) at a or b.

To establish this, choose as contour the real interval
[a, b] described twice in opposite senses, with a small
neighbourhood of each of the points a, b excluded by the
contour, which is also indented at each of the points {x,}.
This contour is illustrated in Fig. 2.

As the excluded neighbourhoods and the indentations
tend to zero in size, the limiting contribution from the

rectilinear portions of the contour is

b
J S ()w(t)dt,

while that from the two indentations at x, is —A,.f(x,).
The formula (3.1) follows immediately.

Now the rth zero of the Laguerre polynomial L)’(x)
is asymptotically equal to that of the Bessel function
Jo[v/(kx)], where « is defined as in (2.5), as k — o, as

P et
= —
-l X, X, x, +l

Fig. 2. Contour for proof of formula (3.1)
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can be deduced from Szego (1939), 8.22.4. This suggests
setting

w(x) = x*,
P(z) = z I [V (x2)].
B(z) = 22K, [v/(—«k2)],
A= = UKV (—kz)] A (k)]
= Y [V (k)]

It is easily verified, using standard properties of Bessel
functions, that the required conditions are satisfied.

In a similar manner, the Gauss-Hermite formula
leads to

with range [0, oo],

w(x) =1, with range [— o0, o]
B(z) — — sin (z24/k)
(z) = me = < (- in upper L-plane, — in lower).

A = m/yv/ Kk, withx, = 7r/y k (r =0, +1, +2,..)).
The expressions (2.5), (2.6), (2.7) remain valid for these
formulae, in which the quantity « appears simply as a
scale factor. Thus, to ensure sufficient accuracy, it is
necessary simply to choose a large enough value for «
and then to take as many of the infinity of points in the
quadrature formula as contribute significantly to the
calculated value. Experience so far suggests that the
number of points required is rarely materially more than
for the corresponding Gaussian formula.
The conditions to be imposed on f(z) as z — oc are
now weakened and simplified, so that they may con-
veniently be stated here. They are:

(i) [ f(z)w(z)dz| along the appropriate contour must
converge;

(ii) |z}f(z)w(z)| for the first of the two quadrature
formulae, or | f(z)u(z)| for the second, must tend
to zero as z — oo in any way within the contour.

The first of the two formulae appears to be new;
though it is not Gaussian, it might be called by the name
“Gauss-Bessel.” The second formula is merely the
trapezoidal rule extended over an infinite number of
equal intervals. So that what we find here is not a new
formula, but the conclusion that a well-known and
extremely simple formula is usually as good as the much
less simple class of Gauss-Hermite formulae.

Numerical Examples

. ® e Ndx
(1) J‘O r—‘_,ux_’" s m =4,

This is a class of integrals arising in a theory of uni-
molecular reactions. The particular values of the
parameters were chosen, not because they give better
agreement with the theory, but because the form of the
results is clearly displayed.

The integral was calculated by using the Gauss—
Laguerre formula with « = 0, and with the weight-
function absorbed into the coefficients. To illustrate

p = 4/10.
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Fig. 3. Actual and estimated errors in the evaluation of

fx e dx 0-275018
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the fact that there is no advantage in matching the
exponential behaviour of the weight-function as x — oo,
to that of the integrand, another set of values was
calculated with a scale-factor introduced into the variable
of integration. That is, if A, are the coefficients in the
Gauss—-Laguerre formula, we write

AF = eV,

and j}'(x)dx RS A (k).
0 r=0

where k is the scale-factor. The expressions (2.5) and (2.6)
for the remainder now require « = (4n -+ 2« + 2)/k.
The integral was also calculated using the Gauss—Bessel
formula, with various values of «.

The position of the poles of the integrand are

z = 10+ "8 exp (4-iw/4) and 10718 exp (+3im/4),

of which the first two will dominate the remainder. The
residues are readily calculable, and the expression (2.6)
evaluated. Fig. 3 shows: (@) as a continuous curve,
with several branches, the values of this expression
plotted logarithmically against values of 1/k, plotted
linearly; (b) values of the error in the computed value
for values of n and k, or of «, as indicated in the legend.
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Subsidiary scales give the values of these parameters for
the different points plotted, and show that the use of
a scale-factor can reduce the number of points required.

