Towards a Tool Kit for the Systems Analyst

D. BENYON* anD S. SKIDMORE

School of Mathematics, Computing and Statistics, Leicester Polytechnic, P.O. Box 143, Leicester LE] 9BH

A review of the major systems analysis methodologies is undertaken in order to examine the aspects of information
systems (IS) which they seem best able to represent. The importance of a collection of techniques — the analyst’s tool
kit — is stressed, and aspects of systems analysis poorly covered by existing methodologies are highlighted. The
conclusion is drawn that one single methodology cannot cover the whole range of systems tasks.

Received July 1985, revised April 1986

1. INTRODUCTION

During the 1980s a number of system design method-
ologies have been promoted or adopted by an increasing
number of organisations, reflecting an upsurge of activity
in IS development. These methodologies have been
comprehensively described, discussed and compared in a
number of papers and publications (Refs 1-5). Wood-
Harper and Fitzgerald® categorised the approaches
according to the underlying paradigm (‘scientific’ or
‘systems’), the conceptual models which they use and the
objectives which they seek to meet. This analysis was
useful in so far as it brought these different approaches
together, but it did not put them sufficiently into their
developmental context. Indeed, the categorisation distrac-
ted attention from the purpose of the approaches and
concentrated on an argument about the relevance of these
distinctions. This paper provides an alternative perspec-
tive on the use and usefulness of these approaches and
presents an appreciation of their relationship to each
other and to the problems of information systems
analysis.

Despite the growth of these new methodologies, IS still
broadly uses a third-generation approach to developing
computer systems. This is characterised by a linear
approach to systems analysis (the familiar phases of
analysis, design, construction, implementation) coupled
with a freezing of requirements at some point. This has
been relatively successful in computerising well-defined,
cyclical business systems, but appears unable to cope
successfully with four major forces now evident in the
market place.

@® Cheap and versatile microcomputer hardware and
software.

@ Increasing diversity in applications with a marked
tendency towards systems where information require-
ments are difficult to define.

@® The development of new and powerful software,
(particularly application generators).

@ The increased sophistication and knowledge of end
users.

The tools of the trade needed to deal with these changes
in computer hardware, software and user characteristics
need to be discussed and established.

2. MODELS

Fundamental to all methods of analysis and design is the
model. This is a subjective representation of some aspects

* Now at Open University

of the real (or realisable) world. Good modelling is
essential to the effective understanding of problems in
many disciplines, for example, Raphael® has shown the
importance of choosing the appropriate representation in
problem solving. If the essential features of a problem
can be identified a solution may become readily apparent.

In the analysis and design of information systems there
are many different aspects and interrelated problems
which have to be tackled together. Information systems
include people, data, information, procedures, hardware
and software. This diversity leads to the need for many
different representations of the same problem area in
order to help determine what the fundamental features
are. These different aspects can only be achieved by
modelling the system from a variety of perspectives.

The importance of models in information systems has
been recognised by several authors, particularly Wilson!*
and Martin.®> Wilson stresses the importance of
hierarchy and the use of models for exploration,
communication and testing hypotheses, whilst Martin is
particulary concerned with system development, docu-
mentation and maintenance. These are all important
features but they are not comprehensive.

Beer!® makes the point that models do not split things
up. Rather, they simplify wholes whilst retaining their
structure and in this way they highlight important

2G.1L0%/2/1/0€/210nE/|ufwoo/wo9"dno-olWwapese//:sdly Wolj papeojumoq

=3

features. A series of models is usually needed to represent

the problem situation effectively at different levels of
detail, and hence models need to be organised hierarchi-
cally. Martin!® emphasises hierarchy because of the need
to structure complex concepts, but it is also important

because different features are more significant at different ©

levels of abstraction. A book of road maps illustrates this.
In planning a route, the traveller looks at the front of the
book at a page which shows the major cities and page
numbers where more details can be found. Turning to the
relevant page, he finds the major trunk roads with towns
represented as shaded areas and hence can select a
suitable route. At the back of the book are often found
detailed street plans, which enable him to pinpoint his
destination more closely. Clearly there is a need for each
type of representation to help solve different problems.
In some circumstances one modelling level might suffice,
but consider driving from Norwich to Cardiff with only
a set of Ordnance Survey 1:25000 maps. It is possible,
but it is likely to be unnecessarily difficult and inefficient.

