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Algorithms are given to transform unstructured program schemas into equivalent structured forms. These algorithms are
shown to have a computational complexity which is linearly related to schema size for almost all schemas, but at worst
exponential with an exponent greater than but asymptotically close to one for large problems. Structuring is achieved by
first identifying the forward paths of the schema and reducing them to an equivalent structured elementary path E. Each
back path of E is then recursively structured to an equivalent single back arc, thus reducing the original schema to a
single elementary path together with a set of possibly overlapping back arcs. The remaining unstructuredness is removed
by recursive application of a loop-structuring algorithm. The algorithms are illustrated by application to a complex

hypothetical schema and to two practical problems.
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1. INTRODUCTION

This paper presents algorithms to convert unstructured
program schemas into equivalent structured forms.
Unstructuredness occurs in four ways, namely jumps into
and out of decision and loop constructs, to give
multi-entry and multi-exit control structures. An earlier
paper! gave general transforms for the structuring of such
constructs, identified the minimum set of such transforms
needed, and the necessary and sufficient conditions for
their effective application to any schema. Not considered
were the problems of identifying unstructured subschemas
and the general strategy for achieving structuredness.
That omission is now rectified to give between the two
papers a complete theory for the algorithmic structuring
of schemas.

It must be emphasised that the theory relates to
schemas rather than to any particular interpretation of
them as programs and as such has universal applicability.
None the less, as will be shown in an example,
consideration of a particular interpretation can give rise
to further simplifications dependent upon that interpret-
ation and therefore beyond the scope of the present
theory. Even so, the algorithms presented here will often
produce programs that are not only structured and
computationally equivalent to the original forms but also
logically pleasing.

2. SCHEMAS AND THEIR STRUCTURING
TRANSFORMS

Schemas

A schema is a labelled graph G = (V, T, X), where V is
a set of nodes, I' is the immediate successor function
mapping V into sets of nodes over ¥, and X is an alphabet
of operators representing predicates denoted by p, g, ...
and their negations ~p, ~g¢,..., and basic blocks
denoted by a, b, .... If u, veV, vel'u, and aeX* then
(u, v:o) is an arc directed from u to v with label a. The
set of all arcs over G is denoted by E. The labels of arcs
are represented by a, f, ... and are always in the form of
regular expressions over X. The empty basic block is
written 4. Whenever the label of an arc is of no concern
the arc will be written in the form (u, v).

A path [u,v] is a sequence of arcs (u,, u,)
(uy, ) ... (Uy_y, u,) With u = u, and v = u,,. Paths will
also be written in the form a—b—...—u—v where
a, b, ...,u, v is the sequence of nodes on the path. An
elementary path is a path on which the same node does
not occur more than once; a simple path is one on which
the same arc does not occur more than once. Any simple
path [u, u] is a cycle or loop. ‘

The nodes of a schema are of five types: start, halt,
collector, decision and chain having respectively in-degrees
of 0, 1,2, 1 and 1, and out-degrees of 1,0, 1,2 and 1. A
schema G is in reduced form if it has exactly one start node
s and exactly one halt node A, and for all other nodes v
there is a path [s, v] and a path [v, 4] in G. A schema is
in standard form if it contains no loop of the form (u, v: )
(v, u:pP), no decision of the form (u,v:px) and
(4, v: ~ pB), and no chain node. The first two constructs
can be replaced by the single arcs (u, v:a. (pf.a)*) and
(u, v:pa+ ~ pP) respectively, whilst chain nodes can be
elided by concatenation of the incident arcs and their
labels to form a single arc. The equivalent regular
expressions (ax.p.f)*.a.~p and a.(p.f.0)*. ~ p will
be written in the form (a.pf)* . ~ p.

A reduced schema in standard form is a structured
schema if and only if it comprises a single arc labelled by
a regular expression over X.