In the case of the Gauss—Bessel formula, the retention
of a finite number only of points results in a truncation
error additional to the theoretical error, and in obtaining
the values plotted, enough points have been retained to
make this truncation error negligible. However, in this
example, if the number of points retained is not less
than 4/k, the truncation error will not be more than
109, of the theoretical error.

e

(i1) J xMe ¥dx, with m =0, 1, 2, 3.
0

A Gauss-Laguerre formula with « an integer and
o< m, 2n >m — «, will give an exact result. The
errors with o = 4 are plotted logarithmically in Fig. 4,
against values of k., also plotted logarithmically; the
straight lines represent the estimated error, as given by
formula (2.5).
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Appendix: A note on the derivation of the formulae (1.6) and (1.7)

In the case of the Gauss—Jacobi formulae, with range
[ 1. 1] and weight-function (1 — x)*(1 + x)*, p,(x) are
the Jacobi polynomials P*®(x), for which a definition
may be found in S., §4.1*; they are solutions of the
differential equation given in S., 4.2.1.

The functions ¢,(z) are given by

0,(2) = 2z — DAz + 1DPQH(z),
1
=2 [ (= ez — 1) (5.)
—1

where Q™ ®(z) is a certain second solution (S., 4.61.1)
of the differential equation. This may readily be verified

* Numbers preceded by S. refer to Szego (1939).
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by integrating (5.1) by parts n times and comparing the
result with the Rodrigues’ formula (S., 4.3.1)
(1 — X1 + x)*PP(x)
(=D
2"n! dxn
Now the formula given in S., 8.21.9 may be rewritten
puz) = A(n)(z — 1) 274z 4 1)~ ¥
X [z + /(22 — DIV[1 + 0(1/n)].
A(n) = 20 % DB)y/(nm)
N=n+(x+ B+ 1)2;

fractional powers are defined to be regular in the plane
cut along [—oc, 1], and to be real and positive when z

{(l . .X)" 1(1 N .\.)n {j}.

(5.2)
where

and

¥202 Iudy 61 U0 1senb Aq 966//€/2.2/v//e1o1 e/ |ulwoo/wod dno-ojwapeoe//:sdiy woli papeojumoq



Convergence Properties of Gaussian Quadrature Formulae

is real and greater than unity; the formula is valid in the
whole plane with a neighbourhood of the segment
[—1, 1] removed.

A similar formula for Q*#(z), S., 8.71.19, gives

4.(2) = Bln)(z — D24z + 1)

X [z 4+ 4/(z2 = D] M1 + 0(1/m)], (5.3)
valid in the plane cut along [—1, 1], with neighbour-
hoods of the two points +1 removed, B(n) being a
suitable function of n only.

If we can determine the function B(n), the formula

(1.6) will follow immediately. The simplest way to do
this seems to be to make use of the relation

. NV XEE
q,(x —0i) — g, (x + 0i) = a— dz
= 2miw(x) p,(x), {5.4)

where the contour is a small circuit enclosing the point x.
If x=cos?d (—1<x<l1; 0<& <), so that
X + 4/(x2 — 1) = e*™ it can be shown from (5.3) that
(I"(x - OI) 7- qn('Y + 0’)
= 2iB(n)(1 — x)*?=3(1 + x)¥2+4
X {cos (N& + y) -+ 0(1/n)},

where y = —(a + 1)7/2.

Now from S., 8.21.10, we find

w(X)p(x) = 24(n)(1 — x)*2=4(1 + x)B2-1
x {cos (NG + y) + 0(1/n)}.

Hence, from (5.4), it suffices to put B(n) = 27wA(n);
substituting in (5.3) and dividing (5.3) and (5.2), the
formula (1.6) is established.

We shall not consider in detail the derivation of (1.7);
the starting point, however, is the formula, S., 8.21.17,

(sin 9/2)*(cos #/2)* P> &)(cos &)

I
~ N LTLI)(ﬁ/sm PL(ND).

This is only stated to be true for real values of & in
0 <& < =, with a suitable remainder term; however,
with a minor adjustment of the remainder term, it is
also valid for complex values of . It is further possible
to derive a corresponding formula for ¢,(z), and from
these to deduce (1.7).

To derive and apply the corresponding expressions
relating to the Gauss-Laguerre and Gauss-Hermite
formulae would take too much space. The functions
pn(z) and g,(z) are, however, expressible in terms of
confluent hypergeometric functions, and the necessary
properties of these functions, including asymptotic
expressions, can be found in Erdelyi (1953), Vol. I,
Chapter VI.
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