Deadlock Prevention in Process Control Computer Systems

S. TSUTSUI* AND Y. FUJIMOTO**

* Department of Management and Information Science, Faculty of Commerce, Hannan University, 5-4-33 Amamihigashi, Matsubara-shi, Osaka 580

Japan.

** Central Research Laboratories, Engineering Center, Sharp Corporation, 2613-1 Ichinomoto, Tenri-shi, Nara 632 Japan.

System deadlock is a serious problem in a multiprogramming environment. The approaches to this problem can be
divided into three categories: (I) prevention, (2) detection and recovery, and (3) avoidance. This paper proposes a
variation of the first approach, partially applying ideas developed in the second and third approaches. This approach is
especially effective in process control computer systems in which the application programs are usually fixed once
designed. Using four predetermined application program parameters obtained in the program development stage, a
directed graph model and a ‘restriction’ matrix model are introduced representing the usage of common resources.
Conditions sufficient for system deadlock prevention are presented along with algorithms for checking to see that the
models meet these conditions. By using this approach, if a deadlock possibility is detected the causes can also be
detected. The deadlock can thus be prevented during the program development stage. As the algorithms are not used in
the real-time mode, there is no negative effect on the responsiveness of the system. A higher utilisation rate of common
resources is also ensured because the usage of resources is restricted only when the possibility of a deadlock is detected.

Received June 1985

1. INTRODUCTION

System deadlock is a serious problem in a multiprogram-
ming environment in which a number of tasks
simultaneously share more than one common resource.
Deadlock situations arise when a group of tasks interlock
with each other because of conflicting resource require-
ments. Thus, if deadlock situations arise in an online
computer system, the system cannot respond within an
acceptable period of time.

This is particularly true in process control applications,
where a very quick response is required of computer
systems. In these applications, a system deadlock may
cause tremendous damage to the controlled plants.

System deadlocks have already been studied from
various viewpoints. According to Coffman,! approaches
to this problem can be classified into three categories: (1)
prevention, (2) detection and recovery, and (3)
avoidance.

In the prevention approach the usage of resources is
restricted so that system deadlock will never occur.? This
approach, however, has the disadvantage of degrading
system performance, because of severe constraints on
resource usage.

In the detection and recovery approach, all resource
requests are granted. A control program is periodically
executed to examine current resource allocations and to
determine if there are any tasks in a deadlock state. If a
deadlock is detected, a control program performs
corrective measures.? ¢

In the avoidance approach, a control program
examines resource usage and grants the request only if the
completion of all tasks can be guaranteed.’ 11

There are also some problems in the last two
approaches. One of the main problems is that the time
overhead of the operating systems using these approaches
tends to be greater because the control program must be
executed in the real-time mode.

This paper proposes a variation of the first approach,
partially applying the ideas developed in the second and

third approaches. The proposed approach is especially
effective in process control computer systems, in which
the application programs are usually fixed.

Using four predetermined application program para-
meters obtained in the program development stage, a
directed graph model and a ¢ restriction’ matrix model are
introduced representing the usage of common resources.
Conditions for system deadlock prevention are presented
with the algorithms for checking whether or not the
models meet these conditions.

In this approach, if a deadlock possibility is detected
the causes can also be detected. The deadlock can thus
be prevented during the program development stage. As
the algorithms are not executed in the real-time mode,
there will be no negative effect on system responsiveness.

2. ASSUMPTIONS AND DEFINITIONS
2.1 Assumptions

Four predetermined parametersrelating to the application
programs must be given in the development stage.

(1) Mode of usage for resources in each task.
Information must be given as to whether each task
requests common resources in shared usage or exclusive
usage. Definitions of shared usage and exclusive usage
will be given in section 2.2.

(2) Sequence of common resource usage in each task.

(3) Non-concurrent tasks. In a multiprogramming en-
vironment, a number of tasks are activated and run
simultaneously. However, there are pairs of tasks which
are never activated concurrently with one other; for
example, when a set of tasks is designed to be sequentially
activated. As much information as possible relating to the
non-concurrency between tasks is assumed to be
available.

(4) Types and number of common resources.