The book of maps illustrates the importance of a
hierarchy, appropriate simplicity (the maps only show
relevant details) and consistency (motorways are always
blue) in modelling, but it only illustrates one use of

2 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

(e
D
(2]
—_
=]
o
©

¥¢0¢ [Hay



TOWARDS A TOOL KIT FOR THE SYSTEMS ANALYST

models: communication. A further restriction of the road
map analogy is that it assumes that the traveller knows
where he is and where he wants to go. In information
systems there is a need for more rich and descriptive
models, a guide book to draw attention to interesting
areas. Models also have uses beyond communication.
They are invaluable for exploring ideas (an architect’s
initial drawings), for experimentation (the scale model
car in a wind tunnel) and for making predictions (the
computer models of the economy).

Thus models are used in a variety of ways and so
different models and modelling techniques are appro-
priate at different times and for different tasks. The skills
of choosing an appropriate model are rarely considered.

3. MODELS IN INFORMATION SYSTEMS
ANALYSIS

Ininformation systems analysis there are many modelling
techniques available-from traditional paper and pencil
flowchart to the interactive prototype system. Some have
been put together into methodologies characterised by a
particular model or tool. The different methodologies
can be viewed as belonging to one of the five major
approaches indentified by Hammersley? and adopted by
Wood-Harper.> We will examine each of these ap-
proaches in terms of what they model and how useful
they are at modelling that aspect.

3.1 Soft systems approach

Checkland’ recognises the difficulty of defining problems
and suggests that as much time as possible is spent
exploring the richness of what he terms the problem
situation. Checkland’s methodology emphasises the
subjectivity of systems analysis and the importance of an
iterative approach to the activity. It stresses that there are
many different, valid views of a problem situation and
these should all be considered before arriving at the ‘root
definition’ of a perceived problem. However, it is unlikely
that the practising analyst can wander as far as
Checkland suggests or recommend solutions as radical as
may be desirable. Typically the relevant root definition
is managements, the environment is a bounded part of
the organisation and the elements of the system are the
data items. Despite this, the approach provides a good
framework for systems analysis and, most importantly,
provides a language in which to discuss the purpose of
the system. The recommendation to build conceptual
models of the system ‘from the verbs of English’ may
often be inadequate and to some extent this has been
recognised by Checkland’s colleague, Wilson.!* He has
extended the methodology by specifying more closely
what is required to build conceptual models, moving
from an ‘issue-based analysis’ through a ‘primary task
model’ to the establishment of input, output and control
mechanisms for each activity. He derives data models
and organises all information processing into a matrix
which he dubs the ‘Maltese Cross’. The soft systems
methodology is useful at the early stages of analysis, in
establishing important sub-systems and the definitions of
what these systems are. The development of conceptual
models away from the real world is a vital activity, as it
allows the analyst to concentrate on the logical functions
of the business system. However, modelling those systems

requires more sophisticated techniques than verbs.
Wilson has discovered this, but by inventing his own tools
he has ignored some useful existing ones, particulary
those concerned with data analysis and information flow.
The soft systems philosophy has also been made more
accessible in Wood-Harper et al.’s multiview approach.2?
Indeed it represents the strongest and most convincing
part of this method of information systems definition,
and its exploration of rich pictures is particularly
effective.

3.2 Structured Systems Analysis and Design (SSAD)

The dataflow diagram (DFD) of the SSAD approaches®
is a good tool for modelling data flow irrespective of
physical and organisational boundaries and the medium
of that flow. It provides a mechanism for ensuring a
consistent hierarchy (‘levelling’ procedures) and is a
useful analysis tool. Used sensibly it can provide an
immediate and understandable model of the essential
inputs, outputs and processes of the system. It is also a
good design model, permitting the production of
alternative information flows and providing a focus for
discussion about the location of the human—computer
interface. The elements modelled — flows, processes and
files—-may also lead to their physical equivalent.

