Some Transformations of Relevance to Report Generation

A. G. MIDDLETON

Department of Computer Science, Memorial University of Newfoundland, St John’s, Newfoundland, Canada AIC 587

This paper presents an example of ‘event-based’ program transformation, in which events embedded in a program are
used as markers to aid the process of program transformation. In this methodology a ‘program’ is presented as * base
program plus extensions’. The (procedural) base program supplies the raw inputs for a set of calculations, and the set
of (non-procedural) extensions express outputs to be derived from these raw inputs. A sequence of transformations are
applied to the base program to derive a ‘target program’ which consumes the raw inputs and produces the outputs
specified by the set of extensions. An example of the methodology is presented which suggests that this approach could

be of use in the production of report generation programs.

Received March 1981, revised March 1986

1. INTRODUCTION

This work can be related to the following recent develop-
ments in software research.

(i) For some time now, there has been an interest in
non-procedural programming languages,!® 11,16 jp
which the programmer specifies ‘ what’ is to be done and
relies on the language translator to deduce ‘how’ this is
to be done. A similar desire to suppress procedural detail
has motivated research into functional programming
languages.!

(i) There has been considerable interest in program
transformation as a means of converting clear, concise,
but (most probably) inefficient programs into programs
which are more efficient but (most probably) somewhat
opaque. % '* The conversion of such programs is
achieved through the use of a sequence of equivalence-
preserving transformations.

(iif) Recently, Weiser has shown that sequential
programs can be better understood by decomposing
them into ‘slices’,'” a slice being a group of interrelated
program statements which act together to produce a
single result. These slices can be regarded as the natural,
intellectual ‘chunks’ of the program which correspond to
‘units of thought’ used by the programmer to comprehend
the program structure.?

This research can be related to the above trends as
follows.

(1) This paper presents a ‘semi-procedural’ approach
to programming in which part of the program (the base
program) is procedural, and the other part of the
program (the extensions) is non-procedural. An interest-
ing feature of the system is that the degree of
procedurality of a source program can vary between two
extremes: (@) the source program is completely procedural
(no extension is supplied); (b) the source program is
completely non-procedural (no base program is
supplied).

(i) The transformations which are used differ from
those normally used in the following two respects: (a) the
transformations used are ‘event-based '—events embedded
in the program are used as markers to indicate those
points at which new activities are to be added to a
program; (b) strictly, the transformations used are not
equivalence-preserving, since the transformations cause
extra results to be computed by the program. (However,
the transformations do preserve the equivalence of all
prior results.)

(iii) The addition of a new extension corresponds to
the addition of a new ‘slice’ to the program.!” For each
extension, an interrelated group of statements are added
to the program, using events embedded in the program
to ensure that each statement in the slice is inserted at the
correct point in the transformed program.

2. AN EXAMPLE PROBLEM

In order to make ideas specific, this paper will focus on
a single example problem, chosen to suggest the
relevance of event-based program transformation tech-
niques to the development of report generation
programs.

Suppose that we are processing a file containing one
year’s listing of sales figures, sorted by the name of the
salesperson involved in each sale. A typical entry in this
file might be a record of the following form

Name Amount
[Jones [1500]

This record would indicate that Jones has sold an item
worth $1,500.

Now let us suppose that we wish to extract the
following information:

(i) gross sales for the year;

(i1) the total number of salespeople involved in the
sales;

(iii) the sales total for each salesperson;

(iv) the salespersons (or salesperson) with the highest
yearly sales total;

(v) the number of salespersons who achieved this
maximum sales level.

The following base program, which ignores essentially
irrelevant details about opening and closing files, would
be suitable for supplying the raw data:

(BEGIN_YEAR)
READ(RFILE), R
WHILE R # DUMMY DO
(ITEM: R)
READ(RFILE), R
ENDWHILE
(END_YEAR)

At this point, the following remarks are in order.
(i) The programming notation used in this paper is
informal, and assumes a dynamic treatment of data

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 37

¥202 I4dy 01 uo 1senb Aq 88/ /0%/.€/1/0€/2101e/|ufwoo/wod dnoolwspede//:sdiy Wwolj papeojumo(

A. G. MIDDLETON

types. This enables, essentially irrelevant, details con-
cerning type declarations to be suppressed.

(i) This base program contains three events:

(BEGIN_YEAR), <ITEM) and (END_YEAR), and
the second of these events has an ‘associated value’, R.
These events will be used to aid the transformation
process.

(iii) R will contain a representative record from the file

RFILE, which contains the yearly sales summary.