In process control computer systems it is not difficult
to obtain these parameters in the development stage of
application programs.

20 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

¥20¢ I4dy 60 U0 1senb Aq 22/20%/02/1/0€/2101e/|ufwoo/woo dnoolwspeoe//:sdiy wolj papeojumo(q

DEADLOCK PREVENTION IN PROCESS CONTROL COMPUTER SYSTEMS

2.2 Definitions
Definition 1. Exclusive usage and shared usage

Exclusive and shared usage are mutually defined as
follows.

(1) Exclusive usage. A resource is said to be in an
exclusive usage state when being used for only one task;
the requests for this resource from other tasks will be
suspended until the resource is released, whether the use
requests are for exclusive or shared usage.

(2) Shared usage. A resource is said to be in a shared
usage state when being used in more than one task
simultaneously; the resource cannot accept an exclusive
usage until all tasks performing a shared usage release
control on it.

Definition 2. System deadlock

When a task requests a resource, the system is said to be
in a deadlock state if the following two conditions, (1) and
(2), are true at the same time.

(1) Either one of the two following situations is
encountered. (a) A task requests exclusive usage of a
resource, but the resource is already being used for
exclusive or shared usage by one or more other tasks. The
request is then suspended. (b) A task requests shared
usage of a resource, but the resource is already being used
for exclusive usage by another task. The request is then
suspended.

(2) The request for the resource cannot be accepted
unless the requesting task releases at least one of the
resources which the task is holding.

Definition 3. The ‘wait’ relation between resources

If task T requests resource R; while holding resource R,
(i #), it is said that ‘resource R; is waiting for resource
R; in task T". This situation is denoted by R; 5 R;. This
relation is referred to as the ‘wait’ relation between
resources.

Definition 4. Propagation of wait relations
Let 7, and T, be two tasks. If the following two wait

. T, T,
relations, R, = R;and R; = R, are true, and the usage of
resource R; by T, and/or T, is in an exclusive usage state,
it is said that ‘resource R; is waiting for resource R, via

. . . . T, T,
resource R;’. This situation is denoted by R; = R; = R.
This relation is referred to as ‘propagation of wait
relation’.

3. DIRECTED GRAPH FOR WAIT
RELATIONS AND RESTRICTION MATRIX

3.1 Directed graph for wait relations

LetT;(i = 1,2, ..., N) represent the ith task and R;(j=1,
2, ..., M) the jth common resource. After developing
application programs, a Gantt Chart!? is drawn
representing the sequence and mode of resource usage for
resources in each task, as shown in Fig. 1.

Next, a directed graph representing the wait relations
described in Definition 3 is constructed from the Gantt
Chart in the following manner.

E E

Ri=vy -l . Pommm oo

1

s |

Ry =v, E e |

| ! E H E
Ry=v; | E [ttty E it

| ! S |
Ri=v, | i P opmme———o- :» ------ !

' : ! ! | E '

1 1 |

R5 =g : : | ' ! r=- |

| ' : : [: s
Re=vs | | [. [

| ' ! ! [| !

1] I] 1 1] 1

1 1 | | 1 | 1 1

t oty 3 i, ts tg t, tg

E = exclusive usage, S = shared usage,
ty, ty, .. ., tg = time point for resource requests.

Figure 1. Gantt Chart representation of use order and usage of
resources in a task.

(1) Let ¢, t,, .., t, indicate the sequence of the time
points at which task T; requests the resources (¢,, t,, ..,
ty in Fig. 1). A directed subgraph Gy = [V, Ayl is
obtained for each time point, whose vertices V;; = {v,}
correspond to the resources being held or requested at
time point #; by task T, and whose arcs A; = {a,}
correspond to the wait relations between the resources at
time point ¢;. According to the mode of usage of resources
vp beif}g held at #;, and resource v, requested at #;, the arc

a(v, - vg) is called an EE arc if v, and v, are E and E,

ES if they are E and S, SE if they are S and E, and SS
if they are both S (Fig. 2).