The structuring transforms

The structuring transforms already developed' are
summarized in Figs 1 and 2. Fig. 1 aillustrates a jump into
a decision ID from R to C and a jump out of a decision
OD at D to S. The paths a« and B each contain zero
or more instances of further ID and OD constructs,
whereas a, b ... represent basic block computations. The
preferred order of structuring! is to remove the ID
constructs first and then the ODs. Proceeding in this
manner and structuring the ID at C using the technique
of arc duplication yields the schema shown in Fig. 15, and
then structuring the OD at D gives the schema shown in
Fig. 1¢. The introduced symbol Q in Fig. 1 cis a predicate
flag which does not occur in the original schema and is
used to record the value of predicate ¢ as computed at
D.
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Figure 1a. Paradigms of ID and OD constructs.
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Figure 15. Result of applying transform ID-0.

The transformation from Fig. 15 to 1¢ is called OD-1,
the -1 indicating that one introduced predicate flag is
needed to effect the structured equivalent form. Similarly,
the transformation from Fig. 1a to 15 is called ID-0, the
-0 indicating that no predicate flag is required.
Structuring of ID can also be effected without the need
to duplicate the arc labelled ‘a’ by introducing a predicate
flag P and making the following changes to the labels in
Figs 15 and 1c.

p.aa ~p.B.(Q+q).
(Q<«0) Q.c; +~Q.b)
E
l c.ca=¢C
Q.c,

Figure 1c. Result of applying the transform ID-0 followed by
OD-1.

Replace
e by e.(P:=p)
p.o.a by P.a
~p.p by ~P.B
f.a by f.(P:=true);
d by (P.a+~P).d

This transform is called ID-1 to denote that a single
introduced predicate is required to effect structuring.

It is immaterial which transformation is chosen to
structure ID; the essential point is that the structuring of
ID repositions its entry node immediately after the
decision exit node, and the structuring of OD repositions
its exit node likewise. As the ID and OD transforms are
independent (apart from the requirement that where a
choice exists the ID transforms are performed first) the
following result is immediate:

Lemma 1

Let v be an immediate predecessor node of the decision
exit node w of a decision subschema. If v is a collector,
then applying either the ID-0 or the ID-1 transforms to
the ID at v repositions v to become the immediate
successor of w, and the previous immediate successor of
w becomes the immediate successor of the newly
positioned v. If v is a decision node, then applying OD-1
to the OD at v repositions v likewise.

In the event that both a and f label arcs rather than
paths, then following structuring, the path AD in Fig. 1¢
is replaced by a single arc labelled, in the case where ID-0
is used, by

e.(p.a.a.(Q:= false)
+~p.B.(Q:=9).(Q.,+~Q.))

thus eliding the decision entry node B and the decision
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A

Figure 2a. Paradigm of the IL construct.

Figure 2b. Result of the transform IL-0.

exitnode E. B and E are also elided if ID-1 is used instead,
but with a different labelling of AD. Hence

Lemma 2

Let D be an unstructured decision subschema with entry
node v and exit node w, and let ¥ be the immediate
predecessor of v, and x the immediate successor of w.
Then the structuring of D by successive structuring of the
topologically last instances of unstructuredness in D
yields an elementary path [«, x] from which v and w have
been elided and the remaining nodes are ordered in
accordance with Lemma 1.

That the structuring process defined in Lemma 2 must
terminate is obvious, since each application of the ID or
OD transformations, when applied in that order
whenever a choice exists, reduces the number of
occurrences of ID or OD in D by at least one.!

Fig. 2a illustrates a jump into a loop (called IL) where

again o labels a path containing zero or more ILs and
jumps out of the loop (OLs). As shown in Ref. 1, if a
schema contains unstructured loops and there is no ID
or OD construct present then there is always at least one
loop of the form shown in Fig. 24, that is, the immediate
successor of the loop entry collector node is also a
collector. It will be shown in section 3 that it is always
sufficient to consider the retreating path DB of Fig. 2a
as an arc, so that the IL construct depicted in Fig. 2a is
the only form of loop unstructuredness that needs to be
considered. Let this form of subschema be called a simple
loop subschema. Fig. 2b shows the structured form of a
simple loop using the technique of arc duplication, called
IL-0. Analogously with ID-1, it is also possible to avoid
arc duplication at the expense of an introduced predicate
flag Q by relabelling Fig. 25 as follows:

replace
e.a by e.(Q:=true)
b by b,.(Q:= false)
o« by (Q.a+~Q.b,.(Q:=true)).a
p.c.a by p.c
where
b,.b,=b

to give the IL-1 transform. If « labels a single arc then
the path [C, E] becomes, in standard form, a single arc
labelled in the case of IL-0 by