The DFD and the activity model of the soft systems
approach have enough common ground for the tech-
niques to be linked together.

Both emphasise the concept of hierarchy in developing
models. DeMarco’s top level is the ‘context diagram’,
which ‘shows only the net inputs and outputs’. He
continues: ‘it serves only one purpose...to delineate the
domain of our study’ and furthermore ‘think of the
context diagram as a transformation, a process that
transforms the input data flows into the outputs’.
DeMarco breaks the context diagram down into levels
until he reaches ‘functional primitives...bubbles which
are not further decomposed into successively lower-level
networks. Diagram 0...portrays the breakdown of an
area into a network of components’.

Checkland constructs an activity model from the root
definition ‘Assemble the small number of verbs which
describe the most fundamental activities necessary in the
system described’. He emphasises modelling only
essential flows. He continues: ‘once the model has been
built...it may be used as a source of ... models expressing
flows and/or possible structures’.

Both emphasise that the systems represent transforma-
tions. DeMarco claims that ‘A process is a transforma-
tion of incoming data flows into outgoing data flows’
and Checkland ‘we may regard a system as an entity
which...tranforms the inputs into the outputs’.

The similarities between the approaches—their empha-
sis on hierarchy, data or information flow and the
transformation function of processes—enables SSAD to
be used as the conceptual modelling tool once the system
has been defined by the root definition. The visual
attractiveness of the DFD makes it more effective than
verbs.

3.3 Traditional approach

The traditional approach (see Ref. 9) is showing its age,
and whilst it was appropriate for batch systems it is not

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 3

1-2

¥202 Iudy 60 U0 1senb Aq 2G/20%/2/1/0€/2101e/|ulwoo/wod dnoolwapede//:sdiy woly papeojumo(q



D. BENYON AND S. SKIDMORE

flexible enough to cover the range of modern systems. It
focuses on functional analysis, ‘fact finding’ and the flow
of control. It has already been criticised in Wood-
Harper’s paper,® and we generally agree with those
criticisms. However, functional analysis and an under-
standing of the flow of control may be useful, particularly
in documentation and the early stages of system
understanding. Well-structured, columnar flowcharts
can effectively model aspects of the system which are not
reflected in the dataflow diagram. Indeed, there is far
more structure in a well-drawn flowchart than there is in
a DFD, and whilst this may reflect the (perhaps
inappropriate) organisational structure of the firm, there
are many instances where this structure will continue to
exist. Even where it is to be changed, the flowchart can
highlight features which would be overlooked by a purely
dataflow analysis. Millington!? attempts to exploit this
aspect of the flowchart by combining its columnar
structure with a dataflow view of the system. In doing so
he loses the essence of both the models because the
strengths of each are obscured by the other. For example,
two strengths of the DFD are the conveying of
information along the flowline and the lack of any
arbitrary distinction between decisions and processes.
Millington’s diagrams fail to recognise this, and his
amalgam does both ‘parent’ techniques a disservice.

3.4 Data-centered approach

Data analysis (e.g. Ref.10) looks at a static representation
of the information content of a system. It is the only
technique to do this, but at the cost of omitting other vital
aspects such as personnel and data flow. It is impossible
to classify data analysis as an analysis or design tool as
it sits firmly on the borderline of the two. We cannot agree
with Wood-Harper’s comment that ‘.. .data analysis says
very little about system design or problem solving’. In
the first instance data analysis is central to competent
Physical design, particularly if the target software is a
DBMS. Secondly, the rigour of data analysis often
uncovers important issues which prompt for further
detailed systems analysis. Moreover, as we discovered in
a recent implementation, the clarification of enterprise
rules may lead to fundamental insights into the whole
problem situation.