Gi G; Gis
v, v, ES v, v,
L] e ~
EE
a, "
3
az
SE
a3
G,'.; G:s
vy
ES
as
SE
v,y ‘zf V4 v, ———— v,
ES
a6
U3
Gi6 Gl7
L
EE
a8 ES
-— »e
SE vs v, ajo Vg
ag
V4

Figure 2. Subgraph representation of ‘wait’ relations between
resources in a task.

(2) A directed graph G, representing the wait relation
in the ith task is obtained as a union (G; = () G;) of
subgraph G;; (Fig. 3). j

(3) There are some tasks which cannot be represented
with only one Gantt Chart because they have more than
one path. For such a task, graph G, is obtained in the
following manner. First draw the Gantt Charts and
graphs for the individual paths. The union G{»
corresponds to the pth path. The graph G; for all the paths
is given as the union G; = () G{».

D

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 21

¥20¢ I4dy 60 U0 1senb Aq 22/20%/02/1/0€/2101e/|ufwoo/woo dnoolwspeoe//:sdiy wolj papeojumo(q

S. TSUTSUI AND Y. FUJIMOTO

SE
Us = V4 G =V, A, S))
Vi={vy, va 03
SE /4, Vg, Vs, Vg }
EE |ag EY ag|ss A={a, a a3,
aa as, as, A,
as, ag, dy,
v, fs v, ES | ag Zlo,}au,
1 12
a\EF
ES |ayo a3|SE
any\EE
v SE v
6 ™ 3

@y G; a3 A4 Aas Aa¢ Ay dg Ag Gy Ay 4y
v, 1 1 1 -1 1 1 1
vy | —1 1 1
v3 -1 -1 1
-1-1-1 1 1
Vs -1 -1
Vg -1 1

—1-1

Figure 3. Directed graph representation of ‘wait’ relations
between resources in a task.

(4) Thedirected graph G = (V, 4, S), which represents
wait relations between resources in the system, is
represented as G = (] G;, the union of G,.

)

3.2 Non-propagation matrix and non-concurrency
matrix

In order to analyse the propagation of wait relations, the
non-propagation matrix and non-concurrency matrix are
introduced.

First, the definition of concurrency between arcs is
given.

Definition 5. Concurrency between arcs

If there is a possibility that the wait relations represented
by arcs a; and a,, occur at the same time, it is said that
there is a concurrency between g, and a,,.

Based on the above definition, the non-concurrency
matrix is defined as follows:

Definition 6. Non-concurrency matrix

Let U = {(T;, T;))} (i # i') be a set of pairs of tasks which
are never activated simultaneously. The non-concurrency
matrix is defined as PP, where the (/,m) element of P is

1:If a,€G;, a,eGy(i#7) and (T, T;)eU,

Pim = ora,a,eG;and a, a, ¢G;;

0: If otherwise.

Next, the non-propagation matrix is defined, represent-
ing the propagation of the wait relations between
resources.

Definition 7. Non-propagation matrix

The non-propagation matrix is defined as Q where the
(I, m) element of Q is

1: If arc g, is incident into vertex v, arc a,,
is incident out of vertex v, and a; is an

Qim = ES or SS arc, a,, is an SE or SS arc;

0: If otherwise.

Both the non-concurrency matrix and the non-propa-
gation matrix defined above have the same properties in
the sense that they describe the conditions for non-
propagation of wait relations in graph G. Thus, a
‘restriction matrix’ R = (r,,,) is obtained as follows:

R=P+Q, rpm=pimV qim

4. SUFFICIENT CONDITIONSFORSYSTEM
DEADLOCK PREVENTION

In this section, sufficient conditions for system deadlock
prevention are discussed for two cases. First, where there
is only one resource of each type. Second where there is
more than one resource of each type.

4.1 Sufficient conditions for system deadlock prevention
where there is only one resource of each type

Let ¢ =(c;) be a directed circuit matrix in graph
G =(V,4,S) (¢;; = 1if a; belongs to the ith circuit in G,
¢;; = 0 if otherwise). Then the following theorem holds
true where there is only one resource of each type.