[x.p.c.a]t.~p.d

thus eliding nodes B and D. The same form of structured
subschema, but with a different labelling derived from the
foregoing substitutions, is obtained for IL-1.

Let L be a simple loop and let v be the collector entry
of L, u the immediate predecessor of v, x the immediate
successor of v and w the decision exit of L. Then:

Lemma 3

Structuring L at x repositions x as the immediate
successor of u and as the immediate predecessor of v.

Lemma 4

Structuring L results in an elementary path [u, x] from
which v and w have been elided, and the remaining nodes
of L are ordered according to Lemma 3.

The verification of all four lemmas is straightforward
and left to the reader.

3. THE GENERAL STRUCTURING
ALGORITHM

Before proceeding to the general structuring algorithm
for schemas, some additional concepts need to be defined.

Forward paths and forward path subschemas

A forward path F in a schema G is an elementary path
[s, h: a] from the start node s to the halt node A, with label
o. Let u, v be nodes on F. Any path [u, v] of G not in F
is called a back path of F. A maximal union of forward
paths of G such that the unionis an acyclic schema is called
a forward path schema (FPS) of G. Whilst the FPS of a
structured schema is unique, it is not necessarily so for
an unstructured one. For instance, referring to Fig. 3, the
subschemas S, and S, obtained by deleting (c, d) and
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Figure 3. Schema with two possible FPSs.

(e, b) from G respectively are both FPSs of G, but their
union is not, as it contains the cycle d-e-b-c-d. This
situation arises because (c, d) is a back arc of S, but not
of S,, whereas the converse is true for (e, b). For the
purposes of structuring it is immaterial which of possibly
several FPSs is chosen as the one to work with.

An efficient algorithm for the recognition of an FPS is
given below. Its time complexity is 0(e), where e is the
number of arcs in the schema, since each arc of the schema
is considered at most once.

Algorithm 1

Input: a schema G (V, E), with start node s and halt node
h

Output: a forward path subschema F (Vy, Ep) of G.
Method

Starting from some initial node u, a depth-first search is
carried out until either a halt node v is found — in which
case the depth-first path [u,v] is accepted as an
elementary path from u to v — or no further progress is
possible. To improve computational efficiency the set of
goal nodes is extended to include all those nodes already
found to lie on some elementary path from u to v. The
process is applied recursively beginning with # = s and
v=h.

Let U be the set of nodes whose membership of F is yet
to be determined. Initially, U = V —{h}.
procedure forward_path (u:node);
begin
U:=U—{u};
for all x such that xeI'un U do
forward_path (x);
for all x such that xe (Tu—{u}) N V5 do
((IVF’ EF): = (VF + {u}’ EF + {(u’ X)}
end.
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The desired forward path F is found from

Ve:={h}; Ui=V—Vg;

forward_path (s).

A proof of correctness that the above algorithm returns
a maximal forward path subschema of G can be found
in Ref. 2.

It might be thought that a simpler method of finding
an FPS would be to first identify the depth-first spanning
tree of G and then partition the arcs of G into the four
classes: tree arcs, forward arcs, cross arcs and back arcs.?
Unfortunately this method can sometimes fail to
recognise even the simplest of decision subschemas.
Consider for instance a subschema comprising the
forward path 1-4-2-3, the forward arc 1-2 (forming the
decision subschema 1-4-2, 1-2), and back arc 3-4. A
possible depth-first order of the nodes is 1, 2, 3, 4, from
which 4-2 would be deduced as a back arc and the paths
1-2-3-4, 1-4 as forming a decision subschema! This
conclusion is impossible with the given forward path
algorithm when node 3 is nominated as the halt node.