In recent years the data-centred approach has extended
beyond simple data analysis. For example, an element of
hierarchy has been introduced through the use of entity
clusters.’® To some extent this has become necessary
because of the use of data analysis at a strategic level,
resulting in very large data models. If the rules described
by Miller!® ensure consistency between the levels, entity
clustering appears to be a useful addition to the
data-centred approach. However, we have yet to be
convinced that this is the case. The static representation
of data analysis has been extended by the development
of the Entity Life History (ELH).!®* The ELH considers
the system from the point of view of the entities. Rather
than asking how our entities are affected by transforma-
tions, we might ask what events occur that affect each of
our entities. ’2°

Each entity is examined to see which events affect it and
in what possible sequence. The processing required by
each event is determined and the effect of sequence on
that processing considered. A model of the life of an

4 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

entity is created, charting the sequence and processes of
events which may affect it during its time in the system.
The ELH adds a dynamic dimension to the static model
of data analysis. It also aids exception and error
identification and handling and adopts a notation that
fits in well with program development strategies.?!

The data-centred approach offers a number of tools,
but retains data analysis as its central model. It has
powerful analysis and design possibilities, and like the
dataflow diagram it is independent of technology and
hence allows a variety of implementations. It can be
supported, again like the DFD, by a comprehensive data
dictionary. On the debit side, its emphasis on data,
coupled with the apparent rigour of its techniques, can
lead to the development of neat technical systems that
ignore or contradict the political reality.

3.5 Participative approach

papeojumoq

The participative approach is a useful heading underg
which to consider both the socio-technical system design &
of Mumford et al.'* and the development of system>
prototypes.!* The Land and Mumford School place3
emphasis on the successful management of change withé
specific techniques designed to minimise the uncertainty\
that change brings. The inclusion of such techniques aso
job satisfaction analysis and future analysis certamlyQ
makes it more than an ‘implementation strategy 3 Its3
emphasis on the involvement of the user recognises theg
common mismatch between delivered and requestedU
systems and also the ‘ people problems’ that bedevil most 8
projects. In contrast it has little to say on the techmcalo
aspects of system design, and doubts have been ralsedS
about the competence of users to contribute or commentB
on such matters. Its stress on formal participation also =
suggests that it may be out of step with the corporaterb
policy of many companies, perhaps even with the current S
climate and expectations of the country itself. TheJ
underlying philosophy of the approach seems more at s
home in the mid-seventies than in the job- hungry,

assertive eighties. However, despite such reservations, weg
must acknowledge that the methodology focuses on areas:=
of system design that are seldom considered by others
approaches and yet are known to be important ingf
determining the success of a systems project. 2

Mumford has recently included many of the tools of ©
the participative approach in a methodology for systems{q>
design called ETHICS.2* Its stated aim is to ‘ensure that
users’ specifications are accurate’ and concentrates on§
techniques for achieving this. The general approach is at
a similar level to Checkland’s, but with the emphasis
firmly on understanding by users of what they want and
what is possible.

The prototype approach has attracted much attention
and support. The case for this approach to system
development was eloquently explained by Naumann and
Jenkins?® and has gained enthusiastic backing from
others (e.g. Refs 26-28). It is an attempt to replace the
life-cycle approach with a paradigm that responds well to
complexity and uncertainty. This is essential if high-risk,
high-value information systems are to be successfully
developed. The life-cycle method may be useful in
developing data-processing systems, but it is unlikely to
be appropriate in the design and delivery of decision-
support systems. The quick delivery of skeleton working



TOWARDS A TOOL KIT FOR THE SYSTEMS ANALYST

Soft systems approach National
(systems model) map
Pamclpatlve
approach
Tradltional approach
(flowcharts) Major
routes
Structured systems analysxs
(data flow diagrams)
Data centred approach Street
(Data dictionary/Data analysis) plan

Fig. 1. Hierarchy of approaches and principal tools.

systems requires supporting software. This has been
provided by the emergence of application generators
designed to speed-up the development process (see Ref.
30 for a review of products). However, the existence of
this software should not obscure the fact that prototyping
is as much a management strategy as it is an approach
to software development. One of the seminal papers on
prototyping (Ref. 29) compared the specification and
prototyping approaches with development teams both
using Pascal — hardly a fourth generation tool! Similarly,
there are instances of application generators being used
in a traditional life-cycle/specification framework.