Theorem 1

Given graph G = (V,4,S) and restriction matrix R,
sufficient conditions for system deadlock prevention are
(1) no directed circuit exists in graph G, or (2) if directed
circuits exist, ¢, x Rxcf # 0 for each vector ¢, of
directed circuit matrix ¢ (¢ : column vector of c;).

Proof

First, if no directed circuit exists, then there is no circular
waiting. Thus conditions for the occurrence of system
deadlock defined in Definition 2 are not satisfied. Next,
from Definitions 5 and 6 it can be concluded that even
if there are directed circuits ¢, (k =1, 2, ..., K), if
cp xRxcl #0 for each circuit c,, then there is no
possibility that wait relations will occur simultaneously
in each circuit. Using Definition 7, there is no possibility
that wait relations will propagate through each circuit.
Thus, conditions for the occurrence of a system deadlock
defined in Definition 2 are not satisfied (end of proof).

4.2 Sufficient conditions for system deadlock prevention
in the case where there is more than one resource of
each type

Let E=(eM,e®,...,e®™), showing the number of
resources available in the system; e(™ = number of type
m resources (m =1,2,...,M). Let u; = (u®,u®, ...,
u™)), showing the allocation of resources among tasks;
u™ = number of type m resources allocated to task 7; at

22 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

¥20¢ I4dy 60 U0 1senb Aq 22/20%/02/1/0€/2101e/|ufwoo/wod dno-olwspede//:sdiy wolj papeojumoq

DEADLOCK PREVENTION IN PROCESS CONTROL COMPUTER SYSTEMS

timepointst;. Letry; = (r®,r®, . r™)showingrequests
for system resources; r™ = number of type m resources
requested at time point ¢; by task T;. The u;; and r;; can
easily be obtained from the Gantt Chart of task 7; (see
section 3.1).

The next theorem holds where there is more than one
resource of each type.

Theorem 2

When graph G, restriction matrix R, and the number of
resources of each type E, u;;, r;; are given, the sufficient
conditions for system deadlock prevention are: (1) G and
R meet the conditions in Theorem 1, or (2) if G and R
do not meet the conditions in Theorem 1 for directed
circuits ¢, €, ..., Cy, . . ., Cg, thereis a full sequence a(k),
where

310<r™ <e™—uf®) k=12,.. K,
m
where
oy = X Uy
{U‘ tlAy n W, # &}
= (u&‘&c), u&?k),) ugzl(\/llc;)
= > T
{14y 0 W, # @)
=P, rP, ..., rM)
Wk ={alcy = 1}.
Proof

This theorem is proved only for the case in which there
are directed circuits c,, ¢,, ..., Cx that do not meet the
condition in Theorem 1.

First, suppose all the wait relations described by c,, c,,
..., Cg hold true simultaneously. Then the total number
of resources allocated to the tasks in the circuits is

X z uj;
{‘_L_)‘ ijlAy N W # @}

)
@

Figure 4. Situation when ‘wait’ relations in circuits occur
simultaneously.

(Fig. 4) and the maximum number of resources remaining
free or becoming free within a finite time is

{k@‘iﬂ‘“ij n Wy # Q} v

On the other hand, r,, describes the number of resources

for which tasks in ¢, are waiting to be released. First k,

is selected such that a(k,) is the largest in a(k). Then, from

the condition of the full sequence, there exists m such that
0 <ri™ < etm —yuim

Thus, the wait relation corresponding to ¢, is

dissolved. When this happens the number of resources
allocated to the tasks in the circuits decreases to

1]
U, Uldg 0 Wy #)

ok

ij*

Next, k, is selected such that a(k,) is the next largest in
ok). Then, from {nja(n) < a(k,)} = {nja(n) < a(k,)} and
the condition of the full sequence, there exists m such that
0<rim<e™ —ufn) . Thus, the wait relation corre-
2
sponding to ¢, is also dissolved. In a similar way, the
remaining wait relations are also dissolved (end of proof).
Next, an algorithm is introduced to check whether a
full sequence a(k) exists.

Step 1

Let 6, = {1, 2, ..., K} be a set of subscripts of directed
circuit ¢;. Let o,, d,, d,, ... be the sequence of J.