Having supplied a suitable base program, the required

outputs of the target program can be specified by the
following extensions:

(EX,) GROSS « SUM(AMOUNT(ITEM),YEAR)
(EX,) NAME_GROUP «

CONTROL_GROUP(NAME(ITEM),YEAR)

(EX,) NAME_TOTAL «

SUM(AMOUNT(ITEM),NAME_GROUP)

(EX,) VECTOR(TOTALS,NUMPERSONS) «

(NAME_TOTAL,YEAR)

(EX,) MAXSALES « MAX(NAME_TOTAL,YEAR)
(EX,) WINNER «

LAST(NAME(ITEM),NAME_GROUP)
AT (NAME_TOTAL = MAXSALES)

(EX,) VECTOR(WINNERS,NUMWIN)

(WINNER,YEAR)

The intent of these extensions is as follows.

(i) Gross sales for the year are to be stored in the

variable GROSS.

(i) A ‘name group’ will contain a subsequence of

records with the same NAME-value (i.e. all sales for a
particular salesperson).

(i) NAME_TOTAL provides the total for all sales

within a particular name group.

(iv) The one-dimensional array TOTALS is to receive

the values of NAME_TOTAL, and NUMPERSONS
will record the number of totals transferred to this array.

(v) MAXSALES will record the highest per-sales-

person total.

(vi) A ‘winner’ is any person who achieves this highest

sales total (there could be several).

(vii) The names of the winners will be transferred to

the one-dimensional array WINNERS, and NUMWIN
will record the number of names so transferred.

The above does not represent a substantial problem to

current report-generation systems, and the fact that this
methodology can solve the problem is, in itself, not
considered to be a significant achievement. However, it
is considered to be significant that this paper presents a
systematic methodology for developing such a program.
In the author’s opinion, as suggested in Horowitz,
Kember and Narasimhan (1985),% the higher-level
language systems used in data-processing environments
are long overdue for systematic treatment by academics.
The aim of this paper is to make a contribution towards
the more systematic development of such languages.

Before proceeding with the development of the above

example, some elementary technical concepts will be
introduced in the next few sections of the paper.

3. EVENTS, INTERVALS AND SEQUENCES
3.1 Events

The transformation process depends on the use of
‘events’ to act as markers to aid program transformation.

38

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

These markers allow the system to insert new activities
at the correct points in the target program. The notation

<E)

denotes an event name ‘E’, and the notation

(E:eye,,...,en>

associates the tuple of values (e, e,,...,ey) with the
occurrence of the event (E). In the above base program
there are three events, (BEGIN_YEAR), (ITEM) and
(END_YEAR), and the second of these events has a
single value associated with its occurrence.

3.2 Intervals

Events are often used in pairs to form an ‘interval’. In
the above base program, the pair of events (BEGIN _
YEAR) and (END_YEAR) act together to form the
interval (YEAR). Typically, an interval will indicate the
span of time over which a sequence of data values will
be produced.

3.3 Sequences

If (E) is a value-producing event, and <I) is an interval
containing {E), then the pair ((E),{I>) denotes the
sequence of all those E-values which occur over any
instance of the interval (I). Typically, <I) might
correspond to the scope of some loop, and the pair ((E,
<I)) denotes the sequence of E-values which correspond
to some single execution of the entire loop.

Where no ambiguity will occur, the sharp brackets
around event-names and interval-names can be dropped.
Thus the pair (E,I) denotes exactly the same sequence as
the pair (KE), <I)).

4. EVENT-BASED PROGRAM
TRANSFORMATION

As mentioned above, the methodology presented depends

on the use of ‘event-based’ program transformations.

Events embedded in the program are used as markers to

direct the insertion of new activities in the program.
All transformations have the form

Old New
text = text

which indicates that ‘old text’ must be replaced
throughout the program by ‘new text’. As an example,
consider the translation of an extension of the form

S « SUM(E,])

which causes the sum of the sequence (E,I) to be stored
in the variable S. This extension can be implemented by
using the following transformations:
{BEGIN_I) = (BEGIN_I)
S<0

CE:e)=><E:e)
S<S+e
(END_I) = (END_I)
{S:8)

The effect of these transformations is as follows.

¥202 I4dy 01 uo 1senb Aq 88/ /0%/.€/1/0€/2101e/|ufwoo/wod dnoolwspede//:sdiy Wwolj papeojumo(

SOME TRANSFORMATIONS OF RELEVANCE TO REPORT GENERATION

(i) The sum S is initialised to zero every time the event
(BEGIN_I) occurs.

(ii) The associated value of {E) is added to S every
time that (E) occurs.