An augmented FPS is defined as follows. Let u, v be
nodes on the FPS F of a schema G such that there exist
arcs (u, w: a) and (x, v: b) in G but not in F. If w = v (or
equivalently x = u and a = b) then add two distinct arcs
(w,v":a;) and (',v:a,) to F such that a,.a, =a,
otherwise add (u, w: @) and (x, v: b)to F.(w =uorx =v
cannot arise in a reduced schema.) Applying the
foregoing to all the nodes of F gives the augmented FPS
A of G.

Structuring the augmented forward path subschemas

A basic decision subschema is a decision subschema that
properly contains no other decision subschema. In order
to structure an FPS Fit is sufficient to repeatedly identify
and structure the topologically last basic decision
subschema D in F until F is fully structured.
Identification of D is straightforward. Let U be a
topologically ordered set of decision nodes in the FPS F
such that each node d of U has both of its immediate
successors in F, and let u be the last member of the set
U. Then u is the decision entry node of a basic decision
subschema. The proof is immediate: suppose that S is a
decision subschema with u as its decision entry node, but
that S is not basic. Then contrary to assumption S must
contain a decision node topologically later than u. To find
the basic decision exit node and the two paths to it from
u proceed as follows. Let the nodes of F be numbered in
topological order, and let the number of any node » be
T(v). The required algorithm is:
Let », w be the necessarily distinct immediate
successors of u.
Vp:={u, v, w}; Ep:={(u, v), (u, w)};
xX:=v;y:=w;
while not (x = y) do
begin
if T(x) < T(y) then
begin
z:=VenTx;
(Vps Ep):= (Vp+2z, Ep+(x, 2));
x:=7z;
end
else

swap (x, y);
end;
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(Vp, Ep) is the desired basic decision subschema, with
entry node u and exit node x (equal to y) and is structured
using the ID and OD transforms as given in section 2.

Simple loop subschemas

As already stated in section 2, a simple loop subschema
comprises a single elementary path from the start node
to the halt node together with a set of overlapping back
arcs. This is the form to which all (sub)schemas are
reduced after removal of all ID and OD constructs by the
structuring algorithm to be given below. The IL to be
considered first is found as follows. Let d be the first
decision node on the forward path and let ¢ be that
immediate successor of d which also topologically
precedes it, that is, let (d, ¢) be a back arc. Then c is the
loop entry collector and the loop is [c, d] (d, ¢). This loop
comprises ILs alone and that which occurs at the
immediate successor of ¢ is the one sought. After
structuring, the remaining ILs are found similarly.

The structuring algorithm for schemas

The desired structuring algorithm for an unstructured
schema G with start node s and halt node 4 is given below.
It is based on the requirement! that for the structuring
transforms to be effective, that is, to always reduce the
number of basic unstructured forms by at least one on
each application, ID and OD constructs must be
identified and removed ahead of IL constructs in each
single-entry single-exit subschema being structured. The
recognition and removal of unstructured forms is done
recursively.

Algorithm 2

Input: a schema G.

Output: a structured schema in the form of a single arc

labelled with a regular expression.

0. IfGisnot a single arc then goto step 1 else to step 7.

1.  Put G into reduced standard form.

2. Identify a forward-path subschema F of G, and
construct the augmented forward-path subschema 4
of F. (A is acyclic.)

3. Structure 4 using the ID and OD transforms to give
anelementary path E. (Typically Ewill not be a single
arc.)

4. SetG=(G-F) U E;

5. Let the nodes of E be numbered in topological order
and let each decision node on E (except the start and
halt nodes) be placed in an ordered set U.

For each de U, in order of membership of U, do:

recursively structure G using d as the start node and
the immediate predecessor of din E as the halt node.
(G will now comprise only IL and OL constructs at
most, and every back path of G will be a single arc.)

6. Structure G using the IL transforms.

7. Stop. (G now comprises a single arc with a label in the
form of a regular expression, that is, G is fully
structured.)