4. THE ANALYST’S TOOL KIT

Five major approaches to systems analysis were
considered in the previous section. The soft systems
approach emphasises the variety of legitimate views of a
problem situation and uses conceptual models to contrast
desired and actual states of a system. The dataflow
diagram central to structured systems analysis provides a
way of looking at the system from the point of view of
the data and in doing so provides a powerful technique
for determining the logical content of flows, processes
and stores. The traditional approach emphasises the flow
of control and the activity and arrangement of the current
operational system. The data-centred techniques provide
important analysis and design insights, particularly when
linked to a data dictionary. Finally, both participative
system design and prototyping stress the needs and role
of system users, with the latter emphasising the quick
delivery of an initial system.

We feel that the five methods are essentially
complementary. Discussions about which is best seem
rather fruitless, because the success of an approach is
dependent upon so many external variables. It seems
more useful to see the five approaches as comprising tools
available to the analyst, who then chooses the correct tool
or set of tools for a particular set of constraints and
circumstances.

Thus it can be argued that the analyst should be skilled
enough in all of these approaches to be able to select the
tool most appropriate for the job in hand. The
‘appropriateness’ will vary with a number of circum-
stances. These are likely to include the following.

The reason for using the model (exploration,
communication, experimentation or prediction).
The level of detail desired.

The management style of the organisation.
Organisational size, arrangements, hierarchy and
norms.

@ The nature of the system trigger.

At present we only have intuition to judge where and
when each is suitable, and more empirical evidence is
needed before any guidelines could be formulated. Our
experience suggests that the models are most suitable for
the purposes shown in Fig. 2 and at the level given in
Fig. 1. We would, however, expect other practitioners
to disagree. The map analogy is shown alongside to
illustrate the level of abstraction of the approach and, as
with the road traveller, the systems analyst will need to
exploit the different approaches as appropriate. Fig. 1
does not offer a prescribed, topdown approach to systems
development, merely a framework for understanding the
tools at our disposal.

5. TOOLS REQUIRED

We have concentrated so far on five models current in
either the practical or academic market place. However,
we feel that there are still several areas of information
systems activity which await adequate modelling.

5.1 Modelling the interface

The interface cannot be described simply in terms of
inputs and outputs because the interface has many other
characteristics (such as response time, medium, etc.). To
imagine that the problem has been solved by establishing
the systems (or processes at a lower level of description)
is to ignore the most difficult part of the problem — how,
when and where will they interface? Defining the data or
information which has to flow between systems is
necessary for a successful design, but not sufficient. We
need a model-a language—for discussing the other
attributes of interaction. A particularly difficult area is
the style and location of the human—computer interface.
The designer often has a bewildering range of options
along a continuum, all with different technical require-
ments and implications for the system’s users. Some opt

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 5

¥202 Iudy 60 U0 1senb Aq 2G/20%/2/1/0€/2101e/|ulwoo/wod dnoolwapede//:sdiy woly papeojumo(q



D. BENYON AND S. SKIDMORE

Tool

Primary uses of model

System model

Exploration
Communication

Data flow diagram

Exploration
Communication
Limited experimentation

Flowcharts Communication
Participation Exploration
Experimentation
Prototypes Exploration
Predictions
Experimentation
Data analysis Exploration

Communication

Data dictionary

Communication
Limited exploration

Fig. 2. Primary uses of models

to smother users, others to leave them to the vagaries of
the system. In most instances the interface is determined
by the designer’s stereotype of the user or likely users.
Most texts dedicated to examining the interface offer a
checklist together with a description of the interface
types — menu design, form-fill, question and answer. It is
one thing to describe and develop these techniques, but
it is another to use them correctly and appropriately.
Some tools have been developed which help to design the
dialogue. A data flow diagram can be used for this (Ref.
8, p. 117) and SYNICS?? offers an automated tool for
dialogue design. However, the interface is more than just
the dialogue content. In the long run it may be that a
computer-based tool offers the only effective model of the
human-computer interface because it can capture the
interactive nature of that area. But before this can be
stated with any certainty, we need an effective diagram-
ming tool which can capture the essence of any interface.