Step 2

Examine to see whether m exists such
ri® < e™ —uf™ holds true for all k€ J,, where

that

us, = > .
LY, i n Wy, # &
If such a k does not exist then neither does a(k), and there
exists the possibility of system deadlock. If such ks do
exist then let the set of those ks be {k} and proceed to
Step 3.

Step 3

Let 6y, = 6, —{k}. If J,,, = & then proceed to Step 4,
otherwise repeat Step 2.

Step 4

From the sequence d,,d,, ..., d,, resulting from Step 3,
«(k) can be obtained as follows. First, assign in sequence
the numbers K to |d,|+ 1 to a(k) for ked,—9,.

Next, assign in sequence the numbers |J,| to |d,|+ 1 to
ofk) for ked,—3J,. Repeat these assignments until the
numbers |J/| to 1 are assigned to o(k) for k €J,., where
|0] is the number of elements of set J,.

5. RELAXATION OF THE CONDITIONS
FOR SYSTEM DEADLOCK PREVENTION

Conditions in Theorem 2 were discussed assuming that
Cy, Cy, ..., Cx may occur simultaneously. However, there
are cases in which ¢,, ¢,, ..., ¢ do not occur
simultaneously due to non-concurrency between arcs
(Definition 6). When c,, ¢,, ..., ¢, do not occur
simultaneously, the maximum number of resources
allocated to tasks in the circuits for a given time becomes
smaller than ¥ u
K ij*
{0 inay 0 Werg}
Accordingly, relaxation of the conditions is possible. If
there is a possibility that the circuits belonging to some
of the subsets of ¢, ¢,, .. ., cx occur simultaneously, then
the conditions in Theorem 2 need be applied only to these
subsets.

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 23

¥20¢ I4dy 60 U0 1senb Aq 22/20%/02/1/0€/2101e/|ufwoo/wod dno-olwspede//:sdiy wolj papeojumoq

S. TSUTSUI AND Y. FUJIMOTO

Whether or not ¢,, c,, ..., ¢k occur simultaneously
can be checked by the non-concurrency matrix P intro-
duced in section 3.2. From the above, it is clear that the
following proposition holds true.

Proposition 1

Let C={c,, C,, ..., Cg}. Let C» be a subset of C.
If COxPxCHT £0(, then there will be no case in
which any combination of circuits in C®, where
C® =\/ ¢c;lc, € CV, occurs simultaneously.

k

From this proposition it is clear that the following
theorem holds.

Theorem 3

Where a full sequence a(k) which meets the conditions
in Theorem 2 does not exist, the sufficient conditions
for system deadlock prevention are as follows. There
exists a full sequence a®’(k) which meets the follow-
ing conditions for each subset C%¥ = C such that
COXxPxCOT =0,

30<rm <em—ufRy, k=12 .. KO,

where
ua(“(k) =
{. U

BRI)

0 ij
ij|Ay 0 W' #)

— (D @) an
= (U0 gy Uy gy - - - > Uy zy)

and where the subscripts of each element in C% are
reassigned as

Al A Al
CO = (&0, &P, ..., 00}

and W is a set of arcs which make up ¢{.

Proof

It is obvious from the proof of Theorem 2 and
Proposition 1.

Corollary 3.1.

If there exists a full sequence a®(k), where

k=1,2, ..., KO

(m) (m) _ 3, (m)
20 <r™<e Uy D)

for the subset C® such that CY x P x COT = (, then
there exists a full sequence a’(k), where

30 <rf™ <em—yBy k=1,2,... KO

m (k)
for all subsets such that C® < C® except when
c® = ¢,

From Corollary 3.1 it can be concluded that it is only
necessary to check whether or not there exist a(k)s for
{CQ.,}, the set ‘maximal subset’ of C, rather than
checking for all subsets of C that meet C¥ x P x COT
= 0. Here, C{),,, the maximal subset of C is defined as
follows:

(1) COxPxCOT =
(2) ch¢ C#rl\)ax:((:%)ax'i' Ci) x PP x (Cgtl])ax+ Ci)T # 0’
i

where C{, = \/ ¢jlc;€ C,,.
J

The same algorithm as in Theorem 2 can be applied to
check whether or not a full sequence exists for each
maximal subset of C.