The use of topological ordering in step 5 reduces the
computational effort required to identify the FPSsin each
recursive structuring of G. This is because the predecessors
of d on E can only be collector nodes, and therefore the
search for the FPS of G with start node d is necessarily

restricted to those arcs reachable from the back path of
E starting from d.

The proof of correctness for algorithm 2 proceeds by
induction and is briefly sketched below.

Basis

1. Steps 1-4 reduce an acyclic schema to a single arc.
2. Steps 1-4 and step 6 reduce a schema whose back paths
are all single arcs to a single arc.

Induction

Every subschema defined in step 5 is a proper subschema
of that from which it is derived, hence there must exist
some such subschema S of G which either has no back
path or whose every back path is a back arc. The
subschema H produced by structuring S is equivalent to
G but has fewer arcs. Applying the argument repeatedly
to H and its derivatives must therefore produce a
structured schema of just one arc.

The application of algorithm 2 to some practical
examples is given in the next section.

4. EXAMPLES

Three examples will be given. The first illustrates the
application of the algorithm to a complex hypothetical
schema whilst the remaining examples relate to two
practical problems: the non-recursive post-order traversal
of a binary tree, and the file merge problem. These latter
examples will show that whilst the structuring algorithm
is capable of producing well-designed equivalent struc-
tured programs under some conditions, further refine-
ments which are dependent upon the particular inter-
pretation of a schema may be possible too, and therefore
beyond the scope of the present structuring algorithm.

Example 1. A complex hypothetical schema

Consider the hypothetical schema depicted in Fig. 4a.
The arcs are left unlabelled, as the purpose of this
example is to show the progressive steps in the structuring
process rather than to produce an explicit equivalent
regular expression. Writing algorithm 2 in the procedural
form structure (s, h), where s and h denote start and halt
nodes respectively, the progressive recursive calls on
Structure become:
{Fig. 4a}
structure (0, 10);
{see text below}
structure (5, 2);
{Fig. 4b}
structure (13, 12);
{Fig. 4¢}
structure (20, 17);
{see text below}
structure (5, 2);
{Fig. 44d}
structure (9, 13).

Fig. 4a—d illustrate the progressive forms of the schema
immediately before the next call on structure, and show
the FPSs about to be identified and structured, the FPS
arcs being drawn as full lines and the remainder dashed.
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Figure 4a. A hypothetical schema G, showing its FPS.
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Figure 4b. G, after structuring its FPS.

Following the structuring of the FPS in Fig. 4a the
schema shown in Fig. 45 is obtained, for which the next
stepis structure (5, 2). As the FPS is simply the elementary
path 5-6-1-2 it requires no further structuring. Following
structure (20, 17) within structure (13, 12) the structured
path 13-14-20-2 is obtained together with the structured
cycle 20-14-20. Thus this construct reduces to the single
arc (13, 2) when put into standard form. The next step
in structure (13, 12) is structure (5, 2), which as already
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seenrequires no furtheraction. Toimprove computational
efficiency it would be advantageous to note such steps on
their first occurrence and avoid their subsequent
recomputation. The FPS of Fig. 4d comprises the
elementary path 9-6-1-2-5-13 with back arc (5, 6) and
hence two IL constructs: the first at 1 from 0 and the
second at 2 from 13. Structuring these yields the
elementary path 0-1-2-13-9-10 within structure (0, 10) and
two structured nested cycles whose back arcs are (13, 2)
and (9, 1). As this is now fully structured the standard
form reduces to a single arc and the process terminates.

Example 2. Non-recursive post-order tree traversal

An iterative solution to the post-order tree traversal
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Figure Sa. Schema G,, for iterative post-order traversal of binary

tree.

problem is given below in terms of abstract data-type
operations on the tree and a stack. In this and the next
example statement groupings will be denoted by

indentation rather than begin—end pairs.
{t is the non-empty tree to be traversed}
s:= CreateStack; {sis empty}
1: while not EmptyTree (left(z)) do {go left in the tree}
push (s, <t, goright));
t:= left(z);

2: if not EmptyTree (right(s)) then {go right in the tree}

push (s, <t, goback));

t:= right(?);

goto 1;

3: process (root(?));
if not EmptyStack (s) then {go back up the tree}

(t, action): = top(s);

pop(s);

if action = goright then
goto 2

else
goto 3.