5.2 Controls

The data-centred view of the system includes two
models—a data model and the data dictionary-which are
useful in determining appropriate controls. For example,
existence dependence is represented on the E-R model
and referential integrity is a feature of the relational
model. Data dictionaries can validate the range and
format of data items. Many of these checks reflect the
need to input and process data correctly, and it seems
likely that future data dictionary systems will perform
much of this function. More fundamental is the security
philosophy of a system and the implementation of
measures to control fraud and privacy and to accommo-
date system audits. These important facets are (if they are
present at all) often crudely bolted on to the system and
rarely considered as an integral part of the systems
design. We are unaware of any tool to assist in security
design other than a list of possible problems and
solutions. A set of power tools for security design is badly
needed.

5.3 Hardware and software selection

Advice in this area is usually limited to a checklist of
things to look for and an unsatisfactory and general guide
to quantifying costs and benefits. A number of firms have
their own ‘methodology’ but the increasing number of
clients willing to sue their advisers is exposing the cracks
in the wall. Grindley and Humble!2 still remains one of the
most coherent approaches, but its management aspects
still appear stronger than its technical advice.

5.4 Documentation and user support

This concerns the evaluation and delivery of user
support. Experience suggests that support should be
tailored to individual users and not roughly aimed at a
supposed ‘user group’. Information systems profes-
sionals normally rely upon technical instruction and train-
ing, usually manifesting itself in voluminous manuals.
However, as Stamper?? pointed out over a decade ago,
there are alternative, often richer ways of imparting
information.

Similarly, on-line help facilities are often disappoint-
ing, frequently displaying an uncanny resemblance to the
relevant pages in the manual. Learning modes seem a
step in the right direction, but a lot still remains to be
done in this area.

These four areas represent information problems
which we feel are still poorly modelled by existing
techniques. It is not a comprehensive list; we feel there
are important gaps in at least three more areas—
implementation, feasibility studies, small business com-
puting—but it gives an indication of the work that still has
to be done.

6. AUTOMATING SYSTEM
DEVELOPMENT

It is not the purpose of this paper to discuss the long and
relatively undistinguished history of computer-aided
systems analysis and design. Suffice to say that we expect

6 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

¥202 Iudy 60 U0 1senb Aq 2G/20%/2/1/0€/2101e/|ulwoo/wod dnoolwapede//:sdiy woly papeojumo(q



TOWARDS A TOOL KIT FOR THE SYSTEMS ANALYST

parts of all of the five current model areas to have
significant computer-based design aids within the next
decade. Some already exist — decision table preproces-
sors, dataflow diagrammers, data dictionaries, etc., whilst
others are undergoing development. The adoption of
these tools will be another task for the systems analyst
and designer. However, the fact that the tools may be
automated does not invalidate our argument. In fact the
over-use of inappropriate tools may be aggravated by the
presence of automatic variants, which have to be used to
justify the money spent on them. An excavator may dig
a hole faster than a spade, but this does not help if the
hole is in the wrong place.

7. CONCLUSIONS

Whilst we have some well-tried and proven tools for
systems analysis, they do not cover the spectrum of tasks
which the analyst has to undertake. It is not sufficient to
provide a list of guidelines, we need effective modelling
techniques which can be quickly learned and successfully
applied. There is an increasing need for computer-assisted
systems analysis and design, but before we can automate
tools there must be a thorough understanding of the

REFERENCES

1. R. N. Maddison, Information System Methodologies. Wiley
Heyden, Chichester (1983).

2. P. Hammersley et al., New approaches to systems analysis
and design. The Computer Journal 23 (1) 2-33 (1980).

3. A. T. Wood-Harper and G. Fitzgerald, A taxonomy of
current approaches to systems analysis. The Computer
Journal 25 (1), 12-16

4. T. W. Olle et al., Information Systems Design Method-
ologies: A Comparative Review. North-Holland, Amster-
dam (1982).