The relaxation of conditions of Theorem 3 is shown by
a simple example. As is seen in Fig. 5, in a system
consisting of six tasks 7; ~ T, their wait relations are
shown by graph G, ~ G,. Allocation of resources to each

EE EE
Vjo———>oV; Viea— oV,
a; a
G, G,

EE EE
U, .—a;——“ v3 U,y o‘-—“—. V3
G, Gs
EE EE
U3 0———{15—» v, U3 “—Us—. v,
Gs Ge

v

a as

a, a, a; a, as ag
1 0 1

&
© —- O — O O
- o —- O O O
o - O O ©
- O O O =

0
1
0
0
0

o

c,=(1 1 0 0 0
€=(0 0 1 1 0 0)
€=(0 0 0 0 1 1

Figure 5. An example of directed circuits in a system.

task is on an exclusive basis, and each type of resource
allocated is counted as one resource. In graph G showing

ag
the wait relations of the system, G = X G;. Here tasks T;

=1
and T, ;and T;, T; and T}, T, and T, T, and T, and T,
and T, are taken as never being activated simultaneously
(U =(L, T), (T;, T), (T;, Ty), (T,, Tp), (T, Ty), (T, Ty):
see Definition 6 in section 3.2). As seen in Fig. 5, three
directed circuits, ¢,, ¢, and c¢; do not satisfy the
conditions of Theorem 1 (C = {c,, c,, ¢;}). Since here

(Ve Ve)xPx(c, Ve, Ve)T#0

24 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

¥20¢ I4dy 60 U0 1senb Aq 22/20%/02/1/0€/2101e/|ufwoo/wod dno-olwspede//:sdiy wolj papeojumoq

DEADLOCK PREVENTION IN PROCESS CONTROL COMPUTER SYSTEMS

the three directed circuits c,, ¢,, €, are never activated
simultaneously. Moreover, ¢, and c,, ¢, and ¢, and ¢,
and c, are likewise not activated simultaneously. In this
example the maximal subsets of C are CQh, = {c,},
C®,, = {c,}, C®,x = {c,}. For these three maximal sub-
sets (in this example they are subsets consisting of only
one element each), a check can be made of the conditions
of Theorem 2. Supposing that the directed circuits ¢,, €5,
c, are activated simultaneously, then the number of
allocated resources would be

(01 Uy Ua)
2°2°2
According to the conditions of Theorem 2, the minimum

number of resources sufficient for deadlock prevention
(E”) is either

U; Uy Ug Uy Vg Ua) (Ul Uy Ua)
’ ’) or) ’) or s) .
<3 2 2) <2 3’2 2’2’3
However, according to the conditions of Theorem 3, since
among directed circuits ¢,, c,, ¢; only one can be

simultaneously activated, the number of allocated
resources at the time of activation is either

v, Uy Uy v, Uy Uy Uy Uy Uy
<1’1’0>°r<0’1’1>°r<1’0’1)

Here the necessary number of resources for release of ¢,

is either
Uy Uy Uy Uy Uy Uy
(2’1’0)°r<1’2’0)

Likewise, for ¢, the number is either
U Uy U3 U U U
(0’2’1>°r<0’1’2>
Uy Uy U3 Uy Up Uy
(2’0’1>°r<1’0’2)

For satisfying the three conditions C{,,, C2,,, C,, the

minimum number of resources E” resulting in a sufficient
system is either

(vl v, 03) (v1 v, 173) or (vl v, v3>
2’271 /\1’2°2 2’1°2)
This E” is even smaller than the E” of Theorem 2, making

it clear that the conditions of Theorem 3 have been
relaxed compared to those of Theorem 2.

and for ¢,

6. APPLICATION

In sections 4 and 5 the conditions for system deadlock
prevention were obtained and the algorithms for
checking deadlock possibility were developed by intro-
ducing three theorems.