The corresponding schema is shown in Fig. 5a with the
following particular interpretation.

a: s:= CreateStack;

b: while not EmptyTree (left(z) do
push (s, <z, goright});
t:= left();

: push (s, <z, goback)); t:= right(¢);

: process (root());

: <t, action): = top (s); pop(s);

: EmptyTree (right(z))

: EmptyStack (s)

action = goright.

10T 0 A0

N OF SCHEMAS TO STRUCTURED FORM

b.(R+0)

R+~R.(P+~p)

~q.e.(R<~r1)

Figure 5b. G,, structured to simple loop format.

Arc (2, 3) represents an empty basic block.
The solution is obtained by the steps

{Figure Sa}

structure (0, 7);

needed}
structure (5, 4);

{Fig. 5b} {G has IL at 2 from 5 — apply IL-1}
to yield the regular expression

a.(P:=true).[{P.b.(R:=false)+ ~ P.e.(R:=7T)).
(R+~R.(P:=~p)).P.c}*.~ P.d.(P:= false)
~ql".q
The term (P:= false) is clearly redundant and can be

omitted. Writing DoRightTree for ~ R and EmptyRight
for ~ P, the interpretation for the regular expression is

the structured program
s:= CreateStack;
EmptyRight: = false;
repeat {until the tree is fully traversed}
repeat {until empty right subtree encountered}
if not EmptyRight then

while not EmptyTree (left()) do {go left in the

tree}
push (s, (¢, goright));
t:= left(z);
DoRightTree: = true
else {go back up the tree}
(t, action): = top(s);
pop(s);
DoRightTree: = action = goright;
if DoRightTree then
EmptyRight:= EmptyTree (right(¢));
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cpy 30

{FPS is the elementary path [0, 7]}
structure (3, 1); {FPS is the single arc (3, 1) — no action

{FPS has an OD at 3to 1 and an ID
at 2 from 1. Apply OD-1 and ID-1 respectively}
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Figure 6. Schema for merging sorted files.

if not EmptyRight then {go right in the tree}
push (s, (¢, goback));
t:=right(¢);
until EmptyRight;
process (root(?));
until EmptyStack (s).

Apart from the slightly misleading setting of EmptyRight
to false in the second line (which can be overcome by
writing RightTreeDone for EmptyRight throughout) this
form of the algorithm is a clear re-statement of the
original, and was obtained with the minimum of
post-structuring manipulation (the elision of the term
P: = false).

The reader is invited to repeat the structuring process
using ID-0 and IL-0 in place of ID-1 and IL-1
respectively.

Example 3. The file merge problem

Let /and r be two files arranged in ascending sorted order
which are to be merged into an ascending-order sorted
file /. The following abstract data-type operations on files
are assumed to be available.
eof (f): return true if fis empty, false otherwise;
get (f): if not eof (f) then return (g, i where i is the first
item in fand g is the remainder of f; else undefined;
put (f, i): append item i to f'and return the updated file;
copy (f, g): return the composite file 1. g
A relevant schema is depicted in Fig. 6 for which the
necessary particular interpretation is

a: L, uy:= get(l); <r, v):= get(r)
b: fi= put(f, u)

c: fi=put(f, v)

d: f:= copy(put(f, v), r)

e: f:= copy(put(f, u), })
f: {, uy:= get(l)
g: {r, v):= get(r)
p: eof(l)
q: eof(r)
S: u<v