5. T.W. Olle et al., Information Systems Design Method-
ologies: A Feature Analysis. North-Holland, Amsterdam
(1983).

6. B. Raphael, The Thinking Computer: Mind Inside Matter.
Freeman, Oxford (1976).

7. P. Checkland Systems Theory, Systems Practice. Wiley,
Chichester (1976).

8. T. DeMarco, Structured Analysis: System Specification.
Yourdon (1980).

9. B. Lee, Introducing Systems Analysis and Design, vols 1
and 2. NCC publications (1979).

10. D. R. Howe, Data Analysis for Data Base Design. Edward
Arnold, London (1984).

11. E. Mumford, F. Land and J. Hawgood, A participative
approach to the design of computer systems. Impact on
Society 25 (3) 235-253 (1978).

12. K. Grindley and J. Humble The Effective Computer.
McGraw-Hill (1973).

13. P. Dearnley and P. Mayhew, In favour of system prototypes
and their integration into the systems development cycle.
The Computer Journal 26 (1), 36-42 (1983).

14. B. Wilson, Systems: Concepts, Methodologies and Applica-
tions. Wiley, Chichester (1984).

15. J. Martin and C. McClure, Diagramming Techniques for
Analysts and Programmers, Prentice-Hall, Englewood
Cliffs, N. J. (1985).

range of facilities which is required. The professional
analyst should have an extensive tool kit at his disposal.
The D.1.Y. analyst may make do with a subset of these,
but he must have something effective.

In this paper we have provided a review which
demonstrates that useful tools to deal with the analysis
and design of databases, processes and dataflows already
exist. What we lack are tools to handle the location and
type of interfaces, controls and support. The problems of
implementation are also poorly covered.

The recent trend of developing competing method-
ologies is hampering progress towards effective systems
analysis. We feel that it is unlikely (if not impossible) that
a single methodology could prescribe how to tackle the
great variety of tasks and situations encountered by the
systems analyst. The approach presented here of
developing a tool kit for the analyst — using techniques
where and when they are appropriate—provides much
more flexibility for dealing with the diverse applications
of computers to business and other problems. The
training of the analyst should focus on the variety and
selection of tools, so that appropriate methods may be
used in different problem situations. The desire to
produce ‘one best way’ is leading to elaborate and
bureaucratic methodologies.

16. S. Beer, The Brain of the Firm. Wiley, Chichester (1981).

17. D. Millington, Structured systems analysis and design using
standard flowcharting symbols. The Computer Journal 24
(4), 295-300 (1981).

18. D. Miller, Strategic data analysis. In Data Analysis in
Practice, edited Simon Holloway. Proc. BCS Database
Spec. Group, Leeds (1985).

19. C. C.J. Rosenquist, Entity life cycle models and their
applicability to information systems development life
cycles. The Computer Journal 25 (3), 307-315 (1982).

20. LBMS, The Structured Development Strategies (Course
Notes) (1984).

21. M. Jackson, System Development, Prentice-Hall, Engle-
wood Clifs, N. J. (1983).

22. R. Stamper, Information. Batsford, London (1973).

23. E. Edmonds and S. Guest, The ‘SYNICS’ user interface
manager. In Human — Computer Interaction — Interact’ 84,
edited B. Shackel. North-Holland, Amsterdam (1984).

24. E. Mumford, Defining system requirements to meet
business needs: a case study example. The Computer
Journal 28 (2), 97-104 (1985).

25. A. T. Wood-Harper et al., Information Systems Definition:
The Multiview Approach. Blackwell, Oxford (1985).

26. J. D. Naumann and A. M. Jenkins, Prototyping: the new
paradigm for systems development. MIS Quarterly 6 (3),
29-44 (1982).

27. J. M. Kraushaar et al. A prototyping method for applica-
tions development by end users and information systems
specialists. MIS Quarterly 9 (3), 189-197 (1985).

28. J. Connel and L. Brice, Rapid prototyping Datamation,
pp- 93-100 (15 August 1984).

29. B. Boehm et al., Prototyping versus specifying: a multi-
project experiment. [EEE Transactions on Software
Engineering SE-10 (3), 290-303 (1984).

30. R. F. Lobell, Application Program Generators—A State of
the Art Survey. NCC (1984).

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 7

¥202 Iudy 60 U0 1senb Aq 2G/20%/2/1/0€/2101e/|ulwoo/wod dnoolwapede//:sdiy woly papeojumo(q