REFERENCES

1. E. G. Coffmann, M. J. Elphick and A. Shoshani, System
deadlock. Computing Surveys 3 (2), 67-78 (1971).

2. J. W. Havender, Avoiding deadlock in multitasking sys-
tems. IBM System Journal 7 (2), 74-84 (1968).

3. J. W. Murphy, Resource allocation with interlock detection

In the practical development of application programs,
it is recommended that Theorems 1, 2 and 3 be applied
in sequence to reduce complexity. Not only can deadlock
possibility be detected but its causes can be indicated by
applying the algorithms derived from the theorems.
Therefore, it is easy to eliminate the causes by using
various approaches.!:?

One approach is to increase the number of resources
of the same type so as to satisfy the conditions of
Theorem 3. Here care must be taken, in deciding which
resource to increase, to minimise costs. First, let cost per
unit of the type m resource of the system be x(™. As for
the existence or non-existence of a full sequence a(k)
referred to in the theorems, Step 2 of the decision
algorithm described in section 4.2, if a k does not exist
that satisfies:

3r$cm) < e("‘)—ug;”)

then the g™ attained from the following:
gim = r{m — em 4 g™

indicates the number of resources m needed for the
existence of a k that satisfies the abovementioned
conditions. Next, type m, resource must be selected such
that

mlnx(m) (m) :x(mo)- (m)

g qy di,

the type m, resource increased in number, and the
detection algorithm applied once again.

In existing process control computer systems, addi-
tions or modifications of application programs are often
made, due to the extension of controlled plants or the
enhancement of control methods. In these cases, the
detection procedure for the possibility of deadlock must
be carried out all over again. When a deadlock possibility
is detected, its causes must be eliminated.

7. CONCLUSIONS

Using four predetermined application program para-
meters, a directed graph model representing the usage of
common resources by tasks and a restriction matrix
model were presented. Sufficient conditions for system
deadlock prevention were derived, and algorithms for
deciding whether or not the models meet the conditions
were presented. It is easy to remove causes from the
system because the algorithms can point out the causes
for the possibility of deadlock.

The method proposed in this paper is especially useful
in process control computer systems because the
algorithms introduced do not have to be executed in
real-time mode, and restrictions on the usage of common
resources are applied only when a deadlock possibility
is detected. Thus, additional side-effects on the respon-
siveness of the system will not arise, and a higher utilisa-
tion rate of common resources is guaranteed.

in a multitasking system. Proceedings FJCC 33, 1169-1176
(1969).

4. A. Shoshani and E. G. Coffman, Detection and prevention
of deadlock. Proceedings, 4th Annual Princeton Conference
on Information Sciences and Systems, pp. 355-360 (1970).

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 25

¥20¢ I4dy 60 U0 1senb Aq 22/20%/02/1/0€/2101e/|ufwoo/woo dnoolwspeoe//:sdiy wolj papeojumo(q

5.

26

S. TSUTSUI AND Y. FUJIMOTO

D. Menasce and R. Muntz, Locking and deadlock detection
in distributed data bases. JEEE Trans. Software Eng. SES
(3), 195-202 (1979).

. V. D. Gligor and S. H. Shattuck, On deadlock detection in

distributed systems. IEEE Trans. Software Eng. SE-6 (5)
435-440 (1980).

. A. N. Habermann, Prevention of system deadlock. Comm.

ACM 12 (7), 373-377 (1969).

. R.C. Holt, Comments on prevention of the system

deadlocks. Comm. ACM 14 (1) 36-38 (1971).

9.

11.

12.

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

A. Shoshani and E. G. Coffman, Sequencing tasks in
multiproces system to avoid deadlocks. Conference Record,
11th Annual Symposium on Switching and Automata Theory,
pp. 225-235 (1970).

. L. H. Howard, Mixed solution for the deadlock problem.

Comm. ACM 16 (7), 427-430 (1970).

D. B. Lomet, Subsystems of process with deadlock avoid-
ance. IEEFE Trans. Software Eng. SE-6 (3), 297-304 (1980).
W. Clark, The Gantt Chart (3rd edn). Pitman, London
(1952).

¥20¢ I4dy 60 U0 1senb Aq 22/20%/02/1/0€/2101e/|ufwoo/wod dno-olwspede//:sdiy wolj papeojumoq