Since the arcs (1, 2) and (2, 3) represent empty basic
blocks the schema is computationally completely sym-
metric as the target node of nodes 4 and 5 is in reality
node 3. Clearly all that is required to structure the schema
is the elimination of the two instances of OD: one at 4
to 1 and the other at S to 2. Choosing 4-1 first followed
by 5-2 gives

a.[{(s.b.(P:=~p).(P.f+~P.d).(Q:= false)+
~s.c.(Q:=

~q).(Q.g+~Q.e.(P:=false))).Q}* . ~Q.P]*. ~P

which clearly lacks the symmetry of the original. Flow§
analysis for the ﬂag P reveals that (Q.g+32
~ Q.e.(P:=false)) is computationally equivalent toQ
(Q.g+ ~0Q.e).(P:=false), which makes the body of o
the loops symmetric, but still leaves the asymmetry of one &
loop nested within the other. Further flow analysis showsi
that it is possible to merge the two loops into one — an
process that is completely beyond the structurmg\
algorlthm by the introduction of a third predicate flag g g
R. This is possible because both loops have the same%
target node for their back arcs, no computation isz
performed on the back arcs, and the condition thatc
neither back arc is traversed is simply ~ P and ~ Q. The 5
regular expression now takes the form

a.[{s.b.(P:= ~p).(R:=~P).(P.f+~P.d)+~s.c
Q:=~q).(Ri=~0Q).(Q.g+~Q.e)}. ~RI*".R

One further possible refinement remains. It is now no
longer necessary to introduce P and Q as distinct flags:
their role can be undertaken by R as they are mutually
independent variables. Thus the final structured form is

a.[{s.b.(R:=p).(R.d+~R.f)+
~s.c.(R:=q).(R.e+~R.g2)}.~R]*.R
which is in the desired symmetric format.

Interpreting R as ‘Finished’, the final algorithm is
uy:=get(l); (r,v):= get(r);

repeat
if u < v then
Ji=put (f, u);

Finished: = eof(/) ;
if Finished then
JS:= copy (put(f; v), r)
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else
Kl uy:= get(l)
else
Ji=put(f, v);

Finished: = eof(r);
if Finished then

J:= copy (put(f, ), )
else -

(r, v):= get(r)

until Finished.
It is clear that this form of the algorithm could not have
been found by Algorithm 2 alone as it is heavily
dependent upon the properties of the particular interpret-
ation of the original schema. None the less, the
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structuring algorithm provided the basis from which to
start, and this being structured made subsequent flow
analysis easier.

5. DISCUSSION

Whilst it has been shown that it is always possible to put
an unstructured schema into structured form, it remains
to be shown that the process is computationally tractable
for large schemas. This is now taken up, and it will be
shown that the time complexity is almost always linear
in the number or arcs in the schema, and at worst is
asymptotically linear from above.

Let e be the number of arcs and v the number of nodes
inaschema G. Then forall Ge > v+ 1, soitis appropriate
to use e as the measure of size for the problem. Referring
to algorithm 2, section 3, it can be shown that each of the
operations involved in steps 1-4 and step 6 is of time
complexity 0(e). For step 5 suppose that the maximum
number of subschemas generated is a, and that the
maximum number of arcs in any such subschema is b. The
time complexity T(e) of Algorithm 2 is given by

T =c
T(e) <a.T()+c.e

where ¢ is some constant.

Writing b = e/n, the solution for T{(e) is 0(e **log,, a)
for a > n, 0(e) for a <n, and O(e.log,e) for a=n3
Consider first a > n. This could arise, for instance, if G
has a single forward path of three arcs and a back path
subschema of e-3 arcs. If this pattern is repeated over all
subschemas generated in step 5 of Algorithm 2 thena =1
and n = e/(e—3), so that although T{(e) is exponential in
e it is asymptotically O(e) for large e. Needless to say,
schemas of such a form are highly unlikely in any
practical situation. To achieve a > n in general will
require similarly contrived and highly improbable forms,
and it is conjectured that these too will be asymptotically
of 0(¢) from above. For any practical program it is
reasonable to expect that at each level of recursion in step
5 the sum total of arcs considered is less than the total
in the (sub)schema from which they are derived. That is,
a.b < e and hence a < n. It is claimed therefore that for
almost all schemas T{(e) is 0(e), and in any case for all
schemas is at worst exponential in e with an exponent
greater than but asymptotically approaching unity for
large e.
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