(iii) The final value of S is made available whenever
(END_I) occurs. Other operators are implemented in a
similar manner. For example, an extension of the form

N « NUMBER(E,]),

which causes N to be used to count the number of
occurrences of (E) during the interval {I), can be
implemented through the following transformations:

{BEGIN_I> = (BEGIN_I)
N«0O

(E:e)=<(E:e)
Ne<N+1

(END_I} = (END_I>
(N: N>

At some later stage, it is intended to provide some means
of extensibility, so that new operator definitions can be
written in some suitably convenient form, and the
required transformations can be derived mechanically
from these definitions. However, at present an ad hoc
approach is used for each operator required.

5. DESCRIPTORS

This work can be related very closely to the Jackson
method of program design.”~ ® In fact, the method uses
‘descriptors’ to express the relative sequencing between
different events and intervals contained in a program,
and these descriptors convey exactly the same information
as Jackson-style ‘data structures’. In fact, the only

Descriptor

Mvrt [Loop]

record group

Issue Receipt
record record

Jackson-style
data structure

MVT record
group

MVT *
record

7\

Receipt o
record

Issue
record

Fig. 1. A descriptor and its equivalent Jackson-style data
structure.

(a) Initial descriptor

] Loop
Year
Item
(b) Updated descriptor (extensions EX, to EX)
I Seq
| Loop \ \
Year Gross MAXSALES
| Seq
| Loop \
NAME_GROUP NAME_TOTAL
Item

Fig. 2. Updating of descriptors.

difference between descriptors and Jackson-style data
structures is the manner in which iteration and selection
components are represented. This difference is shown in
Fig. 1, which shows a descriptor along with its equivalent
Jackson-style data structure. Both structures are intended
to represent a group of movement records, each move-
ment record being either an issue record or a receipt
record.

6. DATA-BUFFERING

An ‘order clash’ occurs when data in an input structure
does not arrive in the natural order required by a
particular computation. Descriptors are used to detect
order clashes and to supply the necessary ‘ data buffering’
to resolve them.

An example of this requirement is presented by the
translation of the expression NAME-TOTAL
= MAXSALES in the extension

(EX,) WINNER «
LAST(NAME(ITEM),NAME_GROUP)
AT (NAME_TOTAL = MAXSALES)

In order to deal with such a problem, the descriptor for
the target program is updated as each extension is
implemented. Initially, before any extension is imple-
mented, the descriptor for the target program corresponds
to the descriptor for the base program, and has the form
shown in Fig. 2(a). After extensions EX, to EX; have
been implemented, the descriptor for the target program
has the form shown in Fig. 2(b).

Various ‘sequence relations’ can be deduced from
descriptors such as those shown in Fig. 2.4 In this
particular context, the following information can be
deduced from the descriptor in Fig. 2(b).

(i) There can be several values of NAME_TOTAL for
a single occurrence of MAXSALES.

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 39

¥202 I4dy 01 uo 1senb Aq 88/ /0%/.€/1/0€/2101e/|ufwoo/wod dnoolwspede//:sdiy Wwolj papeojumo(

A. G. MIDDLETON

(ii) The values of NAME_TOTAL occur before the
value of MAXSALES is available.

Unless something is done to save the NAME_TOTAL
values, they will be unavailable for comparison with the
MAXSALES value by the time that the MAXSALES
value becomes available.

To deal with this problem, data-buffering transform-
ations are used to achieve the following effect (see Ref.
14, for details):

(i) The NAME_TOTAL values are saved in a storage
buffer as they are produced.

(ii)) These values are regurgitated once the value of
MAXSALES is available, thus allowing the comparison
of each NAME_TOTAL value to MAXSALES.

7. CONTROL GROUPS

Jackson has complained about the inelegance of the
well-known ‘control break’ mechanism.® The purpose of
the ‘control group’ mechanism is to provide the more
meaningful structure recommended by Jackson.

The control-group structure arises when a sequence is
sorted on some key and it is required to partition the
sequence into blocks in such a way that items within each
block of the partition share the same key value.

We shall now look at the detailed translation of an
extension of the form

I' « CONTROL_GROUP(E|I),

where (E,I) is assumed to be a sorted sequence of E
values, and I’ will be the control-group interval such that
(i) all E values within any occurrence of I’ are equal; (ii)
any two E values which occur in different instances of I’
are unequal; (iii) all E values fall within exactly one
instance of I'. The strategy for implementing

I' « CONTROL_GROUP(E,I)
is as follows.

(i) Events (BEGIN_I') and (END_I") are required to
mark the opening and closing of the interval {I').

(i) An event (CHANGE_E) is made to occur when-
ever two successive E values are different.

(iii) The event (BEGIN_I') is made to occur whenever
{BEGIN_I} occurs, and the event (END_I') is made to
occur whenever (END_I) occurs.

(iv) The event (CHANGE_E) is then made to
generate the two events (END_I') and {(BEGIN_I" (in
that order).

The above mechanism is adequate except that it will
not deal with the case where there are exactly zero
occurrences of {E) during any single occurrence of {I).
(We do not wish to allow the occurrence of a control
group containing no E value.) This problem can be dealt
with by including the following mechanics.

(v) The extension FIRST_E « FIRST_TIME(E,]) is
added. This provides a first-time switch to indicate
whether or not there has been a single occurrence in {<E)
since the beginning of <{I).

(vi) The closing of <I’) is made conditional upon the
value of this first-time switch.

Having stated the general strategy, let us now look at
some of the details. The following transformations allow
differences in successive E values to be monitored:

(BEGIN_I) = (BEGIN_I)
FIRST_E « TRUE

(E:e)= IF FIRST_E THEN

FIRST_E « FALSE

ELSE
IF e # OLD_E THEN

{CHANGE_E)

ENDIF

ENDIF

OLD_E «¢

(E:e)

Here, the following remarks are in order.

(i) Monitoring changes in E value (through
(CHANGE_E)) requires the use of a first-time switch
(FIRST_E) for the sequence (E,I). This first-time switch
can also be used to monitor the correct closing of the
interval {I").

(i) OLD_E is used to store that E value which
precedes the current E value.

The remaining transformations required are as
follows:

(BEGIN_I) = (BEGIN_I)
(BEGIN_I")

(CHANGE_E) = (CHANGE_E)
(END_I'>
(BEGIN_I'>

(END_I) = IF NOT(FIRST_E) THEN
(END_TI'>
ENDIF
(END_I)

Thiscompletes the transformations required to implement
the control-group mechanism. It is worth noting that
control groups can be nested, and the interval {I") could
itself be partitioned on a secondary key, in the same
manner as {I") itself was created.

8. REMAINING TRANSFORMATIONS

Only a few miscellaneous transformations remain to be
presented, and the development of the report-generation
example is complete.

First, let us dispose of the trivial matter of computing
the expressions NAME(ITEM) and AMOUNT(ITEM).
Both of these expressions are examples of applying a
unary function to a unary event. The general requirement
here is to translate an implied extension of the form

FE « F(E),

where F is a unary function and E is a unary event. Such
an extension can be handled quite simply by the follow-
ing transformation:

CE:ed)=><(E:e)
(FE: F(e))

Another outstanding requirement is to translate an
extension of the form

VECTOR(V,NV) « (E,I),

which is intended to cause the sequence (E,I) to be stored
in the one-dimensional array V, with a count of the
number of values stored to be recorded in NV. This
requirement could be treated in the more general context
of representing data sequences by abstract operators for

40 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

¥202 I4dy 01 uo 1senb Aq 88/ /0%/.€/1/0€/2101e/|ufwoo/wod dnoolwspede//:sdiy Wwolj papeojumo(

SOME TRANSFORMATIONS OF RELEVANCE TO REPORT GENERATION

iteration (see Ref. 15, for some examples of the use of this
approach).

However, to avoid a long digression, we will simply
present an ad hoc approach which is adequate to deal
with the specific problem at hand. Using an ad hoc
approach, the following transformations will suffice to
solve this problem:

(BEGIN_I) = (BEGIN_)
NV «0

(E:e)=>(E:e)
NV<NV+1
V[NV] «e

(END_I} = (END_I)
(NV: NV>

Now the only remaining problem is to translate the
extension

(EX,) WINNER «
LAST(NAME(ITEM),NAME_GROUP)
AT (NAME_TOTAL = MAXSALES)

This can be decomposed into the following three sub-
extensions:

(EX,4) LN « LAST(NAME(ITEM),NAME_GROUP)
(EX,5) EQL « NAME_TOTAL = MAXSALES
(EX;c) WINNER « LN AT EQL
An extension of the form

L« LAST(E,I)
can be translated easily by using the transformation

(END_I) = (END_I)
(L:e&)

where e is extracted from the event (E: e) (A slight
problem arises if there are several textual occurrences of
(E), but it can be dealt with.)

The extension

(EX,p) EQL « NAME_TOTAL = MAXSALES

can be dealt with by using the data-buffering techniques
discussed earlier, and this will produce an event of the
form (EQL: b), where b is a boolean value. An extension
of the form

EB—~ EATB

(where B is a boolean event) can be translated by using
the transformation

REFERENCES

1. J. Backus, Can programming be liberated from the
Von Neuman style? CACM 21, 613-641 (1978).

2. R. M. Burstall and J. Darlington, A transformation system
for developing recursive programs. JACM 24, 44-67
(1977).

3. 1. S. Davis, Chunks: a basis for complexity measurement,
Information Processing and Management, 20 (1-2), 119-127
(1984).

4. E. Horowitz, A. Kemper and B. Narasimhan, A survey of
application generators, I[EEE Software 2 (1), 40-54 (1985).

5. J.W. Hughes, A formalization and explication of the
Michael Jackson method of program design. Software,
Practice and Experience, 9, 191-202 (1977).

(E:e)=>(E:e)
IF b THEN
{EB:¢e)
ENDIF

9. RELEVANCE TO THE JACKSON
METHOD

As was mentioned earlier, this method borrows heavily
from the Jackson approach to program construction.” 8
Like other researchers, 13 the author feels that further
formalisation and automation of the Jackson approach
to program design is very desirable.

However, at present the techniques presented here do
not generally go much beyond a convenient notation for
handling the ‘list and allocate operations’ step of
Jackson’s method.” In order to make a more substantial
contribution towards handling Jackson’s methodology it
would be necessary to provide more formalisation and
mechanisation of (at least) the following types of
problem:

(i) structure clashes;
(ii) interleaving problems;

(iii) backtracking problems;

(iv) problems involving data ordering (sorting, merg-
ing, collating, etc.).

If problems such as the above can be handled, then it
may be possible to chew away at the bottom end of the
Jackson design process in such a way that problems
which are currently considered to be ‘design’ problems
can be relegated to the level of coding details, with the
subsequent delegation of more and more structural detail
to a mechanical transformation system.

10. CONCLUSIONS

Data processing professionals have been using higher-
level language systems for report-generation problems
for some time now. However, so far there has not been
much academic interest in the systematic generation of
such programs.* This paper has presented an attempt to
introduce a systematic methodology for the construction
of such programs.

Acknowledgement

This work was supported by the Natural Science and
Engineering Research Council of Canada, through grant
A3406.

6. D. F. Kibler,J. M. Neighborsand T. A. Standish, Program
manipulation via an efficient production system. Proceed-
ings, SIGPLAN/SIGART Symposium on Artificial Intelli-
gence and Programming Languages, pp. 163-173 (1977).

7. M. A. Jackson, Principles of Program Design. Academic
Press, London (1975).

8. M. A. Jackson, System Development. (1983)

9. M. A. Jackson, Getting it wrong —a cautionary tale. In
Tutorial on JSP & JSD: The Jackson approach to Software
Development, IEEE Tutorial (by J. R. Cameron) (1984).

10. B. M. Leavenworth, Non-procedural data processing. The
Computer Journal 20, 6-9 (1977).
11. B. M. Leavenworth and J. E. Sammet, An overview of

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 41

¥202 I4dy 01 uo 1senb Aq 88/ /0%/.€/1/0€/2101e/|ufwoo/wod dnoolwspede//:sdiy Wwolj papeojumo(

12.

13.

14.

42

A. G. MIDDLETON

non-procedural languages, Proceedings, SIGPLAN Sym-
posium on Very High Level Languages, pp. 1-12
(1974).

D. B. Loveman, Program improvement by source-to-source
transformations. JACM 24, 121-145 (1977).

R. C. B. Martins and P. A. S. Veloso, Jackson’s method
for program construction reformalised and extended.
Proceedings, 19th Conference on Information Sciences and
Systems, Johns Hopkins University, pp. 606-609 (1985).
A. G. Middleton, Programming by extension: a program
construction technique, Proceedings, 3rd International

15.

16.

17.

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

Conference in Computer Science, Santiago, Chile, pp. 68-85
(1983).

A. G. Middleton and R. B. B. Brake, Automating Imple-
mentation Details for a Limited Data Abstraction. Technical
Report 8511, Department of Computer Science, Memorial
University, Newfoundland, Canada (1985).

J. T. Schwartz, On Programming: An Interim Report on
SETL Project. Courant Institute of Mathematical Sciences
(1975).

M. Weiser, Programmers use slices when debugging.
CACM 25, 446-452 (1982).

¥202 I4dy 01 uo 1senb Aq 88/ /0%/.€/1/0€/2101e/|ufwoo/woo dno-olwsapeoe//:sdiy wolj papeojumoq